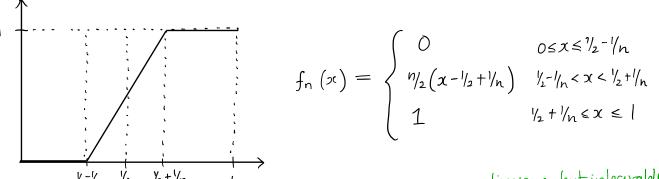
Tutorial 11

From Lecture 18 we know how to construct $L^2(X, IR)$ for an integral pair (X, J_X) as a set of equivalence classes of Cauchy sequences $(f_n)_{n=0}^{\infty}$ where each $f_n : X \longrightarrow R$ is continuous and the metric used to define Cauchy-ness is the one derived from the L^2 -norm

$$\|f\|_{2} = \left\{\int_{X} |f|^{2}\right\}^{y_{2}}$$

We know $L^{2}(X,\mathbb{R})$ is a Banach space and $(Ct_{s}(X,\mathbb{R}), \|I-\|_{2}) \hookrightarrow (L^{2}(X,\mathbb{R}), \|I-\|_{2})$ as normed spaces, but L^{2} space remains mysterious: what are these vectors in $L^{2}(X,\mathbb{R}) \setminus Ct_{s}(X,\mathbb{R})$? Are they just some formal objects or do they have some cleeper significance? To examine this question we return to the topic of Tutorial ID.

Example LIB-2 Consider X = [0, 1] and the sequence of functions $f_n : X \longrightarrow \mathbb{R}$ given for $n \ge 4$ by



non-continuous but integrable

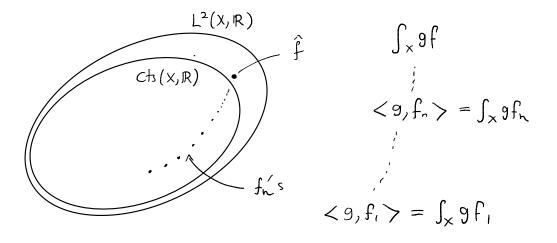
The sequence $(f_n)_{n=4}^{\infty}$ convenes <u>pointwise</u> to $f(x) = \begin{cases} 1 & x > \frac{1}{2} \\ \frac{1}{2} & x = \frac{1}{2} \\ 0 & x < \frac{1}{2} \\ f \notin Ct_3(x, \mathbb{R}) \end{cases}$

We will prove $L^{2}(X, \mathbb{R})$ is a Hilbert space $\langle , \rangle : L^{2}(X, \mathbb{R}) \times L^{2}(X, \mathbb{R}) \longrightarrow \mathbb{R}$ is continuous in each variable and for $g, h \in Ct_{3}(X, \mathbb{R})$

$$\langle g,h\rangle = \int_{X} gh$$

Hence for
$$g \in Ct_{2}(X, \mathbb{R})$$

 $\langle 9, \hat{f} \rangle = \langle 9, \lim_{n \to \infty} f_{n} \rangle$
 $= \lim_{n \to \infty} \langle 9, f_{n} \rangle$
 $= \lim_{n \to \infty} \int_{X} g f_{n}$
 $= \lim_{n \to \infty} \left[\int_{\frac{1}{2}-\frac{1}{2}} g \int_{X} g f \int_{1/2} (x - \frac{1}{2} + \frac{1}{2}) f + \int_{\frac{1}{2}+\frac{1}{2}} g f f \right]$



Claim We should think of \hat{f} as "being" f. Moreover any Riemann integrable function can be represented in this way by a vector in $L^2(X, \mathbb{R})$.

There are several things to check before you should believe this

- (1) Does \hat{f} depend on the choice of approximation $(f_n)_{n=4}^{\infty}$ of f by continuous functions?
- (2) How to find $(f_n)_{n=4}^{\infty}$ for a general Riemann integrable f?
- (3) Is the function

{ Riemann integrable
$$f$$
 } $\longrightarrow L^2(X, \mathbb{R})$

injective? Surjective?

The key is:

Since this is in is unique, we denote u by Oz and call this the representing element for 7.

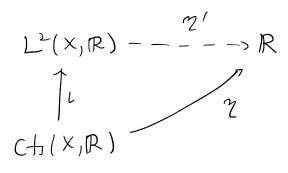
Theorem L20-8 (Riesz representation theorem) Let
$$(H, <, ?)$$
 be a Hilbert space.
If $\mathcal{I}: H \longrightarrow IF$ is continuous and linear there exists a unique
(vector $u \in H$ with
 $\mathcal{I} = <-, u$).
Strategy · Let $(X, f_X) = ([0, 1], f_0^{-1})$.
· Let $f: X \longrightarrow IR$ be Riemann integrable
· Question : $\hat{f} \in L^2(X, IR)$ "representing" f .
· $H = (L^2(X, R), <, ?), \mathcal{Y}: H \longrightarrow IF$ gives $\mathcal{O}_Z \in L^2(X, IR)$

Lemma Given f integrable consider the function

$$\mathcal{Z}: Cts(X, \mathbb{R}) \longrightarrow \mathbb{R}$$
$$\mathcal{Z}(g) = \int_{0}^{1} gf dx.$$

is continuous and linear with respect to d_2 , hence $\mathcal{M} \in Ct_s(X, \mathbb{R})^{\vee}$.

Proof Linearity is clear. For continuity observe that $\begin{aligned} \left| \int gf_{dx} - \int g'f_{dx} \right| &= \left| \int (g - g')f_{dx} \right| \\ \begin{pmatrix} (& (& g') \\ \gamma(g') & \chi(g') \end{pmatrix} &\leq \int |g - g'|| + |dx| & \| (g - g')f \|_{1} \\ H \ddot{o} |dev & f &\leq \| g - g' \|_{2} \| f \|_{2} \\ H \ddot{o} |dev & \chi(g') &\leq \| g - g' \|_{2} \| f \|_{2} \\ H ence ? is bounded \| ? \| \leq \| f \|_{2}. \Box \end{aligned}$ Let $C: Ct_1(X,\mathbb{R}) \longrightarrow L^2(X,\mathbb{R})$ be the inclusion. Since $\mathcal{T}: Ct_1(X,\mathbb{R}) \longrightarrow \mathbb{R}$ is continuous and linear there is a unique continuous linear \mathcal{T}' making



commute. Note

$$\binom{g_n wntinuous}{(1-1)}$$

 $\binom{g_n wntinuous}{(1-1)}$
 $\binom{g_n g_n f_d x}{(1-1)}$

By the Riesz representation theorem there is a unique representing element \hat{f} for \mathcal{Z}' . That is, $\hat{f} \in L^2(X, \mathbb{R})$ and $\langle -, \hat{f} \rangle = \mathcal{Z}'$. Equivalently

{ Lebergue integrable }
$$\xrightarrow{\cong} L^2(X, \mathbb{R})$$

(a.e. equality