
①

Lecture 19 :

Duality and Hilbert
space updated 1710119

Last lecture we associated to
any integral pair ( X

,
Sx ) and field of scalars IF

a family of Banach
spaces { ( LP ( X , IF )

,
It -

Hp ) } is pea .

But it remains unclear how

to think about vectors in these
spaces ( which are

, by definition
,

limits of Cauchy

sequences of continuous F- valued functions on X )
,

and to put  it more bluntly :

Question : why care about the Banach
spaces ( LP ( X

,
IF )

,
It -

Hp ) ?

Since I am not an expert in analysis ,
let me insert first a blatant appeal to

authority by quoting from EM . Stein and R
.

Shak archi Is book
"

Functional analysis
"

"

Functional analysis ,
as generally understood

, brought with it a

change of focus from the study of functions on every day geometric

spaces
such as IR

,
IR !etc .

, to the analysis of abstract infinite - dimensional

spaces ,
for example ,

function
spaces

and Banach
spaces .

As such

it established a key framework for the development of modern analysis .

"

OK
,

fine
,

but why Banach spaces
? The motivation sketched at the beginning of

Lecture 17 was that in order to compute with infinite - dimensional function

spaces
we need integrals ( to e. g.  determine coefficients of  a function on S

1

with respect to the " dense basis
"

of trigonometric polynomials ) . The
way

these

integrals are

' '

packaged
"

is via the structure of a norm ( and in a moment
,

the

inner product )
,

but we ran into two issues in the previous lecture :

(1) Which norm should we use
? we have It -

Hp for Isp E N
-

(2) Tor K p
ca the norm A -

Hp is not complete .
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Problem (2) is serious ( because we often want to construct solutions
, say

of DES
,

by taking limits ) but easily fixed by passing to the completion .
So that leaves

Problem Cl )
. Today 's lecture resolves this problem by explaining whythe p

 = 2

case is ofspecial importance .

Since we have already learned why Lt -

spaces are

important ,
the conceptual stage in the theory of infinite - dimensional function

spaces
is occupied by two main actors : the Banach spaces

( L2 ( X
,

Sx
,

Cl )
,

It - Ha )
,

( Cb ( X
,

a )
,

It - Hoo )
( depends on an integral pair ) ( sup

- norm
,

does not use integrals)

The special properties of E-
space represent a remarkable extension of our

intuitions about space ( which are ultimately rooted
,

as sketched in Lectures I

and 2
,

in our perceptions of the finite - dimensional
space

in which we are

embedded as biological agents ) to  infinite dimensional spaces .

To make

this precise ,
we begin with some characterisations of finite - dimensionality

for vector
spaces over a field k :

Lemma Ll 9 - l For a vector
space

V over
k

,
the following are equivalent :

( i ) V is finite - dimensional
.

Iii ) The canonical linear
map

V → V
* *

sending x to the function

evr
: V

*
→ IF

defined

by ever ( f ) = f ( x ) is an isomorphism .

Root See Tutorial 7 for dual
spaces ,

and Tutorial 10 for the theory of bases in

infinite - dimensional spaces .
For Ci ) ⇒ Ci it recall that if 13

= C v
is .  . Mn )

is a basis for V then there is a dual basis 13
*

= ( x Y
,

.
.

.

,
VT ) for V

*

and in particular dim ( V* ) = dim ( V )
.
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Let us compute the dual of the dual basis
,

i.  e. the basis P**=(Y**,
.

.

,
Vn** )

for V
* *

.

Note that if f : V → k is linear then as a vector in V
*

f-  = II
,

f C Vi ) v it

as
may

be checked by evaluating both sides on v EV and using linearity .

But then by definition

vi** ( f ) = f ( vi ) ⇒ Vitti = eve .

.

Hence the
map

exes
: Y → V

*  *

which is clearly well - defined and linear
,

sends 13 to 13
*  *

and is an isomorphism .

Iii ) ⇒ Ci ) without
any hypothesis on V we can define eve - ,

: V → V
* *

and this
map

is clearly linear
.

