

isometry, the composite of isometries is an isometry, and the inverse of an isometry is an isometry. That means we can generate new isometries from old ones, e.g.

 $F = R_0_1 R_{0_2} T R_{0_3} T R_{0_4} \in Isom(S^1, da).$

This raises two natural questions:

[QI] Is this really a new isometry? i.e. is Fequal to Tor Ro for some O?

 $\mathbb{Q2}$ (an we classify all the isometries of (S^2, d_n) ? For example, wemight hope all isometries can be written as products of Ro's and T's,like Fabore. In this case we would say the set $\{Ro\}_{O \in \mathbb{R}} \cup \{T\}$ generates the group Isom (S^2, d_n) .

Let us begin with Q1. We know that $R_0 R_{0_2} = R_{0_1+O_2}$, so we only really need to analyse the product R_0T . But for $(a, b) \in S^1$,

$$R_{0}T\begin{pmatrix}a\\b\end{pmatrix} = \begin{pmatrix}\omega s 0 & -s n 0\\s i n 0 & \omega s 0\end{pmatrix}\begin{pmatrix}1 & 0\\0 & -1\end{pmatrix}\begin{pmatrix}a\\b\end{pmatrix}$$
$$= \begin{pmatrix}\omega s 0 & s i n 0\\s i n 0 & -\omega s 0\end{pmatrix}\begin{pmatrix}a\\b\end{pmatrix}$$
$$= \begin{pmatrix}1 & 0\\0 & -1\end{pmatrix}\begin{pmatrix}\omega s 0 & s i n 0\\-s i n 0 & \omega s 0\end{pmatrix}\begin{pmatrix}a\\b\end{pmatrix}$$
$$= TR_{-0}\begin{pmatrix}a\\b\end{pmatrix}.$$

Thusas functions RoT=TR-Q. In other words, the following cliagram commutes:

2)

3

But using the relations

(R1)	$R_{0_1}R_{0_2} = R_{0_1+0_2}$
(R2)	ROT = TR-O
(R3)	$T^2 = id$

in the group of isometries, we may compute that

$$F = \frac{R_{0_1}R_{0_2}TR_{0_3}TR_{0_4}}{R_{0_1+0_2}TR_{0_3}TR_{0_4}}$$

$$= R_{0_1+0_2}R_{-0_3}TTR_{0_4}$$

$$= R_{0_1+0_2}R_{-0_3}TR_{-0_4}T$$

$$= R_{0_1+0_2}R_{-0_3}R_{0_4}TT$$

$$= R_{0_1+0_2-0_3+0_4} \circ id$$

$$= R_{4}$$
where $\gamma = 0_1 + 0_2 - 0_3 + 0_4$.

Exercise 13.3 Prove that any element of Isom (St, da) of the form

 $F = g_1 \cdots g_r \quad r \gg 0$

(4)

where each g_i is either Ro for some $O \in IR$, or T, may be proven equal to $R_{\gamma}T^n$ for some $\gamma \in [0, 2\pi)$ and $n \in \{0, 1\}$, using the velations (R), (R2), (R3). (Hint : use induction).

<u>Lemma L3-1</u> The set $G = \{ R_{\Psi} T^{n} | \Psi \in [0, 2\pi], n \in \{0, 1\} \}$ forms a subgroup of Isom (S^{2}, da) .

<u>Proof</u> $id = R_0T^\circ$, and G is closed under composition by the exercise. Finally notice that $T^n R_0 = R_{(-1)}n_0 T^n$ and so

$$(R \varphi T^{n}) \cdot (R_{(-1)^{n+1}} \varphi T^{n}) = R \varphi T^{n} R_{(-1)^{n+1}} \varphi T^{n}$$
$$= R \varphi R_{(-1)^{n}} (-1)^{n+1} \varphi T^{n} T^{n}$$
$$= R \varphi R_{-} \varphi (T^{2})^{n}$$
$$= R_{0} (id)^{n} = id$$

That is,
$$(R_{\Psi}T^{n})^{T} = R_{(-1)^{n+1}\Psi}T^{n}$$
 is again in G, so G is a subgroup. []

This almost, but not quite, answers Q1. We know everything that looks like F can be written as a product $R \neq T^n$, but how do we know if are there redundancies, i.e. $R \neq T^n = RoT^m$ with $(\Psi, n) \neq (0, m)$?

