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As recalled in Lecture 12
,
the course is structured in two parts . The firstpart,

organised under the slogan
"

spaceas a stage for things
"

emphasised the

following concepts :

• metric space, topological space, symmetry groups, continuity,
constructing new spaces from old ones, compactness, Hausdorftspaes .

The second part ,
"

space as a stage for motion
"

,

has been organised around
the concept of a functional . With Picard 's theorem in Lecture 15 we

got a glimpse of the fundamental role such spaces play in the study of dynamics .

But something is missing .

Recall from Lecture 16 that by the stone -Weierstrass

theorem the trigonometric polynomials aredense in Cts (S7 IR ) .

But this

result isnotte (although , see Ex.
U b -s ) in the sense that itdoes

not provide , given f : S1-7112 continuous , an algorithm for calculating the

coefficients an, bn of us (no ), sin (no) in an approximating polynomial for f .

Compare this to the situation for a vector V in a vector space V with
basis { us .

- -sum}
.

There is a unique expression of v as EE , ai Ui for

ai E IR , and the coefficients are " read off
"

by the linear functionals

uit EV * which send v to Ui (x) = ai . These functionals tell us
"
howmuch " of v is in thedirection Ui .

We know Cts (S7 IR ) is an IR - vectorspace , and it is notdifficult to

show that { cos (not , sin (no) ) n > ,
U l 13 is a linearly independent

set in this vectorspace (see Ex .
Ll b -2 and 47- I below )

.

So it is natural

to ask : isms for the ( infinite -dimensional ) vector space Cts (s } IR ) ?

One might then think a dual basis cos (not
*

could produce the desired coefficient an .
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However
,
this is far too naive : the trigonometricpolynomials do not span Cts (SF IR)

and even ifthey did , in the infinite -dimensional case we do not have a dual basis .

-

Too bad ! Weseemto lack some basic conceptual framework for working constructively in

infinite -dimensional vector spaces of this kind . The appropriate framework, whose

study will occupy us for the remainder of the semester, is Hilbertspace ,
and the

Hilbert space structure on Cts ( S 'T IR ) (or rather a suitable replacement denoted L2 (S1) )

is derived from the integral .

In today 's lecture we develop integrals in the context of function spaces , which
will lead us to LZ spaces , whose structure we will axiom itise next lecture using
the notion of a Hilbert space .

Exercised with S
"
=
"2/2TIE prove the set { costno ), sin (not }n> ,

U l 13

is linearly independent in Cts (St, IR) (so the expressions in

egr (7. 1) of Lecture 16 are unique ) . In particular this shows
that Cts (St, IR ) is infinite-dimensional .

Exerciser Prove ew
""
Ects ( s

'

,
IR ) is not in the linear span of the

linearly independent set considered in the previous exercise .

DEI An integer ( X , S ) is a nonempty w
.

m pact Hausdorff space X

togetherwith a function f
: Cts (X, IR )→ IR which is linear

and satisfies for all f e Cts ( X, IR ) :

1-where f 70 means for( i ) If f-70 then If 70 ,
and

all x ex Hx) 70J

Iii ) if f-70 then I f- = 0 ifand only if f- = O .
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Lemma 47-0 For

as
b the Riemann integral Ica , by : Cts C La, BT , IR )→ IR

gives an integral pair ( Cai
b ]
, Sea , by ) .

Root For linearity see T. Tao
"

Analysis I
' '

Theorem 11.4 .
I la )

,
(b)

.

Condition Ci )

is immediate from thedefinitions .

For Iii) suppose Sca ,
b ] f = O and that f-fXo ) 7 O . Then f

- '

( ( EHxo) , a ) )

isanopen neighborhood of Ko, which contains a closed interval, say

Xo E (c, d] E f
- '

( ( tzfcxo) , a) ) E [a ,
b] (ctd)

Then D= { [a, c) Cc, d ] , ( d, b) } is a partition and the function

geo -f:*,
II.'Ii:3
O x E ( d, b]

is piece -wise constantwith respect to P, hence since f 79 we have

Sca
, by f

= fears] f 7 P . c . Sea
, by 9

= ( d - c) If Cxo) > O

which is a contradiction . Hence f = O, proving ( ii )
.

Lemma 47- I If ( X, I ) is an integral pair then for f, g e Cts (X,
IR)

( i ) f Eg implies If E fg tfEg means ffx) Eg Ix) forall xexj

Cii ) Iff Is SI ft

( iii ) f : Cts I x, IR ) → IR is uniformly continuous .
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Roof ( i ) If f E g then g
- f- 70 so fg - f f = f(g - f ) > O .

Iii ) Let X Ell , - I ) be such that Xf f > O
.

Then Xf E Ifl so

I f f I = Xf f = f If e f Ifl .

liii ) Immediate from

\ ff - f g I = If ( f - g) I E f If - g I E f do If, g) = V. do I fig )

where V = ft . D

Exercise 47-3 Give a continuous linear f not equal to the Scab] of Lemma L 17-0

for which ( laid , S ) is also an integral pair .

Recall that by the adjunction property ( Theorem 42-4 ) for X, Y locally compact
Hausdorff we have a bijection ( in fact, a homeomorphism Ex .

42 - 13 )

Ix
, Y, 2

Cts ( Xx Y, 2) > Cts ( X, Cts CY
,
2 ) )

.

(4. I)
I

F 1- txt Fk, -I }

We can use this to define the product of integral pairs . However, in order toprove that
thedefinition is independent of the order of X, Y we will have to use Ex .

LIG -II which

in turn depends on Urysohn 's lemma (which we have notproven ) . I will provