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Last lecture we defined an integral pair ( X, Tx ) to be a compact Hausdorff space
togetherwith a continuous linearmap Ix : Cts ( X , IR)→ R satisfying some

positivity properties, and we defined a metric dis on Cts (X, IR) . This begins to

fulfill an analogy sketched in Lecture 13 . By Ex . 47- 7 the vector space Cts (x, IR)

is finite-dimensional iff . X is finite, in which case it is homeomorphic to IR
"

where

I X1 = n .

In the finite-dimensional case
,
the following metrics on Cts ( X, IR )

d
, ( f, g) = Ex ex / floc) - g (x) I
da ( f, g) = { E. ← × I f- ( x ) - g(x) 12 }

'k

d
p ( fig)

= f s . I fix, - g ( x ) IP )
YP

( t - t )

'

:

da ( f, g) = sup { I ffx ) - g (x) I txt X }

are all Lipschitztent (see Tutorial 2) and hence determine thesame topology ,
which is the usual topology on IR

"

= Cts (X, IR) . Note that ( Ll, . - in } , E ) is an

integral pair, where E
: IR

"

→ IR sends (x y - -Mn ) t Siti kn . The same formulas

make sense for any integral pair ( X , Tx ) where they read

d
, ( f, g) = 1×1 f - 9 I tthese metrics depend on fx

dz ( f, g) = { 1×1 f - g 12 }
42 butwe do not indicate

this in thenotation ,
÷ ( 1.2)

dp ( f, g) = I 1×1 f - g l P ) YP Tpa any real
numbers,

'

:

da ( f, g) = sup { I ffx ) - g (x) I txt X }

Question : if X is infinite are these metrics Lipschitz equivalent ?



②

Surprisingly the answer is Nc .

The conceptual reason is that notevery integrable function

is continuous ( this distinction is of course invisible for X finite, where every function X → IR

is continuous and therefore also integrable ) .

This observation explainswhy the infinite -dimensional

case ( here we mean Cts (X, R) infinite-dimensional ) is much richer.

At least one of these metrics we understand : ( Cts IX, IR ) , do ) is complete and its

associated topology is the compact - open topology . For kpc N the metric space
( Cts (X, IR) , dp ) isnetnecessarily complete if X is infinite

,
and so it is natural

to introduce the LP - space (details below )

LP ( X , IR) := metric space completion of ( Cts IX, IR ) , dp) .

These spaces are the basic objects of functional analysis, and they carry Cin

addition toa metric) the richer structure of a Banach space .
For p

= 2 the

space L2 ( X , IR ) has an even richer structure ? it is a Hilbert space .
These

are the canonical examples of Hilbert spaces and ( the complex analogues of )

these spaces give the foundational mathematical theory of quantum mechanics .

Exercise 48- 0 Prove that every integral pair ( I I, . . .

,
n )
,
S ) is of the form

If = Ein
,
Xi fCi )

for some positive constants I is . .
.

, In E IR . The corresponding ok

metric we have encountered in Example L4 - O . Prove that

the metrics I d p ) p> i ,
do of ( I . 2) are all Lipschitz equivalent

and determine the standard topology on IR
"

(so there is nothing

new obtained in the finite case by considering other integrals ) .
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The plan now is to check that dp is a metric
,
and introduce the notion of completion

of ametric space in order to define the
LP -

spaces . For this it is very convenientto

introduce the notion of a normed space .

For the following material the references are

• Hewitt
, Stromberg

" Real and abstract analysis
"

Ch . 4 (also p. 83)
. Rudin

" Functional analysis
" Ch

.

I
,

. Cheney
"Analysis for applied mathematics

"
Ch

.

I
.

By a field of scalars IF we will eithermean IF
= IR or IF = Cl

.

In both cases

we have the function I - I : IF→ IR which is the absolute value if IF = IR and

is the modulus lat ibl =Ttb if IF = Cl . We make IR
,
Cl both into topological

rings with the usual operations , where as a topological space E
= IR

'

under the

bijection at ib t (ai b ) . Then IF carries the structure of a topological ring and

H '

- IF→ IR is continuous
.

In whatfollows , IF is a field ofscalars .

DEI A norms on a vector space V over IF is a function It- H : V→ IR such that

IN1 ) Hull 70 for all v EV, and IN 11=0 if and only if u = O .

(Nz) It Xv It = HI 1h11 for all 7 E IF and uEV.

IN3) It v t WH E Hull t Hw 11 for all v,well. (Triangle inequality )

The pair ( V, H
- It ) is called a normed space over IF.

