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Lecture 21 : Coordinates in Hilbert space updated 1810

Given an integral pair ( X
,

Sx ) and a choice of scalars IF
, we have now constructed

the Hilbert space L2 ( X
, F) with pairing

( Lindo fu
, hinf.sn ) = hihfoffngn

.

From the isomorphism of normed spaces

=

LYX ,
IF ) > LYX , IF )

"
( * )

g 1- c- , g >

we have seen how ( at least in the care X = Ca ,
b ] and X = S ? but it works more

generally ) integrable functions on X give functionals on L2 ( X
, IF ) and hence

by the self - duality ④ of Hilbert
space ,

to vectors in L2
. Technically it is

convenient to view vectors in L2 as Cauchy sequences of continuous functions
,

but

we now also have the option to view these vectors as integrable functions modulo

almost everywhere equality .

The LZ - space achieves the sought for
" unification "

of integration with function spaces .

Recall that this unification was motivated

in Lecture 17 by the realisation that the standard tools of linear algebra are

not sufficiently powerful to allow us to work with the infinite - dimensional

spaces Cts ( X
, IR ) .

For example ,
we know from Stone - Weierstrass ( Corollary 46-5

,
Ex

. 47 - I )

that  the functions sin C no )
,

us C no ) form a linearly independent set which

spans a dense subspace in Cb ( It
,

R )
,

that is

Cts I St
,

IR ) =

span ( 113 U { wslno )
,

sin C no ) ) n > o

)
.



②

In principle this suggests we understand everything there is to know about continuous

functions on the circle
.

Then
,

we sit down with a single example f : S1  → IR and

find we cannot say anything about its coefficient in this
" dense basis

" of trigonometric

functions .

So actually we know ( close to ) nothing ,
in practice ! ( not an unfamiliar

state of  affairs for a mathematician
,

sadly )
.

Let us now fix this sorry mess .

We switch to complex coefficient , because it is right to do so .
Set St :  = [ 0,21T ] In

.

Lemma

LU
- I The set { ein O ) net is a linearly independent set in Cts ( S3 a )

which spans a dense subspace ( with respect to the compact - open topology )
.

Proof To see Leino } nez is linearly independent we differentiate a linear dependence relation

II
- n Mn ein O

= O and evaluate at 0=0 to find

[ I
 → ( in )kµn= O ka O

This shows the vector of Mn 's is in the kernel of a ( 2

Ntl
) x I 2N t I ) Vande mon de

matrix ( see the solution of Ex . L 17 - I ) hence zero

,
so { ein O } n ez is LI

.

§

There is a homeomorphism Cts ( S3 e) = Cts ( S3 IR ) x Cb ( S
'

,
IR ) sending

a complex - valued function f to ( Re If )
,

Im If ) )
,

where on both sides we use

the compact - open topology ( Ex
.

42-14 ) .

To  seethat V = span a ( { ein OJ nee )

is dense
,

observe cos ( no ) = I ( ein Ot Eino ) E V and similarly sin ( no ) EV
.

By Corollary 46 - S
-

the set A  =L 13 u { Ws I no )
,

sin In O ) } n > o is dense in

Cts I S
'

,
IR ) and hence A  x A  is dense in Cts I S 'T IR )

'

( Ex
.

48 - 9)
.

Since 9 I V ) Z AXA and 4 is a homeomorphism,
this shows V is dense

. D



③

Giving S
'

the  default integral pair ,
the canonical map

Cts C S 'T Q ) → LY s 'T Q )

is E - linear and injective so  it is immediate from the above that { ein O Inez is

linearly independent in L2 ( S 'T E )
.

It is almost immediate that the subspace spanned
is dense

,
but we have to contend with the difference between H - Ha

.

and I I - Hoo I the

latter being associated to the compact - open topology )
.

Lemma La - 2 L2 ( S3 Q ) =

span a ( { ein O ) nee )

Root we know Cts ( 5-
, is It - Hz - dense in 245

, E ) I by construction ) and that

V = span a ( Leino ) nee ) is It - Hao - dense in Cts C S 'T a ) by Lemma L2 I - I
,

and it suffices to prove V is It - th - dense I because then a closed subset of LYS 3 Cl )

containing V must contain Cts I S 'T a )
,

since YA Cts CS3 a ) is It - Hz - closed and

contains V
,

and therefore must be all of L2 ( S 'T Q ) )
.

