$\frac{\text{Tutorial 10}}{\text{Example L18-2}} \quad (\text{rough notes})$ $\frac{\text{Example L18-2}}{\text{given for } n \ge 4 \text{ by}} \quad \text{fn } (x) = \begin{cases} 0 & 0 \le x \le \frac{y_2}{y_2} - \frac{y_n}{n} \\ \frac{y_2}{y_1} + \frac{y_2}{y_2} + \frac{y_2}{y_2} + \frac{y_n}{n} \end{cases}$ $f_n(x) = \begin{cases} 0 & 0 \le x \le \frac{y_2}{y_2} - \frac{y_n}{n} \\ \frac{y_2}{y_2} + \frac{y_n}{n} + \frac{y_2}{y_2} + \frac{y_n}{n} \end{cases}$ $f_n(x) = \begin{cases} 0 & 0 \le x \le \frac{y_2}{y_2} - \frac{y_n}{n} \\ \frac{y_2}{y_2} + \frac{y_n}{n} + \frac{y_2}{x_2} + \frac{y_n}{n} \end{cases}$ $f_n(x) = \begin{cases} 0 & 0 \le x \le \frac{y_2}{y_2} - \frac{y_n}{n} \\ \frac{y_2}{y_2} + \frac{y_n}{x_2} + \frac{y_n}{n} + \frac{y_n}{n} \\ \frac{y_2}{y_2} + \frac{y_n}{x_2} + \frac{y_n}{n} \end{cases}$ $f(x) = \begin{cases} 1 & x > \frac{y_2}{y_2} \\ \frac{y_2}{x_2} - \frac{y_2}{y_2} \\ 0 & x \le \frac{y_2}{y_2} \end{cases} \quad (Cf_1(x_1, \mathbb{R}), d\infty) \\ Cf_2(x_1, \mathbb{R}), d\infty) \end{cases}$

but this convergence is certainly not uniform (as the uniform limit of continuous functions is continuous). So $(f_n)_{n=4}^{\infty} \frac{dven not converge}{dven not converge}$ in $(Ct_s(X, IR), d\infty)$ (it if converged, it would have to be to f) and hence is not Cauchy (as this space is complete). However we claim the sequence is Cauchy in $(Ct_s(X, IR), dp)$ but still diven not converge, where throughout $I \leq p < \infty$.

(0)

Observe that for $m \geqslant n \geqslant 4$ and $1 \le p < \infty$, $|f_m - f_n| \le |f - f_n|$ so

$$d_{p}(f_{m}, f_{n}) = \|f_{m} - f_{n}\|_{p} = \left\{\int_{x} |f_{n} - f_{n}|^{p}\right\}^{l/p}$$

$$\leq \left\{\int_{x} |f - f_{n}|^{p}\right\}^{l/p}$$

$$= \left\{2\int_{l/2}^{l/2+l/n} |f - f_{n}|^{p}\right\}^{l/p}$$

$$= \left\{2\int_{l/2}^{l/2+l/n} \left\{1 - \frac{n}{2}(x - l/2 + l/n)\right\}^{p}\right\}^{l/p}$$

$$= 2^{l/p} \left\{\frac{2}{n}\int_{0}^{l/2} u^{p} du\right\}^{l/p}$$

$$= 2^{2/p} n^{-l/p} \left\{\int_{0}^{l/2} u^{p} du\right\}^{l/p}$$

 \square

Hence $(f_n)_{n=0}^{\infty}$ is (auchy in $(Ct_s(X, \mathbb{R}), d_p)$. Now we claim this sequence does not converge in $(Ct_r(X, \mathbb{R}), d_p)$. To say $f_n \rightarrow g$ wird dp says that $\forall \epsilon > 0 \exists N \forall n \geq N$ $\int_X |f_n - g|^p < \epsilon^p$.

Problem
$$\int_{X} |f_n - g|^p$$
 small $\Rightarrow f_n(x) - g(x)$ small any given x .

Suppose for a contradiction that $\int_n \longrightarrow g$ in $(Cts(X, \mathbb{R}), dp)$. Then since the vesticition function for $[c, d] \subseteq (\frac{1}{2}, 1]$ i.e. $(Cts(X, \mathbb{R}), dp) \longrightarrow (Cts([c, d], \mathbb{R}), dp)$ is continuous so $f_n|_{[c, d]} \longrightarrow g|_{[c, d]}$, i.e.

$$\forall \varepsilon > 0 \exists N \forall n \exists N \left(\left\{ \int_{c}^{d} |f_{n} - g|^{p} \right\}^{p} < \varepsilon \right)$$
 norm on

$$(Cf_{1}(\ell_{r}, d), \mathbb{R}),$$
 (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf_{1}(\ell_{r}, d), \mathbb{R}), (Cf_{1}(\ell_{r}, d), \mathbb{R}),
 (Cf

Claim that $\|[1-g]\|_p < \mathbb{Z}$ for any positive \mathbb{Z} and hence $\|[1-g]\|_p = 0$. To ree this let \mathbb{Z} be given and find \mathbb{N} such that $\|[f_n-g]\|_p < \mathbb{E}$ for $n \gg \mathbb{N}$ and $f_n|_{[c,d]} = 1$ for $n \gg \mathbb{N}$. Thus $\|[1-g]\|_p < \mathbb{E}$, as required. But since $\|[-1]\|_p$ is a norm 1-g = 0 as claimed.

(ii) since
$$[c,d]$$
 was arbitrary $g(x) = 1$ for $x > 1/2$.
(iii) similarly $g(x) = 0$ for $x < 1/2$

This shows g is not continuous, a contradiction.

" almost everywhere" in a precise sense we will define later).