Exercise 48- I If (V, H - It) is a normed space then ( V , d ) is a metric space, where

d I x , w ) : = It x - w H
.
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We call the metric of the previous exercise the induced (or associated ) metric .

Given a normed space ( V, H - It ) the associated topology onV is the metric topology .

Be careful : it may be that V already had a topology , but there is no guarantee
that a generic topology T on a vector space V is compatible with a generic norm It - I I

in the sense that J equals the topology associated to It
- It

.

Example 48 - I l i ) ( IR , I - I ) is a normed space over IR,
Cii ) (Q, I - I ) is a normed space over Cl .

Exercise 48-2 Let X be compact Hausdorff . Phone that It - Hao defined by

H f Has = sup { I fix) I I see X}

defines a normed space ( Cts (X, IR), It
-Ho ) with associated

metric do .
As a special case we obtain normed spaces

( IR', It - Hoo ) , It (ay . . .

, an ) Ha = sup I tail Ia .

We will soon need the complex analogue of the function space Cts (X, IR) , the

properties ofwhich are developed in the next Exercise .

Exercise 48- 3 For any space X, prove that Cts (
X
,
Cl ) is a commutative E-algebra

with the pointwise operations .
That is :

I i ) Prove Cts (X, a ) is a E- vector spacewith the pointwise operations .

( ii) Rove Cts ( X, E ) is a E- algebra (see Ex.

46 -2) with the

pointwise operations .
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Exercise 48-4 If X is locally compact Hausdorff prove that Cts ( X, Q) is a topological
E- algebra with the compact-open topology (this is similar to Ex . 47-4)

.

DEI Let C X , Sx ) be an integral pair. The complex ified integral fi is the composite
Ex . Lk - 14 f× x fx I

Cts ( X, d) = Cts (X, IR) x Cts ( X, R) > IRXR > Cl

f- 1-7 (fr , f-I ) 1- (Sxfr , Sxfe ) I→ Sxfiztifxf
.

which is continuous and linear . Writing f (x ) = false) t ifI Cx) for real-valued

fr
,
fI we have the explicit formula

1×0f = f×fr t I Ix f I .

Exercise 48- S Let X be compact Hausdorff . Phone that H - Hao defined by

H f Ho = sup { I fix) I Ixex}

defines a normed space ( Cts (X,

Cli
,
It -Ho ) over 1C with associated

metric do and associated topology the compact- open topology .

As a

special case we obtain normed spaces

( Eh
,
It - Hoo)

,
Ille, . .

;
Za)Ho = Supt I zit },I,

.

Theorem 48- I With either IF = IR or Cl, ( X ,
Tx ) an integral pair, and Kpc A

a real number
,
the pair ( Cts I X, IF ) ,

It - Hp ) is a normed space

over IF where

Hf Hp I f× If It )
"
?



⑥

Moreover if f
, g E Cts (X , IF ) and I c p, gear with

"
p t Yg = I then

It f g Hz E It f Hp Hg Hq . (Holder 's inequality)

Root The main part of the argument is to prove for Iep - N and a , b> O

info f Ft
"
- '
a t ( I - f) t

''Pb ] = a
"P b

' - "P
cap

in f [ t ' -PAP t ( I - t )
' -Pb P ] = ( at b) P C 6.2)

.

octet

for which we follow L .

Maligranda 's paper
"
A simple poof of the Holder

and Minkowski inequality
"
1995 . Wemay assume p > I .

Let Ht) be

f- Ct) = f t
"P
- '

a t ( I - f) t '" b t > o

Then f
'

It ) satisfies

f-
'C t ) = top - 1) t

'
't -Za t ( I - f) Ft

'
"
- '
b

= fit - 1) t
' '
P
-

Ya - t b )

So f
'
is negative forts to

= 9lb
,
sew at to = 9lb and positive for t > to .

Hence f has its minimum at to = 9lb and this is equal to

f Cto ) = pt (F)
"
P
- '

at ( I - f) (E)
"
Pb

= a
"P bi

- Yp



⑦

which proves
16.1 )

.

For LG - 2) we define g on ( 0 , I ) by

g C t )
= t

' -Pap t C I - t )
' -Pb ?

