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Lecture 22
:

Ury
sohn 's Lemma updated 14h

An important theme in this course has been the study of functions f : X → IR or

f- : X → Cl
on a space

X via approximations of general functions by
"

simpler
"

ones
.

For example ,
we saw in Lecture 16 how to approximate continuous functions on [ ai

b ]

by polynomial functions ( the Weierstrass approximation theorem ) and in Lecture 20

how to approximate integrable functions by continuous ones ( using
the Riesz representation

theorem )
.

Indeed
,

as we explained in Lecture IS in the context of Picard 's theorem

on ODES
,

the fundamental importance of such approximations explains why so

much of the course was organised around putting topologies on
spaces

of functions

( first the compact -

open topology ,
and then the topology associated to the LP . norms )

since it is these topologies which
give meaning to the term

"

approximation
"

.

Our most
powerful tool for producing approximations is the Stone - Weierstrass

theorem of Lecture 16 I in Lecture 21 we even saw how to combine this with the

theory of Hilbert
spaces

to make the approximations effectively computable in

terms of integrals ) .

Recall :

Theorem

46-3
( Stone - Weierstrass )Let X be a compact Hausdorff space

and

A E Cts I X
,

IR ) a subalgebra which separates points .

Then

we have At = Cts ( X
,

IR )
?

-

compact
-

open topology

T

Recall a  subset A separates points if H a
, ye

X ( x t y ⇒ Ff EA ( txt f y ) )
,

If j
: X → HT is an embedding then the restriction of polynomial functions IR

"

→ R

gives
a subalgebra of Cts ( X

,

IR ) which is
easily seen to separate points ,

and is

therefore dense
, by Stone - Weierstrass .

This has been our
primary source of

approximations of continuous functions by
"

simple
"

continuous functions ; see

for example Exercise L2 I
-

4
,

L2 I - 5
.



②

Let us  see what happens when we take
away

the
"

crutch
"

of having X embedded in IR
"

.

We fall flat on our face is what
happens

: for a general topological space
X

,

we  don't know a single interesting continuous function X → IR ! Let alone a

collection of such functions rich enough to approximate all the other ones
.

So
,

what continuous functions f : X → IR do we know ?

• Constant functions ( ie . not interesting functions )

•  
If X is meth 's able

,

with metric d
,

then for any
B E X the function

ok -

,
B ) : X → IR is continuous ( Lemma 43 - 3)

.

That isn't exactly an impressive list
. Although ,

if X has the indiscrete topology F- lol
,

X }

every
continuous function f : X → IR is constant

,

which explains why we don't know

anything
"

generically
"

about interesting continuous functions : in general there aren't

any
! But under some reasonable hypotheses , say compact Hausdorff or move generally

normality of X ( see EX
.

L I I - 8
"

meth 's able implies normal
"

and Ex
.

211 -

9
"

compact

Hausdorff  implies normal
"

) we could
hope to do better

.

Exercise LZZ
- I Prove that if ( X

, d) is a metric
space

and BEX is dense
,

then

{ d ti b ) I be B is a collection of continuous functions which

separates points ( and therefore
generates a dense subalgebra

of Cts I X
,

IR ) provided X is compact )
.

Indeed
,

the Ury sohn Lemma and its corollary
,

the Tietze extension theorem
, provide

powerful
tools for constructing continuous functions X → IR with some specified

behaviour
,

for any
normal

space
X

. They are

among
the most widely used tools in topology .



③

The proof we give
below is ( mostly ) following Munk  res

.

Lemma L 22
- I Let X be a topological space in which points are closed

.

Then X is normal

if and only if for
every pair

A E B EX with A closed and B
open ,

there exists an
open

set U with A E U E I E B
.

to is the closure in X
,

Proof Assume X is normal and that A EB is
given .

Then B
'

= Xl B is  closed
,

and so by normality there exist
open disjoint sets U

,

V with A  E U
,

B
'

E V
.

Hence U E V
'

E B and since V
'

is  closed
,

I EV
'

E B also
,

so we

have A E U E I E B
.

Conversely
,

suppose the condition on the existence of U holds
,

and let

A
,

B be disjoint closed subsets of X
.

Then A  E B
'

E X so there exists U
open

with A
 E U E VE B ? But then U

,
O

'

are disjoint open
sets with

A  EU and B E I
'

so
X is normal . D

Theorem 122-2 ( Ury
sohn 's Lemma ) Let A

,
B be disjoint closed subsets of a

normal
space

X
.

There exists a continuous function f : X → [ Oil ]

such that f (a) = O for all a EA  and f Cbl =/ for all be B
.

Proof Suppose we had such an f .

We want to examine what this tells us about the

topology of X ( it  certainly tells us something
:

as long as
A

,
B are nonempty

f- is not constant
,

so X cannot have the indiscrete topology )
.

The set

[ 0
, p ) Elo , D is

open for Ocp
a I and hence Up

:  = f
- '

( [ 0

, p
) ) is

open .

Notice that A E
Up

E Bc for  all
p ,

and if OLPC 9<1 then

Up
E f

- I

lo , p ] E f
-  '

C0
, q ) =

Ug
⇒ Tp E

Ug .
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The key insight is that f can be recovered from the system of
open

sets I Up )
ocpci

!

And in fact we only
need a dense subset of the indices :

suppose
PE 191) is  dense

,

then

for  see X we have

P

f- x
=

sup ( { PEPI fx 7 p ) U fo ) ) o

f- x

=

sup ( I pep I facet Co , p ) } u to ) ) c 4. i )

=

sup ( { pep I x # Up } u 103 )
.

