Tutorial \#2 (2019)

Cartesian product Given sets X, Y you know

$$
X \times Y=\{(x, y) \mid x \in X, y \in Y\}
$$

But what is an orcleved pair (x, y) ? It is n't some axiom of set theory that these things exist (it is usually an axiom intype theory, but this is a differentstory). The ordered pair is defined from move primitive elements. Usually we use the Kuratowskipair

$$
(x, y):=\{\{x\},\{x, y\}\} .
$$

Q1 Prove $(x, y)=(a, b) \Longleftrightarrow(x=a \wedge y=b)$. Note that sets ave equal iff. They have the same elements.

Well what about $X \times Y \times 2$? Should we invent a "Kuratowski triple"? No.
Let us make a general definition: suppose we have a collection of jets $\left\{X_{i}\right\}_{i \in I}$ inclexed by a set I. We want elements of $\prod_{i \in I} X_{i}$ to be I-indexed families of elements $x_{i} \in X_{i}$, one for each $i \in I$. That is

$$
\prod_{i \in I} X_{i}=\left\{\left(x_{i}\right)_{i \in I} \mid x_{i} \in X_{i} \text { for all } i \in I\right\}
$$

But what does $\left(x_{i}\right)_{i \in I}$ really mean? What set is it?

Let us do an easy case: $I=\{1,2,3\}$. Then an element of $\Pi_{i \in I} X_{i}$ is just an ordered triple $\left(x_{1}, x_{2}, x_{3}\right)$ with $x_{i} \in X_{i}$. This we may realise as

$$
\left(x_{1}, x_{2}, x_{3}\right):=\left\{\left(1, x_{1}\right),\left(2, x_{2}\right),\left(3, x_{3}\right)\right\}
$$

Then more generally,

$$
\begin{equation*}
\left(x_{i}\right)_{i \in I}:=\left\{\left(i, x_{i}\right) \mid i \in I\right\} \tag{2.1}
\end{equation*}
$$

Q2 Prove $\left(x_{i}\right)_{i \in I}=\left(y_{i}\right)_{i \in I} \Longleftrightarrow x_{i}=y_{i}$ for all $i \in I$.

Then $\prod_{i \in I} X_{i}$ is the set of all sets like (2.1) above, 1.e. sets S where
(i) every element is a pair, the fint entry of which lies in I
(ii) for each it I there is a unique pair in S beginning with c^{\prime}.
(iii) if $(i, x) \in S$ then $x \in X_{i}$.

We call this set the Cartesian product.

Q3 Prove that $T_{i \in\{1,2\}} X_{i}$ is bijective to $X_{1} \times X_{2}$ (defined by Kuratowshi pain). Are these literally the same set?

Disjoint union How do I form a set S which contains two copies of a given set, say the interval $X=[0,1]$? well

$$
X \cup Y=\{x \mid x \in X \text { or } x \in Y\}
$$

so $[0,1] \cup[0,1]=[0,1]$. The ordinary union wont work.
Idea we can "colour" one copy of X in some aubitray way, re. $X^{\prime}:=\{(0, x) \mid x \in X\}$. This is bijective to, but distinct from, X. Then $S:=X \cup X^{\prime}$ containstwo distinct copier of X.

We call S the disjoint union of two copies of X and unite $S=X \Perp X$.
Moregenerally

$$
X \Perp Y:=(\{0\} \times X) \cup(\{1\} \times Y)
$$

Move generally, given a wllection $\left\{X_{i}\right\}_{i \in I}$ we "colour" X_{i} by i in order to separate each X_{i} from X_{j}, even if as sets $X_{i}=X_{j}$, to form the disjoint union

$$
\begin{aligned}
\frac{\bigcup_{i \in I}}{} X_{i} & :=\bigcup_{i \in I}\{i\} \times X_{i} \\
& =\left\{(i, x) \mid i \in I \text { and } x \in X_{i}\right\} .
\end{aligned}
$$

Q4 Give injective functions $g_{i}: X_{i} \rightarrow 山_{i \in I} X_{i}$ st.

$$
\begin{aligned}
& \text { - } \quad i \neq j \Longrightarrow g_{i}\left(X_{i}\right) \cap g_{j}\left(X_{j}\right)=\varnothing \\
& \cdot \bigcup_{i \in I} g_{i}\left(X_{i}\right)=\Perp_{i \in I} X_{i} .
\end{aligned}
$$

QS] (i) Identify $\prod_{i \in I} X_{i}$ with a subset of the set of functions

$$
I \longrightarrow U_{i \in I} X_{i} .
$$

(ii) Prove that given subsets U_{i}, V_{i} of $X_{i},\left(\frac{1}{i \in I} U_{i}\right) \cap\left(\frac{\|}{i \in I} V_{i}\right)$ is equal to $\frac{11}{i \in I}\left(U_{i} \cap V_{i}\right)$ as subretio of the disjoint union of the X_{i}.

Q6) Let X be a set. Pore that if $E_{i} \subseteq X \times X$ is an equivalence relation then so is $\bigcap_{i \in I} E_{i}$. Given $Q \subseteq X \times X$ any set, let

$$
E=\bigcap\left\{Y \subseteq X \times X \mid Y \text { is an equiv.vel }{ }^{N} \& Y \supseteq Q\right\}
$$

This is the equivalence relation generated by Q.

Q7 What is the equivalence relation on $\{1,2,3,4\}$ generated by the pairs $Q=\{(1,2),(4,3)\}$

