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Lecture 5 :

Min Kowski

space

and
relativity updated 718118

In the first lecture I listed several structures
on Euclidean

space

IR

"

( such as distance
, open

balls
,

inner
product

) that form the basis

for
abstractions like metric

spaces , topological spaces
,

and inner product

spaces
.

I

gave

a brief
glimpse

of the
deep

role of
symmetry

groups

in

determining
which of these abstractions is

appropriate for a

given
domain

.

The

symmetries
that are have encountered so far are rotations

,

reflections

and translations ( the last
only briefly

in Exercise LI
-

4)
.

These are all

isometrics of R

"

(
and also

,

in the case of  rotations and
reflections

,

of the metric

space
( St

,

da ) )

,

and that's it !
Move

precisely
:

Exercise LS -1 Set E ( n )
=

Isom ( R

"

,

dz )
.

For IER

"

define

T±
:

IR

"

→ Rn
,

T±( 1)
=

It I
.

Pwve that T± is
an

isomety
and that

TG )
:  =

{ T± I ± ER

"

}

Is
a

subgroup of
Ek )

.

Observe that 0 (
n

)
may

also be identified

with
a subgroup

of E (
n )

.

Rove that

l I
)

every
element

f of E (
n

) can
be written as f

 

= X
°

T±

for some
XEO

( n
) and

I
E R

'

'

.

C ii
) Tln ) is a

normal
subgroup

and EHYT
(

n

)

±

0 ( n
)

.

f

sometimes written ISO (
n

)

This

gwup

Eln ) is called the Euclidean

group
.

It relates the
measurement

of an arbitrary pair
of

stationary
observes in K ?
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One
way

to motivate a
level of abstraction

beyond
metric

spaces
is to

find a new kind of
symmetry

of Rn
beyond

rotations
,

reflections and

translations
,

which we are forced to care
about ( another motivation to

move
up

the abstraction ladder is infinite
- dimensional

spaces
which we

will treat in the near future )
.

One

way
we

may

be forced to care is
by

evidence that
our

intuitions about

space ,

based

ultimately
on our

perceptions

are

simply wrong

when

they
are extrapolated

to
large

velocities
.

This is

the content of
special relativity ,

which we now discuss
.

+

Aside
:

of wane
,

the

discovery
of

relativity
does not invalidate the

mathematical structure ( R ?

dz

)
.

The truth of theorems is

( surely
?

) independent of
experiment .

But such
experiments

can help
,

and
historically

have
helped

, guide
mathematics towards

deeper
truths

.

The Greeks believed

they
could

figure
out

all there was to know about mathematics
by pure introspection

G. e. damn the
experiments )

.

The Greeks were

wrong
,

in

practice

Moving
observers

Let as once

again
consider two observers 01,02 in the

plane,

where 02 is

moving
with

velocity
I as measured

by
01

( and so 0
,

is

moving
with

velocity
-

I as measured
by

02 )
.

Then we have a commutative
diagram ,

for each to IR

,

assuming
at time t

 

=O that Oi

,

Oz are w
- located and

have the
same

orientation and their axes
have no

×

relative rotation (
and

they
remain so )

:

:

'

X

÷it my
my

1 L
>

1 tuf-
R

'

-

R

'

T

t±
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Exercise
LS -0 Give an

analogous commuting diagram
in the case

where li ) 02
's coordinate axes are rotated

by
0 relative to

Ois
,

and lii ) when both the axes are
rotated and the observers

have different orientations
.

We can incorporate
the time

by introducing
the

concept of an
event which

is

simply
a measurement ±

ER

'

tagged
with a time t

( we assume

the observers each have identical clocks

, originally synchronised
)

,

i.  e
.

Lt
,

± ) e Rx 1122=1133
.