But given feats ( S 'T E )

and E > O
,

if p EV and H p
- f Has then by Ex .

48-15 with p  = 2
, g =D

It p
- f- the FTL Il p

- f Hoo a E

which proves the claim . D

Next we compute the pairings
Leino

,
ein O > in L2 ( S3 a )

.

But tint let us

examine what  it means more generally to compute Lf
, g > for f , g E LT X

,
Cl )

,

and before that
,

let us recall why we know L
, > in 1122 is connected to angles .

So let 47 denote the standard inner product  on 1122
,

so that O (2) is the set of

linear transformations T of the plane satisfying L Tu
,

Tv > = Lu , x > for

all u
,

ve 1122 and SO (2) = { Ro } o e IR
E O (2) is the subgroup of rotations

.

Suppose u
,

V are nonzero and they make angles O
, Y with the x - axis C measuring

counter - clockwise
,

with OEO , 4C 21T )
.



④

Before ( case 034 ) ( case Ost )

u v

1- r

O 4

§ 7
" § 7 u

i
'

i
'

4 O

After rotation by - Y

R - the)7
:

:
,

a . A
> 7 R - th )

R - Nv )

ran

We compute that

< um > = LR - the )
,

R - th ) >

= L R - the )
,

Hull . e , >

= Hull . ( R - th ) ) z

= Hull . Hull cos I O - Y )

Note that we get the cosine of the angle between u
,

v
,

since the full Of ) -

group

preserves the pairing ,
and two observers on

"

opposite sides of the plane
" ( i. e. with

different orientations ) disagree about whether the oriented Ca  e . counter-clockwise )

angle between u
,

v is O - Y or 4 - O ( see Ex
.

L 3 - 5)
.
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We saw in Lecture I ( see p .
⑦ ) that two observers at the same position and with

the same orientation in the plane have as their shared fundamental invariants of

a pair of point ( um ) The distance Hu - HI and the oriented angle O - Y
.

It

is natural to ask : what is the proper mathematical " home "

for oriented angles ?

The answer is obvious once you see it : first we identify u
,

V with complex numbers :

pi - a

u l - Hu Hei O
= : zu

x I - H - ill e
it

= : Zi ,

Then we calculate

ZUZT = Hu Hei O
. Hull e-

 it

= Hull 1h11 ei ( O - X )
.

c-
records O - te Klerk

Re ( ZUZT ) = Hull . llvll.ws I O - 4) = Lu , v2
.

The extra information in ZUZT is precisely sin I O - t )
.

But once you know cos ( O - 4 )
,

and therefore sin ( O - 4)
'

= I - cos CO - 4)
2

, knowing the actual valueof sin C O - 4)

is just the information of the sign of sin I O - 4)
,

which tells
you which hemisphere

of S
'

the angle O lies in
,

when we bisect the circle at  4
,

i.  e
.

µ
sin l O - Y) > O

Upshot arg ( ZUZT ) E
"2/2712

• y
is the equivalence class of the

oriented angle measured counter

✓
sin to - 4) so

clockwise fore V to a .
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Given tho continuous complex-valued functions f
, g

: X → Q
you

should think

of the values floc )
, 9 I x ) as complex numbers ( visualised as arrows in IR

' ) attached

at the point x
. Then the interesting information in

f- ( x ) = If 11g peg I eilargffx) -

avg glad )

is the oriented angle from g ( x ) to Hx )
,

and the pairing in L2 ( X
,

Cl )

< f
, g > = f ×

f g-

accumulates these complex numbers
. We can visualise this integral more

" geometrically
"

by imagining the vector  addition of  all the fla ) glut .

We  will do this exercise below

for X = S1
,

but for even move pictures of this kind of thing see Feynman 's book
"

QED :

the strange theory of light and matter "

( what a beautiful book )
.

