MAST 30026 Tutorial 1 (2019)

Consider two observers O_1, O_2 who are measuring points in the same abstract plane X from <u>different sides</u> (imagine a physical sheet) but at the same point O, with their axes rotated by some angle relative to one another

Exercise L3-6 Prove that there is an element $F \in O(2)$ such that the diagram

commutes, i.e. a fixed orthogonal matrix which converts O2's measurements to m1's measurements.

Definition

Given two ordered bases $\beta = (\underline{b}_1, \dots, \underline{b}_n), C = (\underline{c}_1, \dots, \underline{c}_n)$ for a finite-dimensional vector space V, we say β, C have the <u>same orientation</u> and write $\beta \sim C$ if

$$\operatorname{clet}([\operatorname{Id}]_{\mathcal{B}}^{\mathcal{G}}) > O$$

where $[Id]_{\beta}^{\mathcal{C}} = ([\underline{b}_{1}]_{\mathcal{C}}, \dots, [\underline{b}_{n}]_{\mathcal{C}})$ is the change of basis matrix.

 6/8/19 What are some obvious examples of ordered bases with <u>clifferent</u> orientations?

- IQI (i) \sim is an equivalence velation on the set \mathcal{F} of ordered bases of V.
 - (ii) there are precisely two equivalence classes, i.e. F/~ has two elements.

<u>Exercise L3-5</u> (i) Let $F: V \rightarrow V$ be an invertible linear operator on a finite-dimensional vector space. Prove that precisely one of the following two possibilities is realised:

(I)
$$\forall \beta (F(\beta) \sim \beta)$$
 (β vanges over all ordered bcues)
(I) $\forall \beta (F(\beta) \sim \beta)$

where $F(\beta)$ denotes $(F(\underline{b}_1), ..., F(\underline{b}_n))$ if $\beta = (\underline{b}_1, ..., \underline{b}_n)$. In the first case we say F is <u>orientation preserving</u> and in the latter case we say F is <u>orientation reversing</u>.

(ii) Prove that F is orientation presenting iff. det(F) > 0, and orientation reversing iff. det(F) < 0.

With this language we can clarify the comments about orientation in lectures. Two observes in the plane, whose coordinate systems may differ by a rotation and possibly "being on the other side of the plane", have their measurements related by $F \in O(2)$ by $Ex.L^{3-6}$. They "agree on clockwise" iff. F is orientation preserving which is iff. $F \in SO(2) \subseteq O(2)$.