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We saw last lecture that as a consequence of the general duality theorem for LP- spaces,
the normed space L' ( X, IR ) is self-dual with respect to the continuous linear dual,
and this space therefore possesses a subtle kind of

"

finite -dimensionality
"

despite

being an infinite-dimensional vector space . The concept of t.li/bertspace-axiomitises
this self -duality , and elaborates its consequences .

We begin today 's lecture with

the standard definition of Hilbert space which, despite what we have just said,
makes no directmention of this self-duality ( don'tblame me, it's not my clef

")
.

We then build up the theory to the point where we can prove a characterisation
of Hilbert spaces as a kind of self

-dual normed space (conceptually , this is

the " right
" def, atleast in my opinion) .

Throughout Fis IR or Cl, and given XE IFwe set 5=7 it IF- IR and let IT denote
the usual complex conjugate it IF

= Cl
.

DEI Aninnerpwductspace (V, 47 ) over IF is an F- vector spaceV together
with a function L , > : Vxx→ IF satisfying

(I1) Lvtw ,
u> = LY U> + (with

Hu
, y w EV

Lu
,
Vt w> = Lu , v> t Lu ,

w>

(I2) Lau, v > = Ku, 'D, Hu
,
well HXE IF

Lu , Xv> = ILu ,D

(I 3) Lu , x> =GI Hu
,
vEV

( Itt ) Lu, u> 7 O HuEV

( IS) Lu, u> = O ⇒ u= 0 HueV
.

We call L, > the imerpwduct or pairing and say it is linear in the first
variable and conjugate linear in the second variable .
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Remark lil Physicistswrite 41 w> for 4,
w> and they adopt the convention

that the pairing is linear in the second variable and conjugate linear

in the first variable .

Mathematics text consistently use the opposite
convention

,
as we have done

.

I tend to think the physicists made the

rightchoice , but whatever : it is a convention, and it doesn't really
matter

,
because you canjust read 41W>

as Lw, x >.

( ii) The second lines in ( It ) , LIZ) follow from the first lines, using ( I 3),
so they are redundant II include them because otherwise the deth

is oddly non - symmetric ) .

( iii) By (I3) Lu, u> =LUI is real , so Lu ,
u>70 makes sense .

Example to - I l i ) ( IR ", L , > ) defined by La , b-7=2 in,
aibi is

a real inner product space
Cii ) ( Ch, 47 ) defined by La ,

b-> =E I aibi is

a complex inner product space (note La, a-> =Ii lait) .

We call these the standard inner products on IR
"

,
On

.

Example 220-2 We pwned in Lecture 4 that if PE Mn ( IR ) is positive definite
then La , b->

= at P b- is an innerproduct on IR
"
.

Note that

symmetry I I3 ) follows from PT=P since

<a ,
he> = ET P be = (E' Pk)

T
= KT PTE = IT P a =L he, e) .

Example 220-3 In Tutorial 2 we discussed nondegenerate bilinear forms and

quadratic spaces . If ( V, 47) is a real inner product space
then47 is symmetric bilinear, and if V is finite - dimensional

Then at Lu, -7 is an isomorphism VEsVI that is, the
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paining is nondegenerate (we have to be move careful about what
anondegenerate

"

means in the infinite -dimensional care, and for that reason I will only use it for

finite -dimensional spaces ) . To see this, note that itu to then Lu, -7 is notthe

zero function by ( I S )
,
so the map V

→ V
*
is injective and hence an

isomorphism since dim I Vt) = dim I V)
.

Warning : for infinite - dimensional real inner product spaces the map

V→ Vt
,
ur> Lu, -7

is still well - defined
,
linear and injective, but it is never surjective ! Cat .

the Remark on p .④ on 49 ) . Ofcourse after 49 we do not expect this anyway ,
as the inner product leads to a norm , and we could at best hope V = V

"

. As

we will see
,
that in fact does holdprovided V is complete .

Obscure that any real inner product space is also a quadratic space, but not
vice versa ( e.g . Minkowski space does not satisfy CI4 ) )

.