We have

gilt ) = l I - p ) t
- Pa P - C t- p)( I - t )

-

PBP

which vanishes only when t= ti
= Tat b

.
Since

g
" If)= ( I - p ) C - p) ti P

- I

a
PtCi-p) ( -p) ( I - t , JP - ' BP= - [ C I - p) pt ,

'

P
- '

al
'

t ( I - p) p C I - ti )
- P- ' BP ] > O

It follows that g has its local minimum at t ,
= alatb

,
which isequal to

g Hi ) = g ( 4atb) = (Yat b )
' -Pal't ( I - aft )

' -

PBP

= ( Yat b )
' -

Pa P t ( blat b )
' - P b ''

= ( atb) P

The local minimum of g is equal to its global minimum because g is

continuous and limit → ot 9 It) = limit → I
- 9 It) = too . This proves 16.2) .

H - Hp is a norm I N1 ) Clearly Hf Hp70, and if It f- 11,5-0 then 5×1HE 0

and hence by definition of an integral pair f- = O . We have by linearity of Ix

117 f- Hp=Lf× 17ft P )
"P
= { 1×171 Pff IP }

"P

= I HIP 1×1 fl P )
"P
= 17111 f Hp



⑧

It remains to prove ( N3) , that is , H ft g Hp EH fHpt 119 Hp .

By ( 6. 2) for octal

(at b) PE t
' - Pap t a - t)

' -Pbp

Hence for Oath I

Hftgllp = 1×1 ft g IP

Lemma47- I lil S f× (If It 191 )
°

(6.2) s 1×1 t'
-

P Ifl P t C I- t)
' -P Ig IP ]

= t
' -

Pf, Ifl Pt C I - t )
' -

Pf, Ig IP

= t
' - P It flip th- t)

' - P 11911,5

Taking the infirmum over Otts I and using I 6.2) yields

It ft g Itp E ( It flip t Hg Hp )
"

which proves lN3) . Finally , to prove the Holder inequality note that by 16.1 )

a
'll' b

' - YP
⇐ ft

"P
- '

at ( I - f) t
"P b

forall t > O and hence

H Ifl
"P Ig I

'- "P 11 , =L, If I
"

PI g It
- YP
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⇐ 1×1
'

p t
'"- '

If I t ( I - F) t
' ' P 191 ]

= ft
'"- '

1×1 ft t ( I - f) t
"

Pf, Ig I

= ft
'A - '

It fell ,
t I I - f) t

'" 11911 ,

Taking the infirm um over all t > O yields by C 6.1 )

It Ifl
"P lost

' - "P
It

,
E It f Ili"'ll g It

'

,

- "
P

which is Holder 's inequality ( replace f by If I
"

, g by Ig 19 ) . D

Corollary 48-2 For any integral pair ( X, Sx ) the pair ( Cts I
X
,
IF)

, dp )

is a metric space for Iep
a N where

dp ( f , g)
= { 1×1 f -g) P }

"P
.

Root Immediate from Exercise 48- I and Theorem 48 - I . D

Exercise 48-6 If [c, d] E [a, b) the restriction function

( Cts ( Ca is] , IF I , dp)→ ( Cts I kid], IF) , dp )

is continuous for all Kps A .
(Thep =D case is Lemma 42

- I)
.

As has already been mentioned, for IE pca the spaces ( Cts (X, IF ), dp ) need not

be complete, as the following counter- example shows :
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Example 48-2 Consider X = [Oil] and the sequence of functions fn :X → IR

given for n> 4 by

a

\ - - . - - . . ' . ' ' ' ' - ' ' - - - - -

j
i
i

!i ÷
!

i tnks-fmca-i.mn,

'

II't: a
! 1 Yztyncx El

i
I >

y!- ya the 'Ithe I

The sequence ( fu )nF4 convenes pointwise to

ten -fi.
'

::
O XL

'12

but this convergence is certainly not- uniform (as the uniform limitof continuous

functions is continuous) . So ( fu )n%4 does not converge in ( Cts ( X, 1121, doo )

Crt it converged , it would have to beto f) and hence is not Cauchy Cas this space

is complete ) .
However we claim the sequence is Cauchy in CCblx , IR ) , dp )

but still does not converge , where throughout taped .

fm
^

I ffn
I - - . - . .

j
.

÷
. .

,

.

;
. .

.

.

. - . . - .

;in. i
i i :

xfm-Intl ,: i i i : :

! i i : .
.

' i ! ,
I

i

i .

i . i

. n i i i i
: i .

.

I I I I I >

"÷÷:c::': '
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Observe that for m7h34 ,
Ifm - fn IE I f - fnl so

dpffm ,
fu ) = It fun - full p

= { 1×1 fm - fn IP )
""

"

Note f is Riemann integrable since E { 1×1 f - fu f)
"P

it is piecewise continuous , see e. g .