So
we

replace
X

,

the

"

plane
without coordinates

"

by
E

,

the

"

set of events 's

and
our

observers now

map
events to measurements in

1123 related
by

a function Fia
: R3 → R3

as
in the commutative

diagram

E

% my
,

'

'

were
.

use the notation

mymz for
measurement

,

1123 - pp

but to be clear these

f-

are
different

functions

12

where we would

naively expect
Fiz to be defined by

Felt
,

± )
=

( t
,

Tt±( ± ) )
=

( t

,

± + th
)

.

This functions

"

predicts

"

or calculates 01
's

measurement of an event from

prior
knowledge of the relative motion I and Oz

's measurement of the

same
event

.

We assume as before that
my

mz are

bijections
.
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The observers
agree

about linear motion
a set AEE of events

represents
a finite

linear motion
according

to observer 02 if there exists
XEB

and a
,

I
 

°

EIRZ st
.

mz (A)
=

{ ( t
,

±
.

+ tu )
1

xetep }

We call a- the
velocity

of the motion and Hell its
speed

,
according

to 02 .

The observer

naturally
divides the motion into a first half te [ a

,

I
Htp

) ] and second half

te [ that pi
,
p ]

,

with

midpoint
t

 

=

tlxtp )
. This

corresponds
to

a decomposition

it
-ALUARwith 1

SAAR
1=1 ( *

)

where

At
{ eat | mz (e)

I
E

tzktp
) )

,

Ar={ eetl male )
,

>

, Ildtp ) }
.

We call this the
midpoint decomposition of the motion

.

t

by
a  midpoint decomposition

we

mean a

pair { AL
,

AR } satisfying

( * )
. Not an  ordered

pairs

If Oz records such motion then

according to our defn of Fiz

,

0
,

must record

m
, (A)

=

Frmz (A)
=

{ Fiz (
t

,

x.
+ tu ) last

 

=p }

=

{ ( t
,

±
 

ottlutv ) ) lxetep }
.

so

they disagree
about the

velocity of the motion
,

but
they agree

that

it
was linear motion at constant

velocity
,

and

they agree

about the

midpoint decomposition
( t )

.

The observation
,

first made in the context of studying
Maxwell

's

equations by

Lorentz
,

and later clarified by
Poincare

'

,

Min Kowski and
of course Einstein

,

is that for real
physical

observers Fr does not
correctly predict

0
,

's

measurement from 02
's

.

This is a
remarkable

empirical
fact

!

The comet

translation Ez is deduced from Einstein 's

postulates of special
relativity .

We

give
a specialised

version of these

postulates
below

.
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Fint of all
one

needs to
accept

the notion of an observer
making

measurements

E -71123

using rigid measuring
rods and a

system of clocks as described in

§
1

of Einstein 's

paper

.

There is a subtlety
here about

defining the time of a

distant event which he
cleverly

handles
,

but we will not

give
the details here

The first postulate of special relativity ( SR ) is

"

The laws by which the stales of
physical systems undergo

change
are

not affected
,

whether these
changes of

state

be referred to the one or the other of two systems of

co
- ordinates in uniform translation

motion
.

"

but as we are
not concerned with

dynamics of physical systems
(apart from

the observers themselves ) we will focus on the other
postulates .

Special relativity
( SR )

postulates
that there exists c > 0 sit .

for
any pair

of

observers which
are as above

,

i. e.
their relative motion is constant and linear

,

( SR
-

l

)
The observers

agree
on which sets A

of events
represent

finite linear motion .

( they may disagree
on a

, p ,
it

,

I
.
)

( s R
-

2) Given such a set A
,

the observers

agree

on the midpoint

decomposition
A

=

ALUAR

( in

particular they agree
which

even
tee it

is
the

midpoint of the motion )
.

I
they may disagree

on which half of the motion
happened

first I
. )

( SR
-

3) the observers
agree

on which sets of events
represent

finite linear motion of
speed

c
.

( this is the shocking part )



!6!