Let D= { Vi } ie  I be a basis for V ( recall

that a basis
,

that is
,

a linearly independent spanning set
, always exists

,

and no matter which one we choose the index set I always has the same

cardinality - this cardinal is
, by deft

,
the dimension of V )

.

The linear

maps VE : V → k sending x EV to the coefficient of Vi in the unique

expression of v as a linear combination of vectors in 13 is still

well - defined and linear C the Exit } ie I just do not span
Vt it dim I x ) > No )

.

This allows us to show elk - s
: V → V

* *

is injective ,
since

eh
,

= O ←→ f tu ) = O for all f E V
*

⇒ VE ( x ) = O for all if I

⇒ y
= O

.



④

We now show that if I is infinite
,

EYY → I
*

cannot be surjective .

The set IVE} iet is linearly independent in Vt ( why ? ) and we claim

that the linear map
X : V → k

,
Xlvi ) =L for  if I is such that

{ X ) u I Vit ) ice is linearly independent .

It suffices to show that for

a finite subset Iii ,
.  - - sik } E I that

µ
X t Sta

,

Davia = O
implies µ

= O
.

But we simply take j E It I is . .  - cik } ( which exists since I is infinite )

and evaluate on Vj
to see that µ=O ,

as required .

Now
, we may

extend { X ) u{ Vi
* Tie I to a basis E of Vt

,
and define

F : y
*

→ k

on this basis by F ( X ) =L and Flu ) = O for
every

other vector UEL
.

We claim F is not in the image of elk - I
: V → V

* *

.
If  it were

,
we

would have for some { is .  - - sik } EI
 and Ja E k

, an expression

F  = £a=
,

Tae Kcia

But then 0
= F ( via) = 7  a for Is a Ek would imply F = O

,
but

since FIX ) =L to this is not the case
,

so no such expression can exist
.

This completes the proof of lil ⇒ Ci )
.

D

Remark We will not prove
it

,
but a result of Erdos -

Kaplansky says that lil
,

Iii )

above are further equivalent to the existence of an isomorphism of

vector
spaces

VE V
*

( see Jacobson
,

"

Lectures in Abstract Algebra !

Vol
.

2 Ch .
9 5 S )

.
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The upshot is that for infinite - dimensional vector spaces ,
such as Cts ( X

,
IF )

for X infinite
,

the usual linear dual is not well-behaved
.

Note that a finite - dimensional

vector
space

V over IR
may

be equipped with a topology making it a topological

vector
space

( Ex .

L ? - I 5) by choosing a basis and using the resulting bijection VE IF ?

Moreover this topology is Hausdorff
,

and not only is this topology independent of

the choice of basis
,

but this is the only way of producing finite - dimensional

Hausdorff topological vector spaces
i

*

Exercise 49 - I Prove that if V is a finite - dimensional vector
space

over IF there

is a unique topology on
V making it a Hausdorff topological

vector
space

C of .
the Remark on p

. ④ of L 17 )
.

To make the next point we need to introduce some notation :

Def
"

Given a topological vector
space

V over IF
,

we define ( assets )

Cts ( V
,

IF ) = { fill → IF I f  is continuous }

y
*

Lin ( V
,

F ) = Lf :X → IF I f  is linear }

yr :  = Cts Lin ( v
,

IF ) = { f : V → IF I f  is continuous and linear )
.

Lemma LI 9-2 If V is a finite - dimensional Hausdorff topological vector space

Cts Lin ( v
, F) = Lin ( V

,
F )

.

Root when V E IF
"

as topological vector
spaces this is clear

,
and by Ex

.

49 - I

this is always the
. D T

This  will not  actually be  used
,

so there  is  no dependence
of later material on Ex

. 49 - I
.
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However if V is a Hausdorff topological vector
space over IF which is not

finite - dimensional ( e.g .

Cts ( X
, F) as soon as X is infinite

,
see Ex

. 47-7 )

then there is a difference between these two notions of a dual

Cts Lin ( V
,

IF ) # Lin ( Y IF )

continuous linear  dual linear dual

It stands to reason that the continuous linear dual
,

which uses the topology on V

and not just the linear structure
, might be a better notion ( note that the topology

is
, by

Ex
.

19 - I
,

not additional information beyond the linear structure in the

finite - dimensional case ) and that the pathology for the plain linear dual indicated

by Lemma 49 - I might be avoided by switching to the
"

connect
"

notion of

dual in the infinite - dimensional case
.

Given that the first natural class of

infinite - dimensional
spaces we encounter are function spaces ,

we must ask :

Question What is the continuous linear dual of V = CB I X
,

F) ?

The best that we could hope for is to completely recover Lemma 49 - I Iii )
,

Ciii )
,

that is
,

isomorphisms of topological vector spaces ( X compact Hausdorff )

canonical
,

via  ex  at

Cts ( X
,

F ) Cts ( X
,

IF )
" "

WARNING :

These  are  vague hopes
( * ) non  canonical

Cts I X
,

IF ) Cts f ×
,

# 51
.

} not I yet ) theorems

of course we first have to decide which topology we are talking about on

the function space
Cts C X

,
IF ) C the linear structure is always the usual one )

.

We know for
any integral pair

( X
,

Sx ) and le PEN a norm It -

Ilp on

This
space which makes it a topological vector space ( Ex 48 - lo )

.
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We would also have to decide what Cts I X
, IF )

"

is as a topological vector
space

( so far it is just a set )
. Once we have fixed all these details the question of  whether

or not isomorphisms as in ④ exist becomes a precise question ,
which we can

attempt to answer
.

In order to fix these details we restrict to normed
spaces ,

because there the continuous linear dual has additional good properties :

DEI Let ( V
,

Htlv )
,

I W
,

It - It w ) be normed
spaces

over IF
,

and T : V → W

a linear
map .

We
say

T is bounded it there exists ME IR with 1430 and

It Tlv ) H w
E M Hulk , for all v EV

. ( t )

Exercise 49 - 2 Prove that T is bounded if and only if I It TH ) Hw I Hulk=L )

is a bounded subset of IR
.

Def
"  

If T is bounded then we define

HT It -

-

sup I "Y¥tY I veto )

=

sup { It TH ) Hw I kill # I }

=

sup { It Th ) Hw I Wilkie I } .

This is called the operator norm
.

Hence HT 1170 and

It Tlv ) Hw E Hill . Hulk , for all ve V

and moreover It TH is the infirm um of all real numbers M for which

the inequality I t ) holds
.
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Clearly boundedness implies uniform continuity ,
but the converse is also time

( the following result subsumes Ex .

L 18 - 13 )
.

Lemma 49-3 Let ( Y It - Itv )
,

( W
,

It - Hw ) be normed spaces over IF and

TV → W a linear
map . Then the following are equivalent

( i ) T is bounded
.

( ii ) T is uniformly continuous
.

( iii ) T is continuous .

Civ) T is continuous at O
.

Proof Here continuity means with respect to the associated metrics
.

For Cit ⇒ Cii )

note that

dw ( Tv
,

Tv
' ) = It Tv - Tv 'll w

= It Tlv - v
' ) Hw

⇐ M It v - v 'll v
= Moh ,

( v
,

v
' )

,

so T is uniformly continuous .

Cii ) ⇒ liii ) and Ciii ) ⇒ Civ ) are immediate

( continuity at Vo EV means 'VE > OF 870 KIEV ( du ( v
,

Vo ) c f ⇒

dw ( Tv
,

Tro ) L E ) )
.

For Civ ) ⇒ Ii )
suppose for E = I that

Hulk ,
a 8 implies It Tv It

w
s I

.

For
any

veto
,

HEI4h ,

= has

so
H T ( IG

,

V ) Hw < I
,

or what is the same

It The ) Hw s EH 4h ,

so Tis bounded . D
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The lemma means that if a topological vector
space

V arises from a normed

space
( V

,

H - the ) then the continuous linear
maps

V → IF are precisely

the bounded linear
maps ( here IF is given the H norm

,
which is the absolute

value in the case of IR and the modulus for 1C )
.