The upshot of Lecture 4 and Tutorial 2 ( ie . Sylvester 's law of inertia, which has a

complex version as well) is that all finite -dimensional inner product spaces over IF

of the same dimension are isomorphic . So in a sense the only finite . dimensional examples

are Example LZO
- I

.
This is elaborated more precisely in the next exercise :

Def An isomorphism of inner product spaces (
V
,
C -, -Tv )

,
(W, L-I -7W ) is

an isomorphism of vector spaces T
: V→ W such that L Tie, Tv>w = Lu, v>×

for all u
,
v E V

.



④

Exercised ti ) Rove that any pair of finite -dimensional real inner product

spaces of the same dimension are isomorphic ( Hint
: Sylvester) .

( ii ) Prove that any pair of finite-dimensional complex inner product

spaces of the same dimension are isomorphic .

LemmaL Let ( V
,
47 ) be an innerproduct space .

Then (Y H - H ) is

a normed space where Hull
= CY x>

"'
and for u, v EV

Kum> I E Hull . Hull (Cauchy - Schwarz Inequality ) .

Boot (N1 ) is clear from (I41 , CIT) . For (NZ) , we have

Hav H = Lavin>
" '
= ( XI Lun > 3

"
= HI - hill

.

Next we prove the Schwartz inequality .

The proof is a trivial variation on

the proof of Lemma 24-3 : in fact our earlierproof goes unchanged for F- IR .

We repeat the argument here, making the necessary modifications so that itworks

for both IR and Cl . For any X C- IF

O E Lu - Xv
,
u -Xx) = Lu, u> - Xcx ,

u> - Icu, x> t 754, -D

= Hull't 171211×112 - I 74in> t ¥7 }
= Hull't hit Hull

'
- 2 Re ( Kyu> )

.

We may assume v to , and set D=
<""%, ,→ so that

XG ,
u> =

Kun> 12
111 u 112



⑤

and hence

O E Hull
'

t
K"">1%114 .lk/l2-2Re( K""> type, yz )

= Hull't K"
"> 12/11×112 - 2K""> 12/11×112

= 11 u 1/2 -
Ku, x> 12

111×112

so Kun> 12 ⇐ Hull'll 'll
'

and hence Kun> I E Hull . Hull .

From the Cauchy -Schwartz inequality we deduce the triangle inequality since

H ut V 112 = trutv ,
Utv> = Lu, u> t Lu, v> tLy u> tax>

= Hull
'

t 2Re (sum>) t 11×112

⇐ Hull
'

t 2 Kun> I t Hv 112

E Hull
'

t 2Hull . 1h11 t Hu 112

= ( Hull t Hull )
'

which completes the proof that ( V, It
- It ) is a normed space . D

Example 120-4 l i ) The norm associated to the standard inner product on IR
"

is the It -Hz- norm .

( ii ) The norm associated to the standard inner product on Q
"

is It a- It = {Ei lait}
'k

Def
"

A Hilbert space over IF is an inner product space ( H ,47) over IF

with the properly thatthe associated normed space C H, It- It ) is a

Banach space C that is
,
it is complete w . r

. t
. the metic d Chi, ha) - Hh ,

- hall )
.
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Remark Any innerproduct space is a normed space and thus a topological
vector space (Ex.

L 8 - lo) , and we use this structure without further comment .

Example L 20 -5 The standard inner product on IR
"

,
I make these spaces

into Hilbert spaces .
The completeness of ( IR

"

,
It - Hz ) was

explained on p .⑤ of 43,
and the metric induced on = R2"

by the standard inner product is dz, which is complete .

Lemma 220-2 In any innerproduct space (V, 47 ), the norm satisfies

Hutu It 't Hu - v 112=2Hull't 2/1×1/2 ( Parallelogram law )

and if Lu , v> = O then

Hutt 112=1 lull't Hull
'

( Pythagorean law )

Proof Wesimply compute

Hutu It 't Hu -v 112 = trutv, utv> t Lu -Yu-v>

= Lu
,
u> t 2 Re (sum>) thx, x>

+ Lulu> - 2 Re Kun>) the, -D
= 21h11

'

t 211×11 ?