Lemma L3-2 If $0, \forall \in [0, 2\pi)$ and $m, n \in \{0, 1\}$ then $R \notin T^n = RoT^m$ if and only if $0 = \forall$ and m = n. In other words, we have a bijection

 $[0, 2\pi) \times \{0, 1\} \longrightarrow \mathcal{L}, \quad (\mathcal{Q}, n) \mapsto \mathsf{RoT}^n$

<u>Proof</u> Fintly, notive that if two matrices $A, B \in M_2(\mathbb{R})$ induce functions $\mathbb{R}^2 \to \mathbb{R}^2$ by left multiplication which vertict to functions $J_{A,f_B}: S^2 \longrightarrow S^2$ which agree $f_A = f_B$ then A = B as matrices, since $f_A(1,0)$ is the first column of A and $f_A(0,1)$ is the second column. So

$$R_{\Psi}T^{*} = R_{0}T^{m}$$
 as functions $S^{2} \longrightarrow S^{2}$

 \iff RyTⁿ = RoT^m as 2x2 matrices.

But if these matrices are equal their determinants are equal, and

$$det(R_{\psi}T^{n}) = det(R_{\psi})det(T)^{n}$$
$$= 1 \cdot (-1)^{n}$$

So if $R_{\Psi}T^{n} = R_{0}T^{m}$ then $(-1)^{n} = (-1)^{m}$ and hence m = N.

Now, also observe that as matrices

$$R \psi T^{n} = \begin{pmatrix} \omega s \psi - jin \psi \\ sin \psi & \omega s \psi \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & (-1)^{n} \end{pmatrix}$$
$$= \begin{pmatrix} \omega s \psi & (-1)^{n+1} sin \psi \\ sin \psi & (-1)^{n} \omega s \psi \end{pmatrix}$$

Looking at the first column, we decluce that

$$R_{\Psi}T^{n} = R_{Q}T^{n} \implies (\omega_{S}\Psi, \sin\Psi) = (\omega_{S}O, \sin O)$$
$$\iff O = \Psi \qquad (given both lie in [O, 2\pi)).$$

Notice that this completely answers Q1: given a product F of Ro's and T's, if you want to determine whether it is equal to a particular Ro, or T, or more generally if it is equal to some other product G of the same type, you need only follow the algorithm:

I wing the relations (RI), (R2), (R3) write $F = R_{\Upsilon}T^{n}$ and $G = R_{0}T^{m}$ for some (Υ, n) , $(O, m) \in [0, 2\pi) \times \{0, 1\}$.

(2) then
$$F = G \iff R \downarrow T^n = R \circ T^m \iff \downarrow = O$$
 and $m = n$.

Proposition L3-3
$$G = Isom(S^+, da)$$
.

<u>Proof</u> Let $F: S^1 \longrightarrow S^1$ be an isometry, with respect to dq. Let us write $\langle \underline{\vee}, \underline{\vee} \rangle$ for the dot product $\underline{\vee} \cdot \underline{\vee}$ in \mathbb{R}^2 . Fint of all observe

Claim 1: if $\underline{\vee}, \underline{\vee} \in S^1$ then $\langle F\underline{\vee}, F\underline{\omega} \rangle = \langle \underline{\vee}, \underline{\omega} \rangle$.

Proof of claim if
$$\underline{\vee} = \overline{\Phi}(Q)$$
 and $\underline{\omega} = \overline{\Phi}(Q')$ then $\langle \underline{\vee}, \underline{\omega} \rangle = \cos(Q - Q')$
while by hypothesis if $F \underline{\vee} = \overline{\Phi}(\Psi)$, $F \underline{\omega} = \overline{\Phi}(\Psi')$

