(1) 27 |8| 19

This tutorial is a (re) examination of the circle, as a group. This will be important when we arrive at the Hilbert space $L^2(S^1)$ of functions on S^2 .

<u>Def</u>ⁿ A <u>topological group</u> is a set X equipped both as a topological space (X, T) and as a group (X, •, e) such that

(i) The function • $X \times X \longrightarrow X$ is continuous.

(ii) The function $(-)^{-1}$: $X \longrightarrow X$ is continuous.

An <u>isomorphism</u> of topological groups is a homeomorphism that is also an isomorphism of groups.

1911 Prove that (IR, +, 0) is a topological group

We write GL(2), SO(2) for $GL(2, \mathbb{R})$, $SO(2, \mathbb{R})$.

 $\begin{array}{l} \hline \hline \ensuremath{\mathbb{Q}}\ensuremath{\mathbb{Z}}\ensuremath{\mathbb{Q}}\ensuremath{\mathbb{Z}}\ensuremath{$

 $S^{1} \times S^{1} \cong SO(2) \times SO(2) \xrightarrow{\bullet} SO(2) \cong S^{1}$ $S^{2} \cong SO(2) \xrightarrow{(-)^{-1}} SO(2) \cong S^{1}$

1941 Rove St is isomorphic as a topological group to
$U(1) = \{ e^{i\Theta} \mid O \in \mathbb{R} \} \subseteq \mathbb{C}$
under multiplication, with the induced topology.
, -
$\boxed{Q5}$ Let G be a topological group and $H \subseteq G$ a normal subgroup.
Let ~ be the equivalence relation $g \sim g'$ iff. $\exists h \in H$ with $g = hg'$,
so that $G/H := G/\sim$. Prove that G/H is a topological group when
given the quotient topology.
$\boxed{Q6} \text{Prove } \mathbb{R}/\mathbb{Z} \cong S^{-} \text{ as topological groups.}$
Note that S ^Z is not "canonically" a group, since nobody tells you where
to start measuring your angles from, so it is more accurate to say
$SO(2), U(1), \mathbb{R}/\mathbb{Z}$ are topological groups, all homeomorphic to S^{\perp} as spaces.
, , , , , , , , , , , , , , , , , , ,

Solutions

$\boxed{\text{QI}} \text{Let } f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \text{be } f(x, y) = x + y \text{ and } q: \mathbb{R} \longrightarrow \mathbb{R} \text{be } q(x) = -x.$
There are both linear hence continuous
$\overline{[a2]}$ We identify $M_2(\mathbb{R})$ with \mathbb{R}^4 , giving it a topology, then multiplication
$M_{2}(\mathbb{R}) \times M_{2}(\mathbb{R}) \xrightarrow{\bullet} M_{2}(\mathbb{R})$
\mathbb{R}^3 \mathbb{R}^4
is in each coordinate a polynomial function, hence continuous.
This restricts to a continuous map on GL(2, IR), given the subspace
topology:
•
$M_2(IR) \times M_2(IR) \longrightarrow M_2(IR)$
\uparrow
$GL(2,\mathbb{R}) \times GL(2,\mathbb{R}) \longrightarrow GL(2,\mathbb{R})$
The function $(-)^{-1}$: $GL(2,\mathbb{R}) \longrightarrow GL(2,\mathbb{R})$ is continuous
since the composite
$GL(2, \mathbb{R}) \longrightarrow GL(2, \mathbb{R}) \longrightarrow M_2(\mathbb{R}) = \mathbb{R}^4$
(ab), $(d-b)$
(cd) ad-bc(-ca)
is writinuous live may check this coordinate-wise, and the only
thing to check is that $\frac{1}{ad-bc}$ is continuous $U \rightarrow \mathbb{R}$ where
$(1 \le \mathbb{R}^4)$ is where this function is defined namely $(1) = GL(2, \mathbb{R})$
Hence GL(2, IR) is a topological group.

and is thus wontinuous.

Q5 Let
$$m: G/H \times G/H \longrightarrow G/H$$
 and $i: G/H \longrightarrow G/H$ be the
multiplication and inverse, and let $U \subseteq G/H$ be open, $p: G \longrightarrow G/H$
the quotient. We have to show $m^{-1}(U)$, $i^{-1}(U)$ are open. Let
a point ([9], [92]) $\in m^{-1}(U) \subseteq G/H \times G/H$ be given. Since
 $G \times G \xrightarrow{m^{G}} G \xrightarrow{p} G/H$

 $(g_{1},g_{2}) \in \bigvee \times W \subseteq (\rho \circ m^{\alpha})^{-1}(U),$ 1.e. Haev YbeW abep-1(U) Observe that $m(h, -): a \longrightarrow a$ is continuous (why?) so $\widetilde{V} = (\int_{h \in H} hV) \quad \widetilde{W} = (\int_{h \in H} hW)$ are open (saturated!) subsets of G, and if a EV, b EW and h, h' E H then (ha)(h'b) = hh''ab for some $h'' \in H$, but this shows that $(ha)(h'b) \sim ab \sim n$ for some $u \in U$ so $(ha)(h'b) \in p^{-1}(U)$ and hence $(g_{1},g_{2}) \in \widetilde{V} \times \widetilde{W} \subseteq (p \circ m^{G})^{-1}(U)$ But then in G/H × G/H $([9,],[n_{2}]) \in \rho(\widetilde{\gamma}) \times \rho(\widetilde{W}) \subseteq m^{(1)}(U)$ and since $p(\vec{v}) \times p(\vec{w})$ is open this completes the poorf. The case of \vec{z} is done similarly. [Q6] The map $R \rightarrow \mathbb{C}, \ O \rightarrow e^{2\pi i O}$ is continuous, and gives a surjective wortinuous map $R \longrightarrow U(1)$ which factor via a continuous bijection $\mathbb{R}/\mathbb{Z} \longrightarrow U(1)$. This is clearly a homomorphism of groups, and it only remains to check it is open, but this is essentially the same as what we did to check $[0,1]/\sim \Xi S^2$.

is continuous, we can find
$$V, W \subseteq G$$
 with $g_1 \in V$, $g_2 \in W$ such that