T. Tao "Analysis
"

Pwp 11
.
5.I,

= I 2J!!
""

I 1- % (a - bet yn ) )

Pdx
}
"P

112 t 'In
= I 'Pff . I42+42142- x ) }Pdx} "P12

= 2"P{ I So
"

up du )
"P

= 24 . n'
"
P f f

"jupduj"
'

which goes to zero as n→
N

,
proving that (In Into is Cauchy in ( Cts I X, IR

)
, dp ) .

Nextwe show that the sequence An Info cannot converge wir. t . dp which will show

this space is not complete .

Suppose fn converges in (Cts (X, IR) , dp) to g (so g is continuous)
.

Then for [ad] E ( Yz, D

we have by Ex.
I-18 - 6 that fnlca

, by
→ 9 Ica

,by as n→ N and this shows that

g(a) = I for x> Yz . Similarly g (a) = O for x c Ya .

So g cannot be continuous at x=4z ,

and this contradiction shows fu cannot converge .

Exercise

48-7
Give a counterexample to show that convergence fn→f in

( Cts ( laid, IRI , dp ) for kpc doesnot-

imply pointwise convergence .

( Hint : ) ( However fu→ f does imply pointwise convergence
"
almost everywhere

"

in a precise sense we will define later) .



④

Exercise L 18 - 8 Let lY It H ) be a normed space .
Prove

11011=0, I Hall - Ily It I E H x - y It Hay EV
.

The second identity is sometimes called the reverse triangle inequality.

Lemma Ll 8-3 Let ( V, It - It ) be a normed space, and d the associated metric . Then

It - H : V→ IR is uniformly continuouswith respect to this metric .

Pwd We have I 1h11 - It WH I E H " - WH =D CYw) so this is clear . D

Def A Banach space is a normed vector space (
V
,
It - It ) with the property

that the associated metric space ( V , d ) is complete .

Example 48-3 l i ) For any compactHausdorff space X the normedspaces

( Cts (X, IR ) , It-Ha ) , ( Cts I X, a) , It- Hoo )

of Ex . 48-2
,
Ex

.
48-5 are Banach spaces, by Corollary 43

-6
,

where IF is respectively IR and Cl . We denote these Banach spaces by

Lo ( X, IF ) : = ( Cts ( X, F ) , H -Ho ) .

Iii ) In particular ( IR
"

,
H - Hoo)

,
( tch , It -Hoo ) are Banach spaces .

However it is not necessarily the case ( by Example 48-2 ) that ( Cts I X, IF ) , It
- Hp )

is a Banach space for le pca . But there is a canonicalway to
"convert" a normed

space into a Banach space , called the completion , which we will now develop .
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We have seen in Lecture IS (see Remark Ll5-2) the fundamental role that limits of

sequences of functions play in applied mathematics, and this explains our preference for

Banach spaces over normed spaces .
To define the completion of a normed space to a Banach

space we first study the completion ofa metric space .

For that
, we

will need the following
technical lemmas

.

Lemma 48-4 Let ( X ,
d x )

,
(Y, dx ) bemetric spaces with IY, dy ) complete , and let

A EX be a dense subset . If f : A→ Y is uniformly continuous
then there is a unique continuous map F : X→ Y making

F

X - - - - - -z Y

I
t

A

commute .

Moreover
, this unique F is itself uniformly continuous .

PWI Uniqueness follows from Lemma 47-2 so we need only prove existence .

Given xEX choose a sequence (Xn)F-o in A with xn→ x. This sequence

is Cauchy inA and so (fkn Info is Cauchy in Y ( the image ofa Cauchy

sequence under a uniformly continuous map is Cauchy ) . Set Fx : = nlihnafxn .

If Gin )I=o is anothersequence converging tox, itwill be equivalentas a

Cauchy sequence to I xn )Tio ( that is , HE > OFN (n> N ⇒ dxfxn , xin ) cc )) .

We claim ( fkn Info is equivalent to (fkn
' )to

.

Given E > O there is by uniform

continuity a 8 > O such that dx (y, z ) L 8 implies dy C fy, fz ) C E . Choose

N such that for n7N we have dx (an , an
' ) c 8

,
then dy (fan

, fan
' ) a E ,

proving the claim .

Hence limn → as fkn = limn → a fkn
'

and so Fx is well -defined.

Clearly FIA
= f since if KEA are may choose a constant sequence an

= a .



④

It only remains to show F is uniformly continuous .