The same calculation also demonstrates the Pythagorean law . D

Exercise 120-2 Let ( V
,
47 ) be an inner-product space .

Prove

( i ) u=x iff . Lu, w> = LV, w> for all w EV.

Iii ) Hull = sup I Kun> I I 11×11=13
.



⑦

Lemma L20-3 Let ( V
,
47 ) be an inner product space .

Then for u EV the

function←
,
u> : V→ IF is bounded

,
linear and has operator norm Hull .

Root By Cauchy- Schwartz Ky , u> I E Hull . Hull which shows L- in> is

bounded and It L-in> HE Hull . On the otherhand Ex .
L20-2 Lii ) shows

HL - in> It = sup { Kyu> I I kill = I } = Hull . D

It follows immediately that Lu, -7
: V→ IF is continuous

, althoughthismap is

not linear : it is whatwe call conjugate linear.

Def
"

If ( V, t, a) is a complex vector space with action a
: Cl x V→ V

the complex conjugate vector space IT has the same underlying set V and

abelian group structure t, butthe action I defined to be

CI x ich, a

IC x V→ ExV- V

(z , x ) I→ (E
,
x) 1-7 a( Esv)

.

Less formally , in IT we have z • V = E . V where • is the action

of scalars in IT and . the action in V.

Exercise

L2
O -3 Check that IT is a Cl- vector space . If ( V, It -Hv ) is a normed

space over Q check ( IT
,
It -Hy ) is a normed space Cwith

the same norm )
.

Def
"

Let V, W be IF- vector spaces .

A function T. V→ W is conjugate linear

if T(ut v) = TCU ) tTlv) for all u, V EV and for XE IF uEV,

Tl X u ) = IT Iu)
.



⑧

So if IF = IR there is no difference between linearity and conjugate linearity .

Exercise L20 -4 lil Pw ve that a function T: V→ W is conjugate linear iff .

it is linear viewed as a map V→ ht , or I→ W
.

Cii ) If l V, 47) is an inner productspace then Lu, -7 :I→ IF

is linear
,
bounded and has norm Hull .

Lemma L20-4 Let I V
,
47 ) be an inner product space .

The maps

-

y
V→ V u I→ L-su>

V→ I
"

u I→ Lu
, -7

are continuous
,
linear and norm -preserving .

Root we pure the claims for the first map .

It is well - defined and norm - preserving

by Lemma L20 -3 . Moreover U I→ L- in> is conjugate linear in u, hence

linear as a map
I→ IT

. Continuity follows fwm boundedness . D

A subset X EV of a vector space V over IF iswnvex if whenever x, y EX

we have Txt I I-7) y c X for all OLX a 1 .

Lemma L20 - 5 Let I H , 47 ) be a Hilbert space .

If K E H is closed
,
convex

and nonempty , then for each HEH there is a unique point k in K

closest to h
,
that isHh

- tell = d ( h, K ) : = in ft Hh - x H I VE K }
.



⑨

Proof Set D= d ( h , K ) and choose kn C- K such that 11h - Kull→ d .
Since K

is convex
,
I ( kn t km ) E K

,
and hence Il El Kat km ) - h 117 d . By

the Parallelogram law

H kn- km 112=11 ( kn- h) - ( km- h) IT
= 211 kn- hlf t 211km - HIP - H kntkm- 2h IT
= 211 kn- htt't 211km - htt - 4 HE ( kntkm ) - h 112

E 211 kn- htt t 211km - h 112 - 442

which can be made arbitrarily small by making m , n large .
Hence ( kn ) Feo

is Cauchy in H . Since His complete kn→ k for some K E H, and since K

is closed KE K . By continuity of the norm ( Lemma 48 - 3) and of the

vector space operations ( Ex .
48 - 10 )

11h - KH = 11h - finish It
= H hins ( h - kn ) Il
= aliens 11h - kn Il = a

Tor uniqueness , if 11h
- K
' Il =D then by theprevious calculation

11k- k' HE 211 k - htt t 211k' - h 112-422=0

so 12=12
'
. D

Exerciser Let ( V, 47 ) be an inner product space .