Lemma L 21 - 3 For m
,

he I we have Lei mo

,
ein O

) = 21T f m
,

n  in L2 ( S1
,

a )
.

Root Here 8mm = I  if m=n and zero otherwise is called the Kronecker delta
.

By definition ( with f = Sse )

( eimo
,

eino > = f eimo e-
 in O

= f eicm - no

which is certainly 21T if m=n since I 1 = 21T
.

If m # n this is

Ji
"

eilm
- Modo = [ mine " m - no

] ! = O
.

D



⑦

Remark The orthogonality of the ein O 's is so fundamental that you ought to have

a
"
gut level

"

understanding of why it is true : consider first e
'

'

O
: S

'

→ ①

which is just the homeomorphism S UH ) of Tutorials 4 ,
6

.

^
e

it =  i

• / eio

• a-
s

't

it o )
e

= - I a •a - - - - -

• > ei 0=1

•

•

i
3  The

L e = - i

ei lot  H
= - eio - .

In the integral fo"eiOdO
every contribution e

'll
is precisely cancelled by a

- e
ice

comes pond ing to a phase shift of IT
,

so fo
"

e
'

'

Odo = O .

For ein O
with n to the complex numbers attached to points of increasing O

perform n complete periods as Ovaries over C 9247
,

and hence the integral

can be divided as a sum of n parts ,
each of which is zero by the above

calculation : e. g. in the n = 2 case ( not  drawing to scale )

< •
r

•
•

✓

• 7 ⑨ >

^

•  •

< •
×

DEI An orthogonal family in an  inner product space ( 447 ) is an indexed

set of  vectors { Ui } if  I such that Luis Y
- 7=0 if  i # j . An orthonormal

family is such an indexed set with Luis Uj > = 8g ' for all i ,j .



⑧

If lui ) ie  I is an orthogonal family of nonzero vectors then l
"

Yuu ill } ice

is an orthonormal family .

Example L2 I - I The family { IE ein d) nez is orthonormal in I ( S7 a )
.

Set un :  = LE ein O
.

We know the set I un Inez
spans a dense subset of [ ( S3 Q )

and our goal since Lecture 17 has been
, given f : S

'
 → ① continuous ( or as we

have more recently learned
, we could hope to do the same for any integrable function )

co

to find an algorithm for producing a sequence ( pm ) m
-

- o in the span of the Un 's

with pm  → f as m → 00 in L2 ( S3 Cl ) ( to be  completely honest our  original

goal was to do this for f : S1  → IR
,

but we can apply the construction in the

complex case and then take real parts )
.

However to make sense of this we need

to  define what we mean by an infinite series

Ioan ein O
E I ( s

'

,
a ) ane Cl

.

Lemma L2 I - 4 If I U it i is a finite orthogonal family in an inner - product space then

2

HE mill = Ii ,
Huitt

Proof It Ei Ui If = L Ei Ui
, Ejuj ) = E suing > = I Kui ,

uit = Ei Hu ill ?
D

Most of the following material is from Cheney
"

Analysis for applied mathematics
" 52.2 .

Lemma Lu - 5 ( General Pythagorean law ) Let E -

- lui } i > o be an orthogonal family
in a Hilbert space H

.

The series E I  o
Ui

converges if and only if

E Eo Hui If a
.

If ⇐ o Hui 112=7 soo then HE oui 1/2=7

and the sum Ei Ui is independent of the ordering of the terms
.
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Root set Sn = Sito Ui and s
n

= E Eo Hui 112
so that convergence of

the series I Ui means ( Sn ) F-
o converges ( or equivalently ,

is Cauchy )
.

Form > n we have

H Sm - Sn It
'

= H Ej ?
n+ , uj If - Ijn , , Ily - If = Ism - Snl

so ( Sn )nFo is Cauchy in H iff
.

( s n ) Tio is Cauchy in IR
,

which proves the

first claim ( we have used His complete here already )
.

Now assume that tea .

By the Pythagorean law lls n If =

Sn and hence in the limit

HE !oui HE finish sull
'

-11
,

main = X
.