To while this
move formally

,

we can remove
E and rewrite

everything
in

terms of Fiz and
1123

( just
as we did in Lecture 1 with X

,

Rd and 1122 )
.

Framed this
way

,

the
postulates identify

a

particular
class of functions

F
: 1123 → 1123 that determine the

possible
conversions between

pain
of

observers whose relative motion is constant and linear
.

We
fix c > 0

.

DEI
A function F

'

. lR3→R3 is an

"

SR conversion

"

"

if it is continuous
,

and

( SR

-2J
F

preserves
midpoint

given
( t

,

I )
,

Lt
'

,

E

'

) e R3
,

F

( KEIICHI )

=

FH.se#t
)

2

( SR

-35
Given ( -4×-1

,

ltl
,

±

'

)
E 1123

we have

-

c

2

( t

'

. t )2 + HE

'

- 1112=

- c2( s

'

- st +111

'

-

1/12

where ( s
, 1)

⇐
Flt

,

I )
,

( s

'

,

IKF
( tix

'

)
.

( SR -4 )

'

Flo
,

E)
=

( 0

,
E)

Remade
( SR

-

2)

'

incorporates both ( SR
-

l )
,

( S R
-

2)
.

An earlier

version of these notes ( used in the recorded lectures ) contains

a redundant (
SR

-

1)

'

which moreover contains a subtle
error

involving
time intervals of zew length

,

so it is best all round

to use

only
(

SR
-

2)
!
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Remade Wehaue cheated somewhat
in

going
from ( SR

- 3) to
( SR

-

3)

'

.

What

( s R
-

3)
actually says

is :

"

( SR
-

3) Given ( -4×-1
,

ltl
,

±

'

)
E 1123

we have

HE

'

- 1112=

Elt

'

- t )2

it and
only

if ( writing
( s

, 1)
=

Flt
,

e)
,

( s

'

,

1)
=

Fltix
'

)
,

)

HI

'

-

1112
=

Els
'

-

s ) ?

It is then another
step

to see
this

equivalent
to ( SR

-

3)

'

.
The

physical

principle
of isotropy of

space

is

usually
invoked

.

To derive the Lonentt

transformations directly from ( SR
-

3)

"

see e.

g
.

a. C
. Hegerfeldt

"

The Lorentz transformations
:

derivation

of linearity
and scale factor

"

Il Nuovo Cimento 1972
.

Question for physics
students : what is the

physical
basis for ( SR

-2
)

?

Remark
Among

the

many things
worth

puzzling
over  in SR is that

we assume

observes
agree

on all linear motions
,

but later in the

subject
we

note that no physical
linear motion

atspeed
> c is

possible
.

So

really

if we want
our axioms 10 refer to

actually possible
motions

we should

talk about those of
speed

< C

only
,

and deduce e.

g. linearity
from

this .

this is a

fair point,

I think
;

see

Hegerkldt
's

paper
for

a

good

response
to this issue

.
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theorem
Let P denote the

symmetric
matrix

petition

and define tyw >
p

-

IT Put

,

for v.

,

a
ER

?
Then F

 

is

an

"

SR conversion

"

if and
only if it is

a

bijection
,

and

lit
a linear transformation

,

and

lii ) < FI

,

Fa >
p

=

< I

,

I >
p for all K

,

w_ E
1133

Boot Suppose
F satisfies (

ii.Iii )
.

It is

certainly
continuous

, preserves

lines

and
midpoints

,

so  it
only

remains to show ( JR
-

3)

'

.

For ±

=

It
,

e) e 1123

we
have

< v.ir )
p

=

( t
± )

(

'

'

4
,

)(t± )

=
- eet Hell ?

so
from

Iii ) we deduce ( SR
-

3)

'

.

Of wune
F (

0

,
E)

=

( QQ ) since Fis linear
.

Let in now

suppose

F is
an

SR conversion
and

prove

lil
,

Iii ) for F
.

