Tutorial 4 : The circle as a group

This tutorial is a (re) examination of the circle, as a group. This will be important when we arrive at the Hilbert space $L^2(S^1)$ of functions on S^2 .

<u>Def</u>ⁿ A <u>topological group</u> is a set X equipped both as a topological space (X,J) and as a group (X, •, e) such that

(i) The function • : $X \times X \longrightarrow X$ is continuous.

(ii) The function $(-)^{-1}$: $X \longrightarrow X$ is continuous.

An <u>isomorphism</u> of topological groups is a homeomorphism that is also an isomorphism of groups.

IPI Prove that (IR, +, 0) is a topological group

We write GL(2), SO(2) for $GL(2, \mathbb{R})$, $SO(2, \mathbb{R})$.

[Q3] Prove that the bijection $S^{\perp} \longrightarrow SO(2)$ sending ($\omega SO, sinO$) to the rotation matrix Ro is a homeomorphism, where $S^{\perp} \subseteq IR^2$ is the unit circle. Hence S^{\perp} is a topological group with structure maps

$$S^{1} \times S^{1} \cong SO(2) \times SO(2) \xrightarrow{\cdot} SO(2) \cong S^{1}$$

 $S^{2} \cong SO(2) \xrightarrow{(-)^{-1}} SO(2) \cong S^{1}$

1) 27 |8| 19 Prove S^{\perp} is isomorphic as a topological group to

Q4

$$U(1) = \{ e^{i\Theta} \mid \Theta \in \mathbb{R} \} \subseteq \mathbb{C}$$

under multiplication, with the induced topology.

Q5] Let \mathcal{A} be a topological group and $H \subseteq \mathcal{A}$ a normal subgroup. Let \sim be the equivalence relation $g \sim g'$ iff. $\exists h \in H$ with g = hg', so that $G/H := G/\sim$. Prove that G/H is a topological group when given the quotient topology.

 $\boxed{\mathbb{Q}_{6}}$ Prove $\mathbb{R}/\mathbb{Z} \cong S^{1}$ as topological groups.

Note that S^2 is not "canonically" a group, since nobody tells you where to start measuring your angles from, so it is more accurate to say $SO(2), U(1), \mathbb{R}/\mathbb{Z}$ are topological groups, all homeomorphic to S^2 as spaces.