Prove 47 :VTV→ IF

is continuous
,
but pure that if V t O then it is not uniformly

continuous .



④

Def
" If 144 ) ) is an inner product space and u, v EV we say

u
, x are orthogonal if a,

v> = O.

Lemma L20-6 Let C V, 47) be an inner product space and WE V a

subspace . Let ve V and WEW .

Then the following are

equivalent :

( i ) Lx -w, y ) = O for all y EW .

Cii ) w is the unique closest point to v in W.

Pwd Given C i ) by the Pythagorean law then for y C- W

It v - y IT = It C u - w) t C w - y ) 112
= Hv - WH't H w -y 112 3 Hv - w H?

which proves Cii ) .
Now suppose Cii), let YEW and XE IF. Then

O s H v - (wt Xy ) It
'

- Hv - w 112
= It l v . w) - Xy If- H v - w 112

= - 2 Re ( Lv- w, Xy> ) t 1712119112

Hence 2Re ( ILY - w, y> ) s 17141911? If Lu- w , y > to then Ily It t O

andwe may set X
= Lv -w, Y> / Ily 112 to get

2 Re (

1712119112
) E 171211 y 112

which is a contradiction since 71=0 , HYHFO . D



①

Def The orthogonal complement of a subset W in an inner product space (V, 47 ) is

W
t
= f vEV I Lv , w> = O forall WEW )

.

Note that for we W, L- i w> : V→ IF is continuous and linear ( Lemma L 20 -3) so

Wt = f) Ker ( L-, w> )
W E W

is a closed subspace of V.

Exercise 220-6 l it Prove that Wtt : = (Wt )
t

contains W .

'T . e. a vector subspace
of H which happens

Iii ) Bove that W
,

E Wz implies Wat E W,

t

.

to also be a closed
subset in the topology

,
/

Lemma L20-7 Let W be a closed vector subspace in a Hilbert space H .

Then W = Wtt and H = W ⑦ Wt
.

Proof To show H = WOWt we need to show WANT = {03 and W tWt = H .

If weWANT then Lw, w> = O sow = O . IfVEHandWE W is the

closest point in W ( which exists by Lemma L20 -5) then by Lemma 220-6 ,
V - w E W

t
so

V = w t (v - w ) E W t Wt.

Finally , if VEWtt then write v = wt y with WEW andy E Wt. Then

< y , y > = ( y, V
- w > =L y

,
v> - Ly , w> = O

so y
= O and hence VE W . D



⑦

theorem (Riesz representation theorem ) Let (H ,47 ) be a Hilbert space .

If f -

- H→ IF is continuous and linear there exists a unique
vector Of C- H with

f- =L- , Of>.

Root By Lemma L20-4 the map II→ HY htt-th> is linear and
norm - preserving and hence injective , so if ht exists it is certainly unique .

To see how we might construct Of , suppose we succeeded : then

Ker (f) = { u E H l Lu , of> = o ) = { Of }t

But then { Of ) E { Of It
t

= KerCf ) ?

This suggests we lookin Kertf It for the representing vector . So letus now

proceed with the construction .

If f = 0 take Of = 0, otherwise Kertf)#
H

andso by Lemma L2 O -7 we may choose a nonzero vector u E Ker(f)
t

.

Since u ¢ Kerff) we have flu ) # O and by rescaling we may assume flu ) =L .

Then notice that for the H we have

k = k - fCk) ut Hk) u

and f- (K- fCk) u ) = f- Ik ) - fIk) = O by linearity , while f-( ftk) u ) = ft k ) ,

and so k - FCK ) u EKertf ) . Hence since u E Kerlf)
t

( k , u> =L ( K- f Ik) u) tfCk) u ,
u> = ( ft k) u , u> = f- ( K) . Hull

'

Dividing by Hull shows that Of
= Yuu IT works . D



⑤

Corollary L20 - 9 If ( H , 47 ) is a Hilbert space there are isomorphisms
of normed spaces

- I

H→ H
"

ul→ L-su>
=

H→Ft" ut Lu
, -7 .