Recall XE [0/1] is

dyadic
if  it

may

be
expressed

as
In for some m

,

n 70

integers
.

Using iterated
midpoint

we show

F( Xlt
,

1) + KAH
'

,I

'

) )
-

XF It
,

± ) t I hi ) Flt !I

'

) Ct )
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for
any pair

ftp.l.lt#)ElR3 and OEXEI
dyadic .

Using
that Fi 's

continuous we
obtain It ) for all

OEXE 1. Then
for ±

,

w_ER3

Claim FCXI )=XF( E) for
all OEXE I

Roof File )
=

FCXI + ( l
- X )

.

Q )

=

XFK ) t ( I
-

HFCQ )

=

XFK )
.

( since FCEKQ )

Claire
Fktw )=FK)tFCw )

Proof
Fktw )

=

F( tzzvttlw )

= IFKE )
+ IF ( 2in )

claim

'

FK ) + Flue )
.

Claim
F( nil )

= NFK ) for
any

NEZ
.

Pwof
Torn >/0 this follows by iterating Claim 2. since

( SR -4 )

'

Q

=

Fle )
=

FC
-

a- + a)
=

Ft
-

a) + FCI )

we

get
FC -4-1=-171 ) and then

< Ocasesthenako follow
.
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Claire
F (

µ±
)

=µ

Flt )
for all

µ
EIR

.

Roof
We

may

write

µ=

nt 7 for net

,

and OEXE I
. Then

by
Claim 3 and Claim

2

,

and Claim 1

,

Farc
)

=

F ( he tiv )
=

Fine ) + File )

= n F ( k ) + XFII )

=

( n + x ) FK )

=

µ
Flr )

.

this completes
the

proof
that Fis

linear
.

Now we need to
use ( SR

-

3)

'

to

see that ( FI

,

Fue )p=
<

tiw >
p

,

for all I

,

a E
1123

.

Now
,

what
( SR

.

3)

'

tells as
immediately

is that for
all I

E R3

< F±
,

Fe )
p

=

< I

,
hp

.

But then we can use the
polarisation formula ( Exercise LFZ ) to

see

( FI

,
Fw_7p

=

It ( < tut Fa

,

tvtfw

>p

-

< FI
-

Foe
,

Fx
-

Fk >
p

)

= ta ( < Fktu )
,

Fktw ) >
p

-

< FK
-

k )
,

FK
-

in ) >
p

)

= ta ( < ± tu
,

v. + a

}
-

< ±
-

a
,

v.
-

who )

= < v.
, WIP

.

D
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Exercise LS
- I

Fill in the

following detail in the pwof
: ( i )

explain
how to

use iterated midpoints to deduce ( t ) for X
dyadic

and ( ii )

use

continuity
to deduce It ) for all 0 exe 1

.

Exercise LS -2( Polarisation identity ) Pwve that

< ±
,

WI
p

=

ttketw ,

v.
+

 
a

>
p

-

< v.

-

a
,

I
-

wip )
.

It remains
to

analyse exactly
what kind of matrices A

give
rise to

linear transformations FKKAI which
satisfy

lit
,

Iii )

,

liii )
.

These

matrices form the
appropriate

group

of symmetries for
special relativity

.

Remade Let F be as in the theorem
,

and

say

Fll
,

Q )
=

( T
,

9-
) .

Then

-

( 282+119-112
= < to

, q
)

,

(
r

, q
) 7

p

= < ( l

,

e)
,

(
I

,

Q ) >
p

=
- CZ

This shows 8-+0
,

so set I
:=

¥7 so this reads

y2 ( H I 112 -

(2)
= -

(

2

assuming
HIHKC ( beware the tachyons

! ) this

yields

I

:
.

T
=

FM

where I is the relative
velocity

of 02 with
respect

to
Q

.