Now let us begin the proof proper ,

that  is
,

we drop the hypothesis about the

existence of f .
We

proceed
in two steps

: the first step is to show that
given

a

system
of

open
set { Up }

pep ,

with PE ( 0
,

1) dense
, satisfying the properties

discussed above ( the existence of such a system of open
sets is a hypothesis on

the
"

richness
"

of the topology of X ) that 14.1 ) actually defines a continuous

function .

The second step  is to explain
how to produce such a system , using

that

X is normal
.

Claim ( Step 1) Suppose
PE ( Oil ) is dense

,

and that { Up }
pep

is a family

of open
subsets of X satisfying

( i ) A E

Up
E B

'

for all pet ?

Cii ) UI
E

Ug for  all
peg ( closure in X )

Then there is a continuous function f : X → lol D with A  Ef

-

Yo )
,

B E f
- '

( I ) defined
by

f- x = sup ( { pep I x # Up } u 103 )
.
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Proof of claim The
given supremum

exists and lies in COLD
,

and hypothesis Ci )

ensures that for a EA we have f a
=

sup Go } ) = O and for be B

f- b =

sup ( P U 103 ) = I
.

So we need
only prove continuity .

Note that by definition
,

for PEP

x of Up → fx >
p

f- x
Lp

⇒ x E Up ( this  is the contrapositive )

Given O

CrocSoc
I with ro

,
So C- P and a

point
x e f

-  '

( C ro
,

so ) ) then we have

ro
s r a f x L S a So for  some r

,

S E P

by density .

This immediately implies x E Us
.

We claim  x Ct UT
.

For  if see UT

were true then for any r

'

EP with ra r's fx
,

x E UT would
imply by Cii ) that

x E UT E Ur '

.

But since rafx there must exist at least one r

'

EP with ra r 's fx

and x Ct Uri ( since fx is the
supremum

of such r
' '

s )
.

Hence we

may
conclude

-  c

x ¢
UT and so x E Us n U

r .

We claim

-  c

Us A Ur E f
-

 '

( C ro
,

so ) ) H )

which will be
enough ,

since x is generic ,
to

prove
that f

-  '

( ( ro
,

so ) ) is
open .

Suppose y
E Us NUT

.

Then f-
y

7 r > ro since
y I Ur

,

and fy s s s So since

fy
=

sup I PEP
I

yet Up ) and if
y

# Up then
p

es ( since  it sap
then

by Ci ) we would have
y

E Us E UJ c- Up )
.

This
proves

Ct ) and hence that

f-
 '

( l ro
,

so ) ) is
open . Similarly f

-  '

( Co
,

so ) ) and f

-  '

( ( ro
,

D ) are
open ,

and since P is dense this suffices to show f  is continuous . D
\ end of Claim I

.



⑥

Claim C Step 2) Such a system of open
subsets I Up )

pep
exists for

P = Q n ( 0,1 )
.

Proof  of claim The essential
point here is that P is countable

.

Let P be enumerated

in some
way

P = I pi , Pz
,

. . . } and let R = { pls . .
.

, Pn } be the first n rational

numbers in this enumeration
.

To define Up , apply Lemma 222 - I ( using
that

X is normal ) to find Up , open
 with A  E

Up,

E

VI
E B

?
Now

suppose
we

have constructed Up ,
. . .

, Upn in such a
way

that { Up }
pc.ph satisfies

the conditions I it
,

Iii ) from step
1

,
and we wish to define Upn + , .

Set

r =

sup
I pi

I I Ei Eh and

pic
pint , } - immediate predecessor

s
= in f- { pi

I I E is n and
put ,

C Pi } - immediate  successor

Then ra s so by hypothesis
UT E Us

and by Lemma 222 - I there exists an

open
set V with UT E V E ITE Us

.

We set Up n+ ,

= V
.

Here  if r

is the
supremum

of the empty set we read UT as A
,

and if s is the

inti mum of the empty set we read Us as
B

'

( they are not both empty ) .

We claim I Up Ipe Priti still satisfies the conditions C it
,

Iii )
.

The first is clear
.

For the second condition
, suppose Priti

a
pi for  some ish

.
Then s E

pi so

by construction

Tpm
,

= IT c- Us E UT E Upi

and similarly if pi
a

putt
then

pier
so

Tpc.

E Or E V =

Upn ti
.
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By the principle of recursive definition ( a form of  induction
,

see e.

g
.

Munk res for

a precise
statement ) this suffices to define a system

I Up )
pep

with the desired

properties . 'D
-

end of Claim 2

If we now apply Step I to
one of the systems

I Up Ipe an Co
,

D whose

existence is
guaranteed by Step 2

,
we obtain a continuous function

f-
: X

- s lo
, D of the desired kind - D

Some applications of the Ury sohn lemma :

• Tietze 's extension theorem :
 if X is normal and A E X is closed

,

and

f : A  → IR is continuous and bounded then there exists a bounded

continuous function h :X -1 IR with htt = f
.

•

Urysohnmetrisati on theorem :

every
normal

space
with a countable

basis is meth 's able ( ! )
.

me

aging
partitions of  unity

• Existence of partitions of unity : this
consequence of Ury sohn 's lemma

is in turn the crucial ingredient in showing that
any compact topological

m
- manifold X ( i.  e  a Hausdorff

space
with countable basis such that each

point has an
open neighborhood homeomorphic to an

open
subset of IR

m

)

admits an embedding X

↳
IRN for some N

.

This last example means that
,

in principle ,
for

any compact topological manifold

X equipped as an integral pair
( X

,
Sx )

,

we can approximate arbitrary

continuous functions X → IR by
"

polynomials
"

obtained from j
: X → 1127

and in turn Ex .

L 21 -

4
,

L2 I -5
produce from these

polynomials an orthonormal

basis of L2 ( X
,

Cl )
.

So our analysis of E-
spaces

was actually quite general .

T
within compact spaces

!