It remains to prove the claim about the unordered sum .
Let us first consider a

bijection 8 : IN → IN and the series E I Uf Ci ) .

Set Un =

o UH i ) .

By the theory of absolutely convergent series in IR
,

E Eo It Ufc is 112 = X and

so by what we have already said Ux converges , say to u E H
,

and Hull 2=7
.

Now we compute

L Un
,

Sm > = ( E out cis , Ej o Uj ) = Hug IT SjHis
The pairing C -

s Sm > : H → IF is continuous by Ex .
L 20 - 5

so we compute

on

< u ,
Sm > = find Lun

,
Sm ) = him !€ Elly'll

'

Sj fi is

j
-

- o

-

equals It ufci , It
'

if Hi ) E to , . . .

,
m }

and zero otherwise

-

equals I H Ufc is IT
c-  En

ft i ) Em



④

=¥m"
" " " "

'

=

Em Hain
'

Using continuity in the other variable we find Lu ,
Eiko Ui ) = I

o
Hui H' =D

.

Hence a = Ei ?oui since

Hu - E !  
oui It = Hull

'

- z Re ( su ,
E oui > ) t X

= I - 2 X t 1=0
.

This shows that any permutation of lui Tito also sums to I F-oui  = limn  → as Sn
. D

Lemma 221-6 Let lui } it , be an orthonormal family in an inner - product space V

and set U =

span # ( Lui } )
.

Then for v EV the closest point to u

in U is Ei ,
Chui > Ui .

Pwd Set Phi ) Ii a ,
hi > Ui E U

. By Lemma L2 O - 6 it suffices to

show Lv - P C v )
, y > = O for all y E U

.

But since the pairing is

linear it is enough to check this for all
y

=

Uj .
Hence

( v - PH )
, uj >

= Lv ,
- I

,

. ?
,

a , ai > Lui
, Uj >

= Lv , uj > - Lu , uj > = O

proves the claim . D

Lemma L2 I -7 In the notation of the previous lemma
,

if VE U then

u = Iii ,
a

,
ai > ai .
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The vector P ( v ) in the above proof is called the orthogonal projection onto U ( note that

the description as the closest vector in U shows it  is independent of which orthonormal

spanning set for U we choose )
.

The scalars LY Ui > are called Generalised) Fourier

coefficient
, for a reason we will explain shortly .

Theorem L2 I - 8 ( Bessel 's inequality ) Let lui } ie  I be an orthonormal system in

an inner - product space V with I countable
.

Then for x E V

I
ie  I

KY
hit I

'

E Hull ?

Roof If I is finite we know what the LHS means
.

If I is infinite , choose an ordering
I = Lio

,
in

, . .
. }

.
We show IKI  o

KYU in > I
2

converges ,
hence converges

absolutely ,
so any other ordering of I produces a convergent series with the

same limit and we might as well assume I = to , Is . .
. } to begin with

.

Given v E V we write Vn for Eino LY Ui > Ui . By Lemma L2 I - 6 we have

v - Vn  orthogonal to Un = span # ( Eu E- o ) . Hence by the Pythagorean law

11×112=11 u - vntxn IT = Hv - hell 't Hun IT

> Hun IT

= HE Eo 4mi > ui IT
= E ii. Kyu . > I

-

Taking the n → A limit
proves the claim C the sum is positive and bounded

above
,

hence converges ) . D

Corollary L2 I - 9 If { Ui )Fo is an orthonormal system in an inner product space and v C- V

kinky un > = O
.



①

Root By Bessel 's inequality diff Ii -114mi > 12<0 so this is immediate
. D

Exercise L2 I - I Let { Ui Tie I be an orthogonal family of  nonzero vectors in an inner - product

space V
.

Then this set  is linearly independent . Use this to give an

independent proof of Lemma 221 - I ( although as a  matter of task
,

the old proof is move elementary and thus
" better

" )
.

DEI A countable orthonormal dense basis C hence dense basis ) in an inner - product

space V is an orthonormal family { Ui }ieI with I countable such that

T uncountable dense

V =

span # ( { ai ) iet ) bases are also very

important ,
but we  do

not have time to

Example 1-21-2 { ¥ ein O } nee is a dense basis for I ( S } Q ) develop the theory in

that -

generality !
by Lemma L2 I -2

,
L2 I -3

.

