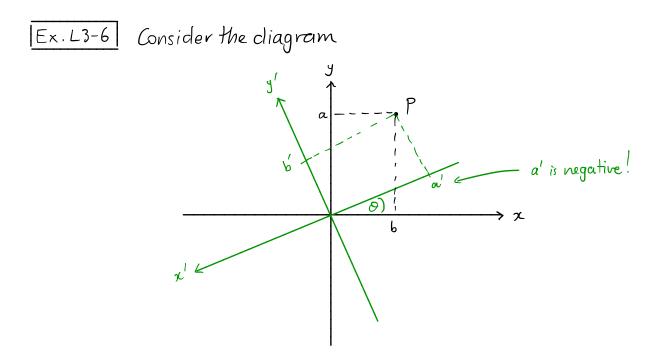
Solutions



We know from our earlier calculations that

$$m_{1}(p) = \begin{pmatrix} a \\ b \end{pmatrix} = R_{0}\begin{pmatrix} -a' \\ b' \end{pmatrix} = R_{0}\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} a' \\ b' \end{pmatrix} = R_{0}\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} m_{2}(p)$$

Now $S = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ is orthogonal, so $RoS \in O(2)$ and we are done. How can we write $RoS = R\gamma T$ for some Y?

QI(i) We must show \sim is reflexive, symmetric and transitive.

• reflexive
$$[Id]_{\beta}^{B} = I_{n}$$
 so $det([Id]_{b}^{B}) = 1$ and $\beta \sim \beta$
• symmetric $[Id]_{b}^{B} = ([Id]_{\beta}^{C})^{-1}$ so $det([Id]_{b}^{B}) = det([Id]_{\beta}^{C})$
and so dealy $\beta \sim C$ iff. $C \sim \beta$

3

(iii) transitivity if
$$\beta \sim C$$
 and $C \sim P$ then
$$[Id]_{\beta}^{P} = [Id]_{C}^{P} [Id]_{B}^{C}$$

and hence

$$det([Id]_{\mathcal{B}}^{\vartheta}) = det([Id]_{\mathcal{C}}^{\vartheta}) \cdot det([Id]_{\mathcal{B}}^{\vartheta})$$

since the product of positive numbers is positive, $det([Id]_{B}^{P}) > O$ and so $B \sim P$.

(ii) If $B \neq C$ then B' = C where B' is obtained by multiplying by -l one of basis vectors in B, say $B' = (-b_1, b_2, ...)$, since

$$det([Id]_{\beta}^{C}) = det([\underline{b}_{1}]_{C}, [\underline{b}_{2}]_{C}, ...)$$
$$= - clet([-\underline{b}_{1}]_{C}, [\underline{b}_{2}]_{C}, ...)$$
$$= - clet([Id]_{\beta'}^{C})$$

So there are <u>at most</u> two equivalence classes. To show there are at least two, let $\beta = (\underline{b}_1, \dots, \underline{b}_n)$ be any basis and set $\beta' = (-\underline{b}_1, \underline{b}_2, \dots)$ then $\beta' \neq \beta$. Ex L3-5 Note that for any ordered basis

$$\begin{bmatrix} \mathrm{Id} \end{bmatrix}_{F(\beta)}^{\beta} = \left(\begin{bmatrix} F(\underline{b}_{1}) \end{bmatrix}_{\beta}, \dots, \begin{bmatrix} F(\underline{b}_{n}) \end{bmatrix}_{\beta} \right) = \begin{bmatrix} F \end{bmatrix}_{\beta}^{\beta} \\ \text{We know det}(F) = \mathrm{det}(\begin{bmatrix} F \end{bmatrix}_{\beta}^{\beta}) \text{ is independent of } \beta, so \\ \left(\exists \beta F(\beta) \sim \beta \right) \Longrightarrow \left(\exists \beta \mathrm{det}(\begin{bmatrix} \mathrm{Id} \end{bmatrix}_{F(\beta)}^{\beta}) > 0 \right) \\ \Rightarrow \mathrm{det}(F) > 0 \\ \Rightarrow \mathrm{det}(F) > 0 \\ \Rightarrow \left(\forall \beta F(\beta) \sim \beta \right). \end{bmatrix}$$

Nowlet F be fixed and choose any ordered basis B. There are two cases, by QI (ii)

(I)
$$F(\beta) \sim \beta$$
, in which come $(\forall \mathcal{C} F(\mathcal{C}) \sim \mathcal{C})$
(I) $F(\beta) \neq \beta$, in which case $(\forall \mathcal{C} F(\mathcal{C}) \neq \mathcal{C})$.

(ii) is clear from the proof of (i).

S