Boot Immediate from Lemma L20-4 and Theorem 220-8 . D

In the real case a Hilbert space is literally self-dual, HEH
"

,
while in the

complex case H
= IT = HT

.

Sometimes we introduce Vt to stand for the

conjugated continuous lineardual Vt = VT so that HE H
t
,
but there

is not much need in this course to introduce yetanother piece of notation .

E- spaces are Hilbert spaces

Next we want to check L2(X , IF) is a Hilbert space , and from this finally
deduce the isomorphism LYX ,

IF) = ELITE)
"

advertised in Lecture 19
.

Def
"

Given a topological space X and continuous f : X→ IF we denote by
I :X→ IF the function I (x) = (so for IF = IR , f- = I ) .

Let ( X
,
Sx ) be an integral pair, IF our field of scalars . By the same argument

as p .④ of Lecture 19 , we have a bounded conjugate linearmap for dual

exponents Kp , g soo

( Cts ( X, F ) , It-He ) > (Cts IX , IF ) , H - up )
"

g 1-7 Lg



④

where Lg (f) = 5×5 f .
Note that 115Hp = 119Hpfor Is PEN,so Holder

also shows Il Lg HE 119 Hq . This can be viewed as a bounded linear map

into the conjugate of ( Cts IX, IF ) , It- Hp )
"

. of course if IF = IR then all of

this collapses to whatwe already did ( by convention if IF
= IR then I =V )

.

Lemma 49-4 shows that there is a unique continuous conjugate linear map

Ioq , p making thediagram below commute .

.

Ioq
, p

x

(

LIC
X
,
IF )
,
It -

Hq
) - - - - - → (

LP
(X,#,

H - Hp )

'

leg I = ! Lp"
V

( CblX, IF ) , It - H ) > ( Cts I x, IF ) , It -Hp )E

LeT
This commutativity means precisely that for f, g Ects (X ,

IF)
,
It
q , p
(9) (f ) = 1×1-5

.

DEI Given an integral pair (X , Sx) we define

p q
L
, > : L (X, IF ) x L (X, F) → IF

by the formula L f , g >
: =Teg, pfg) ( f ) .Lemma LZO - 10 Given Cauchy sequences ( fn ) Tio ,

( 9 n )F-o in Cts (X , IF) with

respect to It -Hp, H - Ilg resp .

,
we have

( hihzofn , Line.Gm) = him mlinfaofxfngm =nhihfoohih.to/xfngmProofSetf--hImoofn,g=lniIn
Gm .

Since Ioq . p ( 9 ) :LP( X, F)→ IF is continuous

( f , g) = Io q , p (g) (f) = finna Ioq , p (9) (fn)



④

P
By Ex .

49 - 5 the map evfn
: L ( X , F)

"

→ IF is continuous
, with respect

to the operator norm topology on

LP
IX,
IF)
"

.
Hence

Eq
, p
(9) ( fn ) = exfu ( Ioq , p ( g) )

= evfn ( link Ioq , p ( gm ) )

= hier ellfn ( Eq , p ( gm ) )

= ruling TEE . p I 9 m ) (fn ) .

combining these calculations gives the first equality and performing them in the

otherorder gives thesecond . D

as

Lemma 220 - It Let (Amin) m,n=o be a doubly - indexed set of scalars in IF

such that I im m - soo

limn
-soo Amin =L and the convergence

Am
,
n
→

limn
-so
Am

,
n is uniform in m in the following sense :

HE > OF K Hm ,
m
'

, n
> K ( I Am

,
n
- Am : n I a E )

.

Then limn→ a An , n =L .