Exercise 49-3 Let ( V
,

It - Hv ) be a normed
space

over IF
.

Rove that the pair

( Cts Lin ( V
,

IF )
,

It - It ) consisting of continuous linear

maps with the pointwise IF - vector
space

structure
,

and

the operator norm It - H
,

is a Banach space .

Def
"

Given a normed
space

( V
,

It - Hv ) we call the Banach
space

( Cts Lin C V
,

IF )
,

It - H ) the continuous linear dual ( or just continuous dual )

of V
,

and denote it by ( Vv
,

It - Hur )
.

Exercise 49-4 Let ( V
,

Htlv )
,

( W
,

It - Hw ) be normed
spaces

and Till → w

a bounded linear operator .
Prove that

T
"

: W
"

→ IT

T
"

( g ) =

go T

is abounded linear operator with HT
"

It⇐It TH
.

Prove

that f)
"

is a functor ,
that is

,
( id

v )
"

=  id yr and if

S : W → U is bounded and linear then ( so T )
"

= T
"

o SY

Exercise 49-5 Prove Sy : V → V
" "

,

Sv ( w ) = evw is continuous and linear
,

where evw ( f ) = f C w ) for f : V → IF continuous and linear
.

( this
map

is actually always norm
-

preserving and hence injective,

but we will not use this ) .
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Def An isomorphism of normed spaces
( Y

,
It - H x )

, ( W
,

H - It w ) is a

vector space isomorphism T
'

- V → W such that HT I x ) Hw = 11×11 v

for all r E V
.

In this case we write V = W and say
Y

,
W are isomorphic

as normed spaces ,
.

Exercise 49 - b Ci ) Let l : ( Y It - Hv ) → l I
,

It - Hii ) be the completion of a normed

space ,
and

prove l
"

: CITY → IT is an isomorphism .

Iii ) Let ( V
,

H - Itv )
,

I W
,

H - It w ) be normed
spaces

and T : V -7 w

an isomorphism of normed spaces .

Then T
"

: W
"

→ V
"

is also

an isomorphism of normed
spaces .

Def
"

For a real number Kp soo the equation ( note Kp ⇒ on pts 1)

o  I

O

#f- t gt
= I F. Tg

has a unique solution q
= Mp - I in Cl

,
• )

,
called the dual exponent .

Note that
p is then the dual exponent of q .

We claim there is a deep relation ( a duality ) between LP and I
spaces

for dual exponents p , q .

This is partly a consequence of Holder 's inequality

( Theorem 48 - I ) which
says

It f g 111 E It f Hp 119 Hq for f
, g

Ects ( X
,

IF )
,

( X
,

fx ) any integral pair .
To  see how this connects LP to 29

,
recall that Cts I X

,
IR )

( the complex case involves conjugation ,
so we leave it to later ) is an algebra

,

so there is a function

Cts ( X
,

IR ) x Cts I x
,

R ) Cts I x
,

IR ) IR

( f
, g ) I - fg 1- f×fg

.



④

which is bilinear
,

and
,

if we give CB ( X
,

IR ) the compact -

open topology ,

also continuous
,

so we obtain ( by Lecture 12 ) a continuous
map

Cls ( x
,

IR ) → Cts ( Cts ( x
,

IR )
,

IR )
,

g I → { f t f ×
f g }

where all topologies involved are compact -

open .

What happens if we use the topologies

associated to the It -

Hp norms instead ? To
prove the

map

( Cb Cx ,
IR )

,

H - Hq ) → ( Cts I x
,

IR )
,

It -

Hp )
"

c ii. D

g
I → { f he f

,
f- g }

is well-defined we need to show that Lg
= Sx Hg is continuous C it is clearly

linear ) as a map of  normed
spaces

Lg : ( Cts ( X
,

IR )
,

It -

Hp ) → ( IR
,

I - I )
.