$$\langle FY, Fw \rangle = \omega_{s}(\gamma - \gamma')$$

 $= \omega s (c | a (F \lor, F \boxdot))$

$$= \omega s(d_a(\underline{V}, \underline{w}))$$

 $= \omega_{(0 - 0')}$

6

Claim 2 If
$$\underline{v}, \underline{w} \in S^{4}$$
 then $\langle F\underline{v}, \underline{w} \rangle = \langle \underline{v}, F^{-1}\underline{w} \rangle$.
Recf. This follows from the first claim, since
 $\langle F\underline{v}, \underline{w} \rangle = \langle F\underline{v}, F(F^{-1}\underline{w}) \rangle$
 $= \langle \underline{v}, F^{-1}\underline{w} \rangle$. D
Claim 3 Set $\underline{a} = F(\underline{e}_{1}), \underline{b} = F(\underline{e}_{2})$ where $\underline{e}_{1}, \underline{e}_{2}$ are the standard
basis vectors. Then with A the matrix with columns $\underline{a}, \underline{b}$
 $F(\underline{v}) = A\underline{v}$ for all $\underline{v} \in S^{4}$.
Recf. By definition this is true for $\underline{v} = \underline{e}_{1}$ or $\underline{v} = \underline{e}_{2}$, and for any
other $\underline{v} = \lambda \underline{e}_{1} + M\underline{e}_{2}$ and $\underline{w} \in S^{4}$
 $\langle F\underline{v}, \underline{w} \rangle = \langle \underline{v}, F^{-1}(\underline{w}) \rangle$
 $= \lambda \langle \underline{e}_{1}, F^{-1}(\underline{w}) \rangle$
But since this holds for $\underline{w} \in [\underline{e}_{1}, \underline{e}_{2}]$ we conclude $F\underline{v} = A\underline{v}$. D
Claim 4 Either $A \in SO(2)$ or $TA \in SO(2)$, where $T = (\frac{1}{b}, -1)$.

Proof By construction A preserves the inner product, and so $A^T A = I$. Thus either det(A) = 1, in which case $A \in SO(2)$ by Exercise L1-5, or det(A) = -1 in which case det(TA) = 1 and $T A \in SO(2)$.

 $\overline{\mathcal{T}}$

So we have either	F = Ro	or TF=	Ro, and in the latter	rcme
$F = TRo = R-o^{-1}$	[, which w	ompletes the	proof. []	

Exercise L3-4	From that $R_0T: S^{\perp} \longrightarrow S^{\perp}$ is reflection of S^{\perp} through the
	straight line which passes through the origin and $(\omega_s(\underline{\mathscr{G}}), sin(\underline{\mathscr{G}}))$.
	<u>Hint</u> : use relations.
	Thus, you have proven every isometry of S ^I is either
	a rotation or a reflection through some line
Exercise L3-5	This exercise revisits the situation of Lecture 1 (observers
	in the plane and all that) and especially the $SO(2)$ vs. $O(2)$
	distinction, in the light of what we have now understood.
	We will also use the concept of orientation introduced in

The first tutorial. Recall that "having the same orientation" is an equivalence velation $\mathcal{B} \sim \mathcal{C}$ on ordered bases \mathcal{B}, \mathcal{C} .

(i) Let $F: V \rightarrow V$ be an invertible linear operator on a finite-dimensional vector space. Prove that precisely

one of the following two possibilities is realised:

(I) $\forall \beta (F(\beta) \sim \beta)$ (β vanges over all ordered boxes) (I) $\forall \beta (F(\beta) \not\sim \beta)$

where F(B) denotes $(F(b_1), ..., F(b_n))$ if $B = (b_1, ..., b_n)$. In the first case we say F is <u>orientation preserving</u> and in the latter case we say F is <u>prientation reversing</u>. Ð

(ii) Prove that F is orientation preserving iff. det(F) > 0, and orientation reversing iff. det(F) < 0.

(iii) Define

$$O(n) := \{ X \in M_n(\mathbb{R}) \mid X \text{ is orthogonal, i.e. } X^T X = I_n \}$$

 $SO(n) := \{ X \in O(n) \mid det(X) = 1 \}.$

Prove that $X \in O(n)$ if and only if for all $\underline{\vee}, \underline{\vee} \in \mathbb{R}^n$

$$\left(\underline{\mathsf{X}}\underline{\mathsf{v}}\right) \cdot \left(\underline{\mathsf{X}}\underline{\mathsf{w}}\right) = \underline{\mathsf{v}} \cdot \underline{\mathsf{w}}.$$

By part (ii), so(n) are precisely the matrices in O(n) that give rise to orientation proserving linear transformations $\mathbb{R}^n \longrightarrow \mathbb{R}^n$.

(iv) Rove that O(n) is a group under multiplication, and SO(n)is a subgroup. Produce an element $T \in O(n)$ such that $T^2 = id$ and every element of O(n) not in SO(n) may be written as XT for some $X \in SO(n)$. Thus prove $SO(n) \subseteq O(n)$ is a normal subgroup and that there is a group isomorphism

$O(n)/_{SO(n)} \cong \mathbb{Z}_2$

That's the end of the exercise. Some comments linking this to LI follow overleaf.

Note We have just power O(2) is the isometry group of S^{\perp} . In general, O(n) is the isometry group of S° , we may return to this later.

Consider two observers O_1, O_2 who are measuring points in the same abstract plane X from <u>different sides</u> (imagine a physical sheet) but at the same point O, with their axes rotated by some angle relative to one another