Boot set Bm = limn→ a Am , n and given E > O let M be sufficiently large
that both I Bm - Ll s

43
for m2 M and for m, ml, n 7 M we have

I Am
,
n
- Ams n I a43. Since AM, n→ BM there is M

'
3M

with I AM , k
- B m Is

43
for k > M

'

.
The situation is as shown below :



④

< Eb

-

Bo - - . B , . . . B- a - . . → L

^ "

T
: i :
"€÷AAm,k

- i

i .
i

.

.

-

A an Aim - -A! i i

Oi
-

a

'

Ao
, , Ml

Ao
,
o At

,
o . - .

AM
, 0

Then for KPM
'

IA kik - LIE I Ak,k - Am .la/tlAM.k-BmItlBM - L /
< Etz t 43+43 = E

as claimed . D

In the situation of Lemma 220 - IO :

Lemma 220-12 Chiffon , Linkin) = hit,n•f×fngI .

Boot set Am

,n=f×fn5m=
Ioa .pl Gm ) (fn )

.

We have to check the uniformity hypothesis
of Lemma 220 - It . Since ( Eq ,p(9m ) ) info is Cauchy in LPCX , IF)

"

with

respect to the operator norm, given 870 we can find Ks .

t
. for m,

m'T K

It Ea ,pl9m ) - Teg , up ( gm . ) 11<8



④

Thus for any n, we have, provided It full

#
O
,

I Am , n
- Ami

,
n I = I Eg , p I gm ) Hn ) - Ig , p (9mi ) (fu ) I L 8 It fuHp

Set f = limn, oofn , g = limn-sang . If Hf Hp = O then f = O so by

linearity Lf, g> = O , and by Holder 's inequality

I fxfn GI I E fxtfngn I
= It frig He

⇐ Hfnllpllgnllg

Hence by continuity of the norm limntoofxfn 9T
= O also

. So we may

assume Hf Hp 't O .

Now let E > O be given and find K such that for n7K

we have

Hfnllps
Hf

Hpt
E

. Then take 8 = 411ft

Ipt
E in the above

,
and

increase K if necessary , so that for m , m
'
,
n7 K

I Am
, n
- Ami

,
n I a 8 Hfnllp = E .
nfYI¥ a E

. D

Theorem L20-13 For any integral pair I X , Sx ) the tuple ( L2 (X, IF ), 47 ) is
a Hilbert space with associated normed space C LYX, IF ) , It

-Ha )
,

where the pairing is

< Lingo fn , hiring n>
= Liftoff n GI . Hi )

Pwof Axioms I It ) , CI 2 ) follow from conjugate linearity of €2,2 . By Lemma 220-12

the given formula C 17.1 ) agrees with €2,2 (9) (f ) . Tor CI 3) we compute



④

L g , f > = nli→m•f×gnfI

= diff fxgnfn ( conjugation is continuous)

= nlitfff.gr# (def
" of complex itied integral )

= hit,zf×5nfn

= Lf , g>.

For this calculation we could have just as well used the original "double limit
"

presentation
of Lf ,97. but for the next step we genuinely need the result of Lemma 220

- 12
.

Wehave

Lf
,
f > = lniyzfxf.FI ( Lemma LW -12)

=

lnifbf.HN/2--lninfaHfnHi
2

= Hf Hz ( continuity of Hi, H- th)

Since we already know ( LYXIF ) , It
-He) is anormed space, this proves 1141 , CIS)

so 4> defines an inner product space .

Moreover we have justshown the underlying
norm is It - Hz which is complete by construction , so C X

, IF) , 47 ) is a

Hilbert space . D



④

Corollary LZO - 14 The function

¥2,2 : L2 ( X , IF )→ L2( X , IF)
"

.

Ioan (g) = L- , g >

is an isomorphism of normed spaces .

Root Immediate from Corollary 220-9 and Theorem LZO
- 13

.D

Why is it useful to know that Hilbert spaces in general, and L2-spaces in particular,
are self -dual ? Because it is generally easier to construct functionals C i. e. elements of Hu)

than vectors I ie . elements of H) .

One important application of thisprinciple is the

construction of adjoint , but here we will use the idea to give a
"friendlier face "

to the vectors of VIX ,
IF ) Cwhich up till now were just abstract Cauchy sequences ) .