Let E 70 be given .
We

have to produce 8 > O such that 4× (a, y) c S implies dy ( limn→ a fan , limn→ as fyn)
L E

where (xn )Tio , (yn )F-o are Cauchy sequences converging to a, y respectively .

But f is uniformly continuous : let 870 be such that dxCala
'

) s S implies

dyCfa,
fail) c

43
.

Then if for x, y EX arbitrary we have dx (x, y ) a

8/3we may find N sit . for n >N both dx (xn , x ) a % and dx ( yn , y ) C

tf
3 so

d x ( an , yn ) E dx ( son, x ) tdx (x, y ) tax ( Y, yn )
< 813 t 813 t 43
= 8

Hence dy ( fan , fyn ) <

43
. Now

, possibly by increasing N , wecan also

arrange for dy ( fan , Fx )
L 43 and dy( fyn

, Fy ) L 43 for n 7N so

finally , for any n>N

dy (Fx, Fy ) E dy IFx , fan ) t dy I fan , fyn ) t dy( fyn , Fy )
< 43 t Eh t 43

= E
.

Overall this shows that if dx l on Y ) L 813 then dy (Fx, Fy ) LE, as required .
D

Example 48-4 The subset A = CO, D is dense in Co, D but sin ( I ) i A→ IR cannot

be extended to a continuous function [on]→ IR,so the Lemma
does not necessarily hold if f- is not uniformly continuous .



④

Exercise 48-9 If AEX , BEY are dense subset , then AXB is dense in XXY.

Exercise 48-10 If (Y It - It ) is a normed vector spaceover IF thenwiththe

topology associated to H - H
,
V is a topological F-vector space .

Lemma 48-5 In the context of Lemma48-4suppose X ,Y are topological
IF - vector spaces Cin theirmetric topologies ) and that A is

a vector subspace of X. Then if f : A → Y is linear
,
so is

the extension F
.

Pwof To say that F is linear is to say that the diagrams

+

Xxx- X IRXXIsX

Fxf I
, I

,

F Ix F I
,

I
,

F

+
Y x Y- y IRXY Is y

commute
.
But Fo t

,
to ( F XF ) : Xxx → Y are continuous maps

which agree on a dense subspace AxA E XxX (since Fla = f is linear )

so they are equal by Lemma

47-2
.

The argument for theotherdiagram
is similar I here we have used Ex . 47-4 ) . D

Here in outline is the strategy : for Is p - 00 , and an integral pair ( X, Tx )

. Turn the normed space ( Cts (X, IF ) , It
- Hp ) take the metric space (Chch#I , dp ) .

• Define LP (X,F) as a metric space to be the completion of ( Cts IHlf ) , dp )

.Liftthe norm It - Hp on Cts I X, F) to LMX, F) so as tomake this a Banach space .
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Lemma Ll 8-6 Let ( X, dx) be a metric space .

The relation An )F-o ~ (9N Into

iff . ( d I fu , g n ) )F-o converges to zero is an equivalence relation
on the set of Cauchy sequences in X .

Root Tintwe prove that - is an equivalence relation on the set of Cauchy sequences
(this was addressed in a slightly different setting in Tutorial 5013) . The relation is

clearly reflexive and symmetric, and if (Xn )nIo
~ ( yn Info , (yn )F-o

~ (Zn )Feo

then d (xn ,yn ) → O
,
d ( Yn, Zn) to and dlxn, zu) Ed Isen , yn ) td Iyn, Zn ) so

d Gen , z n)→ O and hence ( Xn )F-o - I Zn)F-o
.

Son is an equivalence relation . D

Exercise 48 - H If f : (Xd x) → Hidy ) is uniformly continuous then (a) if (xn )F=o

is Cauchy in X then ( fan )5=0 is Cauchy in Y ( b) if (an )Feo, (x'm)nIo

are Cauchy sequences in X then (Xn )F-o
~ CXi Into implies

( fan Into ~ ( fkn
' Into in Y

.

Theorem48-7Let ( X, d) be a metric space, and let
K denote the set of Cauchy

sequences modulo the equivalence relation ~ definedabove .

Then

( I
,

it ) is a metric space with metric

I ( (fn)nI , ( 9n)F=o ) : = nlinhadlfn , gn ) .

This metric space is complete, the canonical map (X , d) → I
I
,
d )

sending x to (a)F-o is injective , distance preserving and has dense image .

We call I I
,

d
''

) the completion ofX .

Proof * ( dlfn , gn ) )F-o is Cauchy ( Cfn, gn ) ) n?o is Cauchy in Xx X and d : Xxx → IR

is
uniformly continuous ( Ex .