Exercise 121-2 Let V be a topological vector space over IF and U EV a vector

subspace .

Prove that I
,

the closure of U
,

is also a vector subspace .

A set is called countable if  it  is bijective to some subset of IN ( so finite sets are countable )
.

Theorem L 21 - 10 For a countable orthonormal family { Ui }ieI in a Hilbert space
H

,

the following are equivalent :

( i ) Luigi EI is a dense basis
.

( ii ) If he H and Ch
, ui > = O for all ie I then h = O

.

Ciii ) If HEH then h = Ei et
Lh , Ui ) Ui .

I in ) If h
,

KEH then Lh ,
k ) = Ei ez

Lh
,

Ui ) Luis k )
.

( v ) If he H then 11h15 = Iie  I Kh ,
hi > I ? ( Parse val identity )
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Root Part of the proof consists in showing the sums in Ciii )
,

Liv )
,

lv ) exist and are

independent of how we enumerate I
.

For lil ⇒ Cii ) note that if his

orthogonal to each Ui  it is orthogonal to U :=

span IF ( { Ui } it  I )
.

But

there is a sequence ( Pn ) 5=0 in U converging to h
,

so by continuity of the paining

< h
,

h > =L h
, nlirnaopn7-nlihf@Lh.p n ) = O

Hence h=0 as claimed
.

( ii ) ⇒ ( iii ) Lethe H be given .

To show the sum
h

'

= Eic
.

 I
Chi Ui > Ui

converges

and is independent of how we order the terms
,

it suffices by Lemma L2 I - 5 to show

that some ( and therefore any ) enumeration I = lio ,
it

, . . . } that

[ iiiolkh ,
u in > uik HII Eo Kh ,

u in >Tea

But this is immediate from Bessel 's inequality ( Theorem L2 I - 8)
.

So h
' exists

,

and moreover

( h - h
'

,
Ui ) = Lh

,
Ui ) - Sh

'

,
u i >

= Lh
,

ui ) - ( limn  →  a
I Eth ,

u ik ) u ik
,

Ui )
= L h

,
ui ) - Link I Ii 

och ,
u in >

Luik
,

hi )

= Ch
,

u i > - Ch , no > = O

So by hypothesis h - h
'

= O and thus h =L
'

.

I iii ) ⇒ Civ ) As we have just shown
,

E ie I
th

,
ai ? Ui

is unconditionally convergent
C re . any enumeration of I leads to a series converging to the same limit )

.

Then
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L h
,

k > = ( diff II.
 
och ,

u ik ) uik
,

k >
= limn  →  • EI

-

och ,
u ik ) Luik

,
k >

This shows that Iie  I
th

, Ui KU " k ) also converges unconditionally . Actually ,

this unconditional converge did not require Ciii ) !

Civ) ⇒ l " ) We have just established Sie  I Ch
,

u ik uit k > converges unconditionally .

We now suppose it is always equal to < him
. Putting h = k yields

11h If = Iie I
Lh , uikh.TT = Ei et Kh

, nil ?

( u ) ⇒ l i ) Let U be as above
. By Ex .

L2 I -2
,

I is a C closed ) vector subspace

of H ( see  also Ex
.

Ll 8 - 10 ) and so by Lemma L 20 - 7

H = To It
.

We suppose for a contradiction that OF H
,

so there is a nonzero

VE It
. We may assume 11×11=1

.
But then by ( x )

,

I = 11×112 = Ii
←  I

kv
, u is 12=0

which is a contradiction
.

Hence I = H
- D

Remark What we have called an orthonormal dense basis  is sometimes just called

an orthonormal basis
.

However this  is problematic because such a thing
is not a basis which happens to be an orthonormal set

.

I have chosen the

appellation
" dense "

since that seems informative
,

but  be aware this is

not standard terminology ( orthonormal basis
,

or Schauder basis
,

is )
.



⑤

Example L2 I -3 Set un =
ein O

.

