Tutorial#4

This tutorial is a (re) examination of the circle, as a group. This will be important when we arrive at the Hilbert space $L^2(S^1)$ of functions on S^2 .

<u>Def</u>ⁿ A topological group is a set X equipped both as a topological space (X,J) and as a group (X, •, e) such that

(i) The function • : $X \times X \longrightarrow X$ is continuous.

(ii) The function $(-)^{-1}$: $X \longrightarrow X$ is continuous.

An <u>isomorphism</u> of topological groups is a homeomorphism that is also an isomorphism of groups.

1911 Prove that (IR, +, 0) is a topological group

 $\boxed{\mathbb{Q}^2} \quad \text{Using } S^1 := [0,1]/\sim \text{ where } 0 \sim 1 \text{ give } S^1 \text{ the structure of a topological group, isomorphic to the topological group}$

$$U(1) = \{ e^{i\Theta} \mid \Theta \in \mathbb{R} \} \subseteq \mathbb{C}$$

under multiplication.

 $\mathbb{Q3}$ Let \mathcal{C} be a topological group and $H \subseteq \mathcal{C}$ a normal subgroup.Let \sim be the equivalence relation $g \sim g'$ iff. $\exists h \in H$ with g = hg',so that $G/H := G/\sim$. Prove that G/H is a topological group whengiven the quotient topology.

Q4 Prove $\mathbb{R}/\mathbb{Z} \cong S^1$ as topological groups.