By Lemma 49 - 3 it suffices to show Lg is bounded
,

but by Holder

I ↳ (f) I = I Sxfg I ⇐ 5×1 f g I = It fg 111 E Hf Hp Hg Hg
= M It f Hp

where M = It 911g .

This shows that not only is Lg bounded
,

but It Lg It E 119 Hq .
The

map g to Lg is linear and bounded I by what we have just said ) hence continuous

,
so we have shown the existence of  a map Ill . I ) relating the normed spaces for

dual exponents p , g .

Now by abstract nonsense this extends to a continuous

P
linear map from L9 ( X

,
IR ) to the dual of L ( X

,
IR ) .



④

Lemma 49-4 For an  integral pair ( X
,
Sx ) and dual exponents Kp , q

coo

there is a unique continuous linear map
Io

q , p making

Iq
, p

x

(

LIC
X

,
R )

,

It -

Hq
) -

- - - -

→ (

LP
( X

,
R )

,
It -

Hp )

leg J = ! lip
'

V

( Ch l X
,

R )
,

It -

Hq
) > ( Cts I x

,
R )

,
It -

Hp )
Lt )

where the bottom row is
g

t Lg
,

the left hand vertical map

is the inclusion
,

and the right hand vertical
map

is the dual of

the inclusion ( see Ex
.

49-5 )
.

Proof The composite lip )
- '

o Lt ) is continuous and linear
, so this is immediate

from Theorem L 18-9 . D

We will
prove

the
p

 = 2 special case of the following theorem ( marked Z for

WARNING because the theorem is not intended as a valid node in our knowledge graph )

using the structure theory of Hilbert
spaces

:

2

Theorem ( Duality for LP -

spaces ) The
map

Io is an isomorphism of Banach spaces

I

Ioa
, p

: L
"

( X
,

IR ) > LP l X
,

IR )
"

.

Duality for LP -

spaces represents an extension of duality for finite - dimensional

vector
spaces

to the infinite - dimensional setting ,
with the linear dual replaced

by the continuous linear dual
.

Let us now elaborate some immediate consequences ,

which will suffice to flesh out the general story of LP -

spaces .

As has been stated

above
,

we will only use the p
= 2 case

,
for which we will provide a proof .
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For
any pair of dual exponents Kp , 9<00 we have an isomorphism of normed

spaces

x
- I

Tea
, p ( TE

p , q
} xx

LUX
,
IR )

=

> LP ( X
,

IR )
"

- L9 ( X
,

IR )
C 13 .

I )

±

using
Ex . 49 - 6

,
so for kg so the U -

space
is isomorphic to its double dual

.

Moreover this isomorphism is precisely the canonical
map

described in Ex .
49 - 5

,

which means that the LP -

spaces are what is called reflexive
,

as explained below .

Exercise 49-7 Prove that ( 13.1 ) coincides with the canonical
map of Ex . 49-5

with V = La ( X
,

IR )
,

i.e .
show that for WELol ( X

,
IR )

It
g , p

( w ) = eval
w

o Iop , q

as elements of LP ( X
,

IR )
"

.

DEI A Banach
space

( V
,

It - Hx ) is called reflexive of the canonical
map

V → IT
 '  "

is an isomorphism of normed spaces .

As recalled in Lemma Ll 9 - I
,

a vector space over IF is reflexive ( with respect to

the ordinary linear dual ) if and only if  it is finite - dimensional
,

so reflexivity

of LP -

spaces should be understood as a kind of finiteness ( although of  a

much more subtle kind )
.

For the linear dual another condition characterising

finite - dimensionality of V was the existence of  an isomorphism V I V
*

.

When does this happen for LP -

spaces
with respect to the continuous linear dual ?

The only fixed point of pts g
= Mp - I in Cl

,
- ) is

p2
-

p =p
⇒ p

- 1=1 ⇐
p

 = 2
.