43 - 3) so this follows from the fact that the

uniformly continuous image ofa Cauchy sequence is Cauchy C Ex .
48 - Il)

.

Hence the limit I( ( fn )F-o , (on )⇒ E IR exists
.
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• I is well-defined : suppose An)F-o
- (fit!

o ,
(9nhEo ~ CgiInfo

.

Then

( ( fn , 9 n ) )! ~ ( (fi, 95 ) )F-o in X " X
.

Hence by Ex 48- H ,

( d ( fn , 9 n ))Tio ~ ( dlfn', g n' ) )%

which implies limn-soodlfn.sn ) = limn -iad ( fin 's 9h
' )
,
so I is well - defined

.

• I is ametric : ( Mt ) The set [o, a) contains dlfn.sn ) for all n E IN, and hence also the limit

since this set is closed . Hence I( (fatF-o , ( gn )F-o )) 70 .

^

(M2) says d (An)F-o , (gn )F-o ) = O ⇒ ( fn )Fro ~ (Sn Info which

is true by definition of ~ .

(MD says I is symmetric, which is clear.

( M4) Let Cauchy sequences ( fn )F-o , Ign )nIo , (hn )nEo be given .

Then each element of the sequence

( d( fn.hn ) - dCfn, g n ) - d (g n, hn ) )F-o

lies in to, o] by CM 41 for X .

Hence the limit also lies in C-903 .

But IR is a topological group , so arecan exchange theorderof

this limit and thearithmetic operations to find

limn → • dlfn.hn ) - limn→ad ( for , gn ) - limn →oodlgn,ha ) SO
,

which proves4)for I .



④

• X is a dense subspaceof Define C : X→ I by L (x) = Cx )F-o Ci.e . the constantsequence ) .

This is dearlydistancepreserving hence injective .

Let F-An)F-o be a Cauchy sequence in X .

Then ( lCfn ) ) F-o is a sequenceinx and

I( Ufm ) , F ) = II.mad ( fm, fn ) .

( 18 . 1)

Given E > O let N be such that form, n7N we have d (for, Fm ) CE . Then for

M7N we have I( Llfm ), Cfn )F-o ) E E which suffices to show that Llfn )→ Fin I,
so l ( X )EI is dense .

• I is complete Let C Fn )F-o be a Cauchy sequence in I , say Fn = (x'2)E- o .

Since the image of l :X→ I is dense, we may find for each n > O an

element yn EX with I ( Llyn ) , Fn ) a Yn
.
We claim that F = ( yn ) info

is Cauchy and that Fn→ Fwith respect to CT .

To see that F is Cauchy let E > O be given and use that C Fn Into is Cauchy
to find N such that for m ,n 7 N we have I I Fm, Fn ) s 43 . By increasing
N we may also assume N

> HE
.

Since OT has already been shown to be

a metric
,
we may use the triangle in equality to calculate form ,

n7N

( and hence both Yu < 43 and Ym C 43 )

I( Llyn ) , ilym ) ) s I( Llyn ), Fn ) t I( Fn , Hym ))
£ I ( Llyn ) , Fn ) td I Fn , Fm ) to ( Fm , 4Ym ))
< Yn t 43 t

'Im

< 43 t 43 t 43 = E
.

Since X→ I is distance preserving this shows F
= I Yn )Eo is Cauchy

in X
,
so that F is a valid element of I

.

It remains to show Fn→ F.



By our proof that X is dense we know that ( Llyn )) Feo converges , as
a sequence in I , to F.

Given E > O we may therefore find N such that

for all n >N ,
I( Llyn ) , F ) s 42 .

We may also assume N > 4C .

Then for n > N (so 'In a Elz )

I ( Fn , F ) s I( Fn, Llyn ) ) to( Llyn ), F)
< Yn t 42

<
E 12 t 42 = E .

This completes the proof that I is complete . D

Example 48-5 (Q, I - I ) is a metric space whose completion is isometric to CIR
,
I-I)

(of course itmay be that in yourpersonalmathematical universe this is

an equality ,
but for a

"Dedekind cut
"

guy 1gal it is only an isometry ) .

Lemma48-8 If ( Y, dy ) is a complete metric space and f : (X, d)
→ ( Y

,
dy) is

uniformly continuous there is a unique continuousmap F making

F

( I
,
di ) - - - - - -→ IY,

dy )
×

7

f
(

(X, d )

commute
,
and F is uniformly continuous .

