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From Lecture 18 we knowhow to construct LYX.IR ) for an integral pair
( X

,
b) as a set of equivalence classes of Cauchy sequences ( fn Into

where each fn :X→ IR is continuous and the metic used to define

Cauchy - ness is the one derived from the LZ - norm

Hfllz -_ { 1×142 )
"

we know LYX.IR ) is a Banach space and (
CtsHR )

,
H -Hz ) → (LYX, 1121,11 - Ha )

as normed spaces , but [ space remainsmysterious : what are these vectors in

[(x, IR ) lctslx.IR) ? Are they just some formal objects or do they have

some deeper significance ? To examine this question we return to the topic of Tutorial 10 .

Example48-2_ Consider X=[Oil] and the sequence of functions fn :X → IR

given for n> 4 by
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we proved (fn )F=4 is Cauchy in ( Cb(X.IR ) .dz ) but does not converge . Hence
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We will prove
LYX , IR ) is a Hilbert space 4
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"

being
" f .

Moreover any Riemann

integrable function can be represented in this way by a vector

in L2 ( X
,
IR ) .
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There are several things to check before you should believe this

00

(1) Does I depend on the choice of approximation (fn ) n -- 4 of f- by
continuous functions ?

(2) How to find Cfn )F=4 fora general Riemann integrable f ?

(3) Is the function

{ Riemann integrable f }→ LYX , IR)

injective ? Surjective ?

Thekey is :

since this u is unique , we denote

u by Oz and call this the representing
element for R .



theorem (Riesz representation theorem ) Let (H ,47 ) be a Hilbert space .

If 7 : H→ IF is continuous and linear there exists a unique

fedor *H with
.

2 =L- , u>.

Strategy . Let (X
,
Sx ) = ( co, D , fo

'

)
.

. Let f :X→ 112 be Riemann integrable

• Question : I E LYX
,
IR ) " representing

" f
.

. H = ( L2( X, IR ) , C , > )
,
7 : H→ IF gives Oz C- ECHR ) .

Lemme Given f integrable consider the function

2 : Cts ( X, IR )→ IR

Z ( g ) = fo
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is continuous and linear with respect to dz , hence
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Proof Linearity is clear . For continuity observe that
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Let c : Cfs ( X , IR )→ LYX , IR) be the inclusion
.

Since 2 : Cts (x, R) → IR

is continuous and linear there is a unique continuous linear Z
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By the Riesz representation theorem there is a unique representing
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'

for Z
'
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That is
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• It is not injective , Kev (I) = { almost everywhere zero functions } .
• I is not surjective either !
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