The set { Un } nez is a ( countable ) orthonormal

dense basis for E ( S7 Cl )
,

and so we deduce from the theorem

that for any f E LY S Z a )

00

f  = I Lf
,

un > un
.

n  =-D

Moreover the convergence of this series is unconditional
,

so we

can enumerate 7L in any way we like
,

for example

pn
= Lf

,
un > un  → f as N → N

.

This achieves our longstanding goal of finding an algorithm for computing
a sequence of trigonometric polynomials converging to f . Note that

the coefficients are
,

if f : S
"

 → Cl is continuous
, integrals

( f
,

un > = Jst f UT

= Is , f e
- in O

= ⇒
o

"

Ho ) e

- in Odo ( Riemann integral)

These complex numbers are called the Fourier components of f
.

The linear

functionals C- ,
un > : Els

'

, E) → Cl " read off
"

how much of

f is in the 4 direction
"

Un
,

so there is a precise analogy with the

dual basis in  a finite - dimensional vector space ( the conceptual

message here is that what actually made finite - dimensional spaces

great was that they were setfdual Once we know how to build self - dual

infinite - dimensional spaces ,
i . e .

Hilbert  spaces , many things general is e )
.



④

The story of trigonometric polynomials is not quite complete ,
because originally we

were concerned with real - valued functions
,

and real - valued trigonometric polynomials .

We can get ourselves back to this context by
"

taking real parts
"

in the following sense .

Recall that given a pair of vector spaces A
,

B the C external ) direct sum A A B is

the set A  x B with Cai
,

b
, ) t ( as

,
be ) = ( ai t a a

,
b

, t be )
,

X ( ai
,

b , ) = ( Tai
,

Fb , )
.

There is

an
isomorphism of Cl - vector spaces

§
Cts ( X

,

Cl ) s Cts ( X
,

IR )acts C X
,

IR )

§ ( f ) = ( Reff )
,

Im ( f ) )

where i acts as ( I I ) on the right hand side
. Suppose now that C X

,
Tx ) is  an

integral pair and we take the associated It - Hz -

norm on Cts ( X
, E )

,
Cts ( x

, IR )
.

The

right - hand side of the above becomes a normed space over Cl with the norm

H ( f.
,

fz ) HzIt f
,

It
z

t It falls

and with this structure ¢ is an isomorphism ofnovmect spaces over Cl
.

Lemma L 21 - 11 There is an isomorphism of normed spaces over Cl

I

Io : L2 ( X
,

a ) - L' C X
,

IR ) A LYX ,
IR )

where i acts as
( I

-

o

'

) on the right , making the following diagram commute

Io

E ( X
,

Cl ) -7 LYX ,
IR ) a LY x

,
IR )

i T T lol

Cts ( X
,

E ) - Cts ( X
,

IR ) a Cts ( X
,

IR )
at



①

Boot It is immediate from Theorem LI 8-9 that if two normed spaces are

isomorphic their completions are isomorphic .

Then  using Ex . L 18 - 12

( which is clearly also an isomorphism of normed spaces ( VA W )
"

E
 

V
"

O W
"

it V
,

W are normed spaces ) we have as  normed spaces over Q

L2
( X

,
a ) = ( Cts C X

,
a )

,
H - He )

"

=L( Cts I X
,

IR )
,

It - Ha ) a ( Cts C X
,

IR )
,

It - th ) }
"

= ( Cts I X
, IR )

,
It - Ik )

"

o ( Cts I X
, IR )

,
It - th )

"

= L2 ( X
,

IR ) A L' ( X
, IR )

.

Here all we really need to check is that the action of c
' matches up ,

which it does - D

Given f E LYS } E) we write Re If )
,

Im ( f ) for Ioc f) z
,

Te (f)
a resp .