Root Immediate from Lemma 48 -4 and Theorem 48-7 . D



④

Exercise

48-12
Given metric spaces

C Xidx )
,
( Y

, dy) prove that

( Xxx )
"

→ X
"

x Y
"

( Gen , yn) )F=o t ( C xn )T=o , Lyn

)F=o
)

is adistance preserving bijection .

Let (Y It -

Ha
, ) be a normed space over IF, CV,

du
) the associatedmetric space and ( Ii,

Iv
)

its completion . We define vector space operations t
: Ix I→ I and a : lfx I→ IT by

( un Into t (Wn Info = (vntwn )F=o , X - ( xn ) Feo = (Hn )F=o
.

It is easily checked theseoperations are well -defined on equivalence classes and make
I into an IF- Vector space , with zero vector (035=0 . Note that given Cauchy sequences
( Vn Into , (kn

' Info in V

(Vn )F=o ~ (Vi) F-o ⇒ d ( xn , Vn
' ) → O ⇐ Hun -vill→ O I 18.1 )

V

SinceHidy) is dense in Iii , 'd u ) andHtlv: V→ IF is uniformly continuous CLemma 48-3 )

there is a unique Iuniformly ) continuous map It -Hy: II → IF making thediagram

a H -Hiy -
- . - - - → IF '

-

note IR
,
Clareboth complete,

7itu It-Hv
V

commute
.
Moreover given (Vn )nfo

EI
, we

have
'
-

using the
" X is dense

"

part of thepwof
of Theorem 48- 7 to see Cvn) Eto = findMy

Hunk?ok
,
= It fine.vn

Hi
= fiery

Hunk
,

+
really l ( xn ) where L : V→ I is canonical .



⑧

Def
' Given normed spaces (V, H

- Hell
,
(Will- Hw) we say f : V→ W isnormpreseving

if k HH Kw = Hull v for all vEV.

Exercised If (Vi Htlv ) , (W, H
-Hw ) are normed spaces and f : V→W is linear

,

then f is continuous Lunt . the associated metrics ) iff . it is uniformly continuous .

theorem Let Hill- H v ) be a normed space over IF. Then (
II
,
H - Hi ) as defined

above is a Banach space . The inclusion (
V
,
H- Itv )t ( I, H

-Hii ) is

norm -preserving and linear, and the image is dense in IT .
If

( W, H -Hw ) is a Banach space and f
'

- V→ W is continuous

and linear
,
there is a unique continuous map F making

a
F '

-

The existenceof this
y - - - - - - - > W

unique lifting F is
7

ft
'

I'
'

eine::i::¥m
V

commute
,
and this F is linear

.

Wecall ( I, H - tht) thecompletion of ( V, Htlv) .

Root so farwe have a vector space I and a function H -Hi→ IF
,
which isuniformly

continuous with respectto I . For ( N1 ) we have, since Co, o ) is closed

Alvin-70 HI = fine Hunk
,

> O
.

If H (xn )T.to HI = 0 then (xn ) F-o - ( o ) 5=0 by ( 18. I)
.

For ( NZ)
,

117 Untie o Hii = Il think-1 Hii = tiny H Hnk,

= HI LingoHunk, = HI H lvntnio HI



④

For CN3) we compute

Hun In?o tlwnhiio HI - HuntFolly' - It Iwino HI

= find Hunt wnllv -hi;z Hunky
- LithoHwnllv

= diff ( Hunt walk - Hunky - Hwnllv ) E O .

So (I
,
It - tht ) is a normed space . Themetric I associated to It -HI is

I( an)Tio , (wntnio ) = It Hn)F-o - (WntEoh I
= high un -wnllv
= Lmfao du ( Vn , Wh )
= di ( Cvn)F-o , (Wn ) F-o ) .

That is, I = dii .
Since by construction (I ,di ) is complete , ( I

,
It -Hii ) is a Banach space .

the inclusion L is obviously linear and norm preserving, and has dense imageby Theorem 48-7 .

If ( W, It - Hw) is Banach and f : V -7 W is continuous and linear. By Ex . L 18-13 it is

uniformly continuous, so we may apply Lemma Ll8-4, 48-5 and Ex .
48- to to obtain

the desired extension F. D

Def ( LP- spaces) Let I X , Sx ) be an integral pair and Fa field of scalars .
For IsPca

a real number we define the Banach space LP ( X, Sx , IF) Corjust
LP (X , IF ) if the chosen integral is dear ) to be the completion of the

normed space ( Cts (X , IF ) , It
-Hp) .