This number

is called the Lorentz contraction factor
.
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Exercise LS -3 Given ze
1122 and t > 0

,

define

11 L
t

,
E) Hp

:  =

( ( t
,

I )
,

( t

,
e) >

p

Show that

( i )
H ( t

'

,

xl

)
-

(
t

, E) Hp
=

0
if and

only
if a

particle

travelling
at

speed
c from I

to
I

'

takes It
-

t

'

I units

of time
.

Given v.
=

(
t

,
E)

e 1123 the set

C
±

:  =

{ use 1123
I

11

a

-

v. Hp
=

0

}

is called the

light
wne of ±

.

Sketch the
light

cone of (
0

,
e)

as a set in 1123

, using
the vertical axis for time

.

Iii )
H ( t

'

,

E

'

)
- ( t

,

e)
11ps

0
if and

only
if  a

particle

travelling
at

speed
c for It

-

t

'

I units of time travels

atleast a distance HE
-

I 'll . IF 11 as
-

I
11ps

0

we

say
a-

lies inside the

light
cone of v. .

liii )
Returning to the

language
of observers : show

using
the

language
of this lecture ( i.e. E

,

mi

,

Ms

,

F) that two

observers in constant relative linear motion
agree

on

whether an event e

'

EE lies on

,

or
inside

,

the

light
cone

of another event e E E
.

This

explains why
the

language

of
special relativity

is

organised
around the

concept of

light
cones .
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Exercise L5
-

4 Pwue that the set of invertible matrices AEM
}

( R ) with

ATPA
 

=P
is a

subgroup
of a ↳ ( R ) ( all invertible matrices

)
.

this

is called the Lorentz

group

012

,

I
)

. Equivalently
,

this is the

gwup

of invertible F
: R3→R3 s it

' \
'

-

this notation

explained
in Tutorial #

3

(
Fe

,

Fdp  
=

< I. Hp ttywe
1123

.

the
Poincaregwup

is

generated by

012,1

)
together

with translations
,

and is the full
symmetry group

of SR
.

The Lorentz

group
classifies the

possible relationships
between

a

pair
of

observers in SR with the same

origin ( i.e. Flo
,

e)
=

10
,

Q ) ) .

Let as return

to our original pair
of observers who had the

"

same axes

"

.

we

may
as

well assume

the

velocity
I of  

observer 02 as measured
by

0
)

is
[

=

(
0

,

r

,

0 ) ( i
.

e.

only

in the x.  direction )
.

Then one can
show the

appropriate
group

element is

Jr

F
 

=

I
0

K
. ° )

safe .

0 0 1

Exercise LS -5
Explain why

F ( 1,0 ) must be ( T

,

Jr
,

0

) and check FTPF
 

=P
.

this transformation is called a
Lorentz boost

. Obviously we
have

neglected one

spatial

direction in the above

,

but with the obvious modification
,

i.e. Ptdiagl
-41,1

,
1)

we

get
the Lorentz

gwup
013

,
1) of

special relativity
in

1124

.
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Exercise LS
-

6 With F
as

above
,

show that if Q measures simultaneous events (
t

,

xi

,

Yi )
,

(
t

,

xz

,

Y 2) then
provided

r >
0 and X

,
F Xz

0
,

does not measure simultaneous

events
,

and the observers
disagree

about the

spatial
distance between the events

.

Remark the full Lorentz

gwup

includes transformations which
correspond

to rather

exotic

pairs
of observers

,

e.
g

.

A
 

=

 

diagl
-

1,1
,

l

) describes
a

pair
of

observers
moving opposite

directions in time
!

DEI
Minkowski

space

is the

pair
(

1124

,

t
,

→
p

) where P
=

diagtd ,

I

,

1,1 )
.

The appropriate abstraction for SR is therefore a vector
space equipped

with a

non degenerate bilinear form L
-

,

-

>
p of  a certain

signature
( these terms

are

explained

in Tutorial # 2)
,

not the notion of metric

spaces
( as

P is not
positive

definite ) .