By the universal property of the completion of a normed space we know that any
continuous linear O : Cts ( X , F)→ IF (with respect to H - Hz on the domain ) extends

uniquely to a continuous linear : L2 ( X, F) → IF (Theorem 48 -9)
,
as in :

①
L' ( X ,

IF ) > IF LYX , IF)
"

a

if o

=Ii
' I

-- x

Cts ( X , IF ) Cts IX,#)
"

a ol -- O

With a little extra checking
,
thisshows L

"
is an isomorphism of normed spaces

I

L
"

: L2 ( X , IF )
"

> Cts IX, IF)
"



⑧

Combined with Corollary 120-14 we have an isomorphism of normed spaces

Ear i
'

L' ( X,F ) > LYX,F)
"

> ctslx.IT)
I I

g I > LT 97 I > ⇐ 9 > lctscx
, # I

Spelledout explicitly , this says that for every continuous linear
O : Ctslxilf) -7 IF

(with respect toll - Ha) there is a Cauchy sequence ( gmtm-oinctslx.IT ) with

Of f) =dnirfLf , gm> =

nhih.ro/xfgmtIfECtsCXiFIMoreouertheequiralencedassof
this Cauchy sequence is unique , and we may

denote it

go
E LYX ,

# )
.

So if we can construct. interesting O 's
,
we can

get interesting vectors in LYX ,IF ) .

One obvious supply of is integrating

against a continuous function : ginengectslx.IT)

Off)=f×fg-→99=9E LYX ,
IF )
.

This doesn't. tellers anything , but it suggests a means of constructing more

interesting examples :

Lemma 220-15 Suppose g :[aib]→lFis a function which is Riemann

integrable on Carb] .
Then with X - [a ,b]

Og : Cts C X. F) → IF
,
Ogff ) = Scans f g-

is continuous and linear
,
i. e. Oge

ctslx.FI
"

(with respect toll - th ) .



④

Root Linearity is a basic properly of the integral . Continuity with respect to H - Ik

follows fwm the Holder inequality ( the proof of which goes through in the

present case , with g Riemann integrable
but not necessarily continuous) since

I Sfg - f f 'g- I = If C f- f ' )

g-
I

e f I (f - f '

II
I

⇐ It f - f ' Hall s Ha
.

'

Tl she=Lfear, lol

In fact this shows Og is bounded, and 110g HE 119112
. D

Let § denote the representing element for Og in L2 ( X , IF ) , so that for f Ects IX , IF )

L f, § > = f ca , by
f 5 .

T

pairing in LYX, IF) Thiemann integral of a non -continuous fh

This defines a function g '→ g from integrable functions to L2 ( X , IF) , which

is just the inclusion of Cts IX , IF ) when restricted to continuous functions .

Exercise 220 -7 Prove that 115 Hz = Sea
, by
191?

One is therefore tempted to think of integrable functions as a sub-set of LYX, IF )
,

but :

DEI A Riemann integrable function g : [ai b]→ IR is zero almost everywhere

(or zero a. e . ) if f ca , by f g = O for all f-Ects (X , IR ) .

Two Riemann

integrable functions g , g
'

are equal almost everywhere if g
-

g
'
is zero a . e

.

We extend these def 's to complex - valued functions in the obvious way, ie .

g
: [a ,

b] → Cl is zero a. e . iff
.

Refs)
,

Im (g) are zero a . e
.



④

There is another characterisation of "almost everywhere
"
in terms of sets of measure

zero
,
but that is beyond the scope of this course .

Lemma L20-16 The kernel of the linear map

{ integrable functions [a , b)→ IF }→ L2 ( Ca , b] , IF )

ga g
"

is the setof those g which are zew almost everywhere .

Boot By definition § = O in L2 ( X, IF ) ifand only if f ca is f g- = O for
all f- continuous

,

which means g is zero a . e . D

Example h2o - 6 The function g
: Cal b)→ IR

, g (a) = I, g (a)= O for x > a is

Riemann integrable but clearly Sca
,by fg = O for all continuous f,

since fg = f la) . g , and Sca , by g = O .