We also write It - Hp for the norm

on LP(X , IF) , called the

p-nor-m.NO#eCblX
,
F ) is canonically

a vector subspace of LP ( X , F) and Cts ( X, IF) = LP (X
,
IF)

.



④

Remark LUX , IF) (no dependence on an integral ) was defined in Example 48-3 .

To summarise : the vectors of LP (X IIF) are Cauchy sequences Cfn ) Feo of continuous

functions X→ IF, where the
"

Cauchy-ness
"
is testedwith respect to the dp -metric ,

andwe identify Cauchy sequences (fu )FEo , Gn )F-o in LPC X, IF )

iff
.

↳ Ifn - gull
'

→ O as n→ as .

The vector space operations are

( fn ) nfo t (g n )Fo = (for t gn )F=o
,

A . An ) Eo = ( Xfn ) Fo .

We identify Cts I X, IF ) with the subset of constant sequences, and view the restof
LP (X , IF ) as limits of sequences in this subset . Ifyou are squeamish aboutmanipulating

equivalence classes of Cauchy sequences , you should probably get over it : it's not

much worse than manipulating real numbers . we will see more elementary ways

of thinking about vectors in LP ( X , IF) later.

Banach spaces metric spaces

,
( L1 ( X , IF ) , It -Ha) → ( L '- ( X, F), de )

cx.sxE.ua#m.n.i-aa....,...,/III::::::::::; they all collapse
\

,

. to FM
.

( LP lX , F ) , It
- Hp ) → ( LMX , IF) , dp )\

( Look, I , It-Ha) → CCts I X, #), do ) 3 this we know
It

( Cts IX, IF ) , It - Ho)



③

Exercise 48 - 14 In the context of Theorem 48-7, prove that the canonical

map X
→ I is an embedding a- e. a homeomorphism onto its image,

where the image has the subspace topology I .

*

Exercise

48-15
.

Let IEP a 9

EN
.
Show that for any integral pair ( X , Jx )

and feats (X , IF ) that ( Hint : Holder inequality with g = I )

It f Hp E It f It
g

- VF - ¥ '
-

for9=0 read the RHS

as HfHall
"
I

where V = 1×1 . Hence show thatthe identity function

(

Cb
Ix, IF) , da )→ ( Cts (X, IF ) , dp )

is continuous
. By Theorem 48-9 there is a unique continuous

linearmap F making thediagram

F

LY X , IF ) - - - - - . → LP (X. IF)

4g-completion'
can I I can c- dp- completion
Cts I x, IF )- Cts (X, F)

id

commute
,
where the vertical maps are the canonical inclusions into

the completion .
Prove that this F is injective , and give a

counter -example to show that in general F is not an

embedding of topological spaces ( careful : if X is finite it

is a homeomorphism ) .

t
Sometimes you'll see people write Lol E LP

,
but becarefully



Solutions to selected exercises

48-9
Suppose Q Z A xB is closed and Q F XxY .

Let Cx, y ) E Xx'llQ .
Since

this is an open set- we may find VEX ,VEY open with

(x
, y) EU xV E Q

'

.

Now since A is dense in X ,
Uh A to say a E UNA . Then since la } x VE Q

'

we must have VE B
'

which is a contradiction
.

Hence Q = XxY.

48-10 we prove first that t
-

- V x V→ V is continuous at (Vo , Wo)
,
by

calculating

Ht(vi. wi ) - t ( to, Wo)H=Ity - Vo t w ,
-wolf

E Ily - volt t Hwi -Woll

with respect to the product metric on Vx V this is

= day ( (Vi ,wi ) , Ivo , Wo ))

so continuity is dear. Similarly for scalar multiplication

H X ,
v

,
- To Vo It = It X , Vi

- Tov
,
t Toy - Xoxo It

= It ( a - Io ) v , t To (Vi - Vo ) It

E H I X ,
- to ) v , H t H2o (v .

-to ) H
= 17 ,

- to I Hui It t 1701114 -Voll

= IT , -Xo I Hy -to t Vo It t IT o I Hui -Voll

⇐ IT ,

- lol Hui - toll t IX .
- dollNoll

t Hot HY -Voll



Given 270 choose

8 E min { FE ,

3¥01
, >

3¥01
}

Then if d IF xx ( ( to , Yo ) , Hi , Vi ) ) s 8 we have

I Xo - X , It Hvo - vill a d

and hence Ho - tile f , Hilo -Ville t and so

Ht ,x ,
- Xoxo It E IX , -701114 - toll the .

- to 111%11

t Hot HY -Voll

< S't 811 volt t Hot 8

E 43 t 4 , t 43 = E

as required .