=p!,#
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so the only case of self -

duality emerging directly from the theorem is

Ion : L2 ( X
,

IR )
=

> L2 ( X
,

IR )
"

f 1-7 5×4 . f

Moreover one should not expect any isomorphism LP ( X
,

IR ) ELP ( X
,

IR )
"

as soon

as pt 2 and X is infinite ( Ch .
XII of Banach 's book

"

Theory of linear operators!
specifically the Lemma on p

.
122 shows that for X = Ca , b) if LP ( X

,
IR ) = LP ( X

,
IR ) ]

and hence LP I X
,

IR ) = Lol ( X
,

IR ) where
g

is the dual exponent,

then
p

=

9=2 .

Probably the argument general is es
,

but
 

I have not tried )
.

Exercise 49-8 ( i ) Prove that for all f
, g E LY X

,
IR )

€2,2 ( f ) ( 9 ) = Is
,

z
( g ) f f )

Iii ) Prove that for all fete ( x
,

IR )
,

Ioa
,

a
(f) (f) = It f HI

.

In
summary ,

for vector
spaces

V

V finite - dimensional ⇒ y reflexive ⇒ V self - dual

( i. e. V Es V** ) I re . F ve Vt )
w 1-3 ex w

while for normed spaces and continuous linear duals the conditions of reflexivity

and self - duality are not equivalent :  a1 the LP -

spaces
are reflexive

,
but

only E -

spaces
have the additional property of being self - dual .

This

property of being self - dual is so remarkable that these self - dual Banach spaces

are given a special name : Hilbert
spaces

.



Solutions to selected exercises

49 - 5 Let I V
,

It - Itv ) be a normed space .

For WE V we first need to show

exw : V
"

→ IF

evw ( f ) = f ( w )

is continuous and linear
.

It is clearly linear
.

Now
any f f V

"

is bounded
,

and so

If C w ) Is Hf It . Hw Hi ,

Hence

I evwlf ) I = I Hw ) I E It f It . Hwllv

which shows that evw is bounded and moreover Hevw HE Hwllv
.

So by Lemma 49 - 3
,

evw is continuous
,

thus evw E V
" "

. Now
,

this shows the function V → V
" "

,

w t Eko is well-defined

and it is clearly linear
.

Once again ,
to show it is continuous it suffices

to show it is bounded
,

but this follows from Hello HE Hwllv .

L 19-7 By Lemma 47-2 it suffices to
prove

this for WE Cts ( X
,

IR )

and also to check Ig
, p

I w )
,

ex at w
o Iop

, g agree on the subset

of f Ects I X
, IR ) ELP ( X

,
IR )

.

But then

Io
q , p

( w ) ( f ) = f× w f

evalw ( Iop , g ( f ) ) = evalw ( Sx f . H ) = Jxfw

which completes the proof .



49-6 The linear map l
: V → II is bounded

,
so we have a bounded linear

map

L
"

.

. I
"

→ V
"

L
"

( f ) = fo L
.

Note that for F : I → IR continuous and linear
,

the diagram

x F

Y > IR

a
7

L

L
"

( F ) = Fo L

V

commutes
.

To show L
"

is surjective ,
let f : V → IR be continuous and

linear
,

hence by Theorem L 18 - 9 there exists a unique continuous linear

F : J → IR such that L
"

( F ) = f
,

so i
'

is surjective . Inject city follows

from the uniqueness part of the aforementioned Theorem
.

So b
"

is an

isomorphism of vector spaces .

It remains to show I ) l
"

C F ) It = It Fll

for all F
,

or
, setting f  = Fo C

,
to show H f It

= H F H in the

circumstance of the above diagram .

HfHEH hole that for v EV

I F Luv ) ) I = I f Ix ) I

Tin Fi ,

Hence

It HI =

sup {4¥71 ! I v EV Hot } e sup { lIY I w e I I lot ) = It Fll
.



It F Hell f It Given we II
, say w = Link Wn with win EV

.

Then

I Flw ) I = I limn
 →  •

ffwn ) I

= limn
 → oo

I flwn ) I

⇐ limn
 →  

all f 1111 Wn Ily

= It f- It . limn
- soo Hwnllv

- H f It . Aw Hii

This shows It F H E It f It
.

D