So g is a . e . zero and hence § = O .

In conclusion
,
we have a diagram of injective linear maps ( X = la , b] )

LY x , IF ) g
7 T J

L -

g

c

{ Integrable g : X→ F)
/a. e. equalityCts ( X , IF ) c >

However not every element of LT X , F) can be obtained as g
" ! The notion of Riemann

integrability is artificially restrictive , the connect notion is Lebesgue integrability , and
it is true that every vector in L

'

IX, IF ) represents a Lebesgue integrable function. .



④

Example 120-7 In Example 48- Zwewnsidered X - [Oil] and the sequence of

functions fn :X → IR given for n74 by

x

\ - - . - . . . . . . . . . . . . - . . - .

j÷
:
"

i
' tnkkfniha-i.mn,:III: "

i 1 YztYnEx E I

i
i

i

Hakata is text -ftIII's
O XL

'12

The function f is not continuous
,
but it is Riemann integrable , and we claim

I = ( fn )I=o in L' ( X. IR )
.

But by Ex .L20 -7

HE - full : = LF - fn , 't - fu >

= f× Iff t It full
'
- ztfn ,
I >

= It So'fnKTdx -

zfolfnlxlffx
)dx

m2
2

= Itj!-46
- Etta)dxtH - I - I )

'ht Yn

- 21h Else - Itt )dx - 2. ( I - I - I )

= a' thief 's Cx -Etty ] .iii -nfzcx-tttjy.it"



④

= Th t ELE )
'
- El LET

'

- LET )

= the t I - th - I . Fa

=

'16h

This converges to zero, proving the claim .

Indeed this example suggests the correct general strategy for constructing a Cauchy

sequence in Cts ( Calls] ,R) giving the representative elementg
"

in LY Ca, b] , IR )

representing a general piecewise-continuous functiong on [ai b ]
.

Example KO-8 Let ( S } Is2) be the integral pair of Example 47-2 , so

5- = [0,217 In and fit is (p : [0,2×3→ 81 being the quotient )
(Top fco

,
at]

Cts ( St, IR )→ Cts ( C0,2173 , R)→ IR

We have shown there is an isomorphism

LYS
'

,
IF ) Lyft"

g I- L- , g>
.

It follows from Lemma L2 O - 15 that if g
: [0,273→ IF is integrable

then the following function is continuous and linear

Og : Cts ( S
'

,
IF) → IF

Og If I = fo
, zag

(f of ) . g-



④

I

and is therefore represented by a unique g
"

E

LTS
i IF) with the

properly that Lf, 5 >
= Sco

, say ( top )g- for all f-Ects15, IF) .

Note that whilecontinuous functions on S1are in bijection with

periodic functions on IR, an integrable function on S
'
-

does not need to

care about amatching
"
atthe glue ing site
:
we think of g as being

an integrable function on S ?



Solutions to selected exercises

120-5 We give VXV the product metric .
Then

Kai , b ,> - Laz ,
bz> I E Kai , b ,> -Caz ,

b
,>

+ Caz , b ,> -Caz ,
be> I

s Kai , bi> - Laz , b , > I t I Caz ,
bi> - Laz ,

be> I

= Kai - 92lb ,> I t I Laz ,
b
,
- bz> I

⇐ Hai - ask - 1lb ill tllazll 1lb , - ball

E Hai -azll.tl bill t Has- a , talk 'll bi - ball

C- Hai - aall 'll bill t Hai - aall - Hb ,
- ball

t Hall . 1lb ,
- ball

Let us prove 4> is continuous at Car , bi ) . Let e > O be given, find

8>0such thatlwkd,IZKSimplies IWZ Is 43 with also

S s 4311 bill ,
8 c 4311 a ill .

Then Hai - 9211 Hlb ,
-ball c 8 implies

Kai , bi> - Lamba> I L 8 'll bill t Etz t 8 . Ha , 11

< Ets t 43 t 43 = E .

p