Example let - 4 So Io : LYS ? Cl ) LYS ? IR ) A LTS } IR ) is continuous
,

and if f : 5-  → IR is continuous then we may first of  all view

it as an element of LYS } Q ) C via IRE Cl ) and then in LYS 3 IR ) :

f-  = Re C f )

= Re ( Ling
,

- n
Lf

,
un > an )

= twins I
'

ni
- n

Re ( Cf
,

un > un )

Suppose If
"

flo ) e-
 i " ODO = ant ibn with an ,

bn EIR
. Then

Re ( Lf , un > un ) = Re #( ant  ibn ) ( cos ( no ) t is in ( no ) ) ]
= ⇐ ( anws ( no ) - bus in ( no ) )



④

Hence as a limit in LY s
'

, IR )

f-  = Iihf ,
III.

µ
⇐ ( anws C no ) - bus in I no ) )

=

l im It ( ao t 2nF ,
Canta - n ] cos I no ) C 18.1 )

N →  a

+ 2nF , fbntb- u ] sin ( no ) )

which is the desired expression of f as a limit of vectors in J%ly ( S 'T IR )
.

Exercise L2 I -3 Prove that Ll } u { Ws I no )
,

sin I no ) }
n > o is an orthogonal family

in L2 ( s
'

, IR )
.

Derive from this an orthonormal dense basis and

thereby give an independent derivation of 118.1 )
.

We can now claim to understand complex and real - valued functions on the circle
.

But

it we are honest about it the answer is deeply surprising : the natural coordinates on

✓ ( S1
,

Cl ) C i.  e. the functions L -

i un > )
,

or  if you
like the fundamental degrees of

freedom in  a vector f E L2 ( S7 Cl )
,

are non - local with respect to the original space S ?

The natural " directions
"

in LY S 'T Q ) from f-  consist of variations  in the amplitude

of  individual frequency components ein O
of f

,
and such a variation changes the value

off at every point of St
.

We say the change is
" local

"

in frequency space ( physicists

will often call this momentum space ) but
"

non - local
"

in position space , meaning S
'

itself .

In fact ,
there is a precise sense in which LYS '

,
Cl ) does not

" believe
"

in points at  all
.

This relation between position space
S1 and frequency space

I is actually an

instance of a general duality ,
called Pontryagin duality , on locally compact

topological abelian groups
:  many of the I -

spaces appearing as the Hilbert

spaces of physics or applied mathematics have the property that the natural

coordinate directions represent non - local perturbations ,
of a wave . like nature

.



④

We have focused on the case of S
'

for concreteness
,

but most of the above  works

more generally : for the following exercises let ( X
, Tx ) be an integral pair and

j
-

- X → IR
"

an embedding ,
and let zy .  -

,
Zn Ects ( X

,
IR )denote the maps

zi Tlioj where the Ti are the projections ,
so

if = I zit. . . Ii I ay . . .

,
an > o ) E Cb ( x

, R )

is a countable set spanning ( by Stone - Weierstrass
,

see Corollary 46 - 4) a vector

subspace span ipf which is dense in Cts I X
,

IR ) ( with respect to H - Hoo
,

and thus also

H - Ha ) and so span RE is also dense in L2 ( X
,

R )
,

whence by Lemma L2 I - I I the

subspace span af is also dense in L2 ( X
,

Cl )
.

Exercise L2 I - 4 Prove that 8 contains a subset 8
'

which is linearly independent
and spans the same vector subspace .

Exercise LU - S Invent a generalised form of the Gram - Schmidt
process which

takes an enumeration E
'

= I co
, Cy . . . } and produces an

orthonormal family { Un }F=o spanning the same vector subspace

as b ( in particular the Un are polynomials in the Z i )
.

Conclude that { Uh } of o is an orthonormal dense basis

( in  either L2 ( X , IR ) or L2 ( X
,

Cl )
,

the same set works in both )

consisting of polynomial functions .

For example ,
with X = Ft , D and E = { Z

" In 70 ) this produces as an orthonormal

dense basis for L2 ( I - I
, D

,
IR ) ,

L' ( I - I
, D

,
Q ) : the C normalised ) Legendre

polynomials .
You might enjoy investigating L2 ( Stx S

'

,
e ) or L2 ( S2

,
a )

,
in the

former  case you should discover a description in terms of two independent frequencies ,

and in the latter case you should discover spherical harmonics
.

What is L2 of a graph ?