In

the

passage
from special

to
general relativity

we

require
an

additional abstraction
; namely

,

topological spaces
.

We will return to this

point in detail in
a

few lectures
,

but
by way

of
foreshadowing

let as

give
the

geometric
/ static content of GR

,

which is

•

Spacetime
=

a four
- dimensional connected manifold which is

Locallyidealism/

i.  e.

"

flat

' '

basic
concept of topological spaces

a

topological space

We will not
spend

any
more

time
on

relativity per
se

,

but we will
spend

a lot of time on

topological
spaces ,

continuity
,

connectedness

,

...

and it is worth
knowing

at least one

prominent example
where this

language
is crucial to

expressing
the basic

properties

of physical space
.

GR is this
example

.

The main

takeaway
here is :

There
are

no
global

rulers

( not
even

pretend
ones

,

as in Newtonian  mechanics )



@

Hyperbolic geometry

If
physics

is not

your
thing

,

here is an alternative
point

of view on all of this
.

Affine
geometry

in 1122
is characterised by El 2)

=

Isom ( 1122,42 )
,

by
notations

,

translations

and reflections
,

and all of this is associated to the bilinear form
<

-

Ap

of the matrix P
=

(

'

,
) which has

signature
( 2,0 )

.

The

geometry of the

bilinear form associated to the matrix P
=

(

"

I ) of
signature

( 41 ) is

hyperbolic geometry
.

In the
following

we call our coordinate axes ( tix ) to

match
with the SR situation above

.

-

The level sets
of the

quadratic form Q (
t

,

x )
=  

- t2tx2
are

,

obviously
,

hyperbolas

±
a

=e<
0

Q
=

0

=L
>

0
Q

#

a
- e >

°

#€
"

Bike
"i¥n¥one "

Q=ew\

The level set of Q It ,x)=t2tx2 are
circles

,

and since circles of a

given
radius

are
how

you
measure distances

,

it is no surprise we organise
affine

geometry
around the metric

.

To talk about
points

in
hyperbolic geometry

we use

hyperbolic
sine and cosine

.
There are

various
ways

to
explain

this ( e.

g.
 derive DE 's

describing
a

point moving
on a

branch of

the
hyperbola

at unit
speed ,

as

compared
to a

point moving
on the circle ) .
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Perhaps the most relevant observation forusisthatuith
OER

,

and

hyperbolic Ho
-

(
Yishng usfjnhng

)

deHH=wsh2o-sinh2O=l

rotation
,

Ho
-

Iz

if
- t2tx2=l then

Ho
(

Te

)
=

(

twshotxsinhcl
tsinhotxwsh

O
)

and
-

[ twshlltxsinho ]t[ tsinhotxwsho ]2

=

-

Ewsh2O
-

2xtwshOsinhO-x2sihh2O
+ Esinh2Ot2xtwshOsinhOtx2wsh2O

=

-t2
(

wsh2O-sinh2O)tx4wsh2O

-

sinhtl
)

=

-

t2+x2

=L

So Hoisalinear isomorphism of the
plane

( asdettlo
-

1) which

maps
each

hyperbola

-

tztsitlbijectivdyontoibelf , according
to the

following
schema :

±
a

.eu

Q=o

How)=(
sofa)

=L
>

0

Q=l

>
0

°

¥¥n#nµ•→

.

" oliktwinho )

• • > x

⇐

it
Q=ew\
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Exercise
LS -7 Determine the

hyperbolic angle
0 sit

.

the Lorentz boost F from

p

.
B is a

hyperbolic
notation HO .

that is

, given
Of

r < c and

y
-

( I

-

r

2)

"

k

,

solve
( here  we

set  c  =D

=

r or

an: ::) krl
.

for O
.

This shows that the

geometry
that we

have extracted from

Einstein 's

postulates
is

precisely hyperbolic geometry (
at least in the

It
,

x )
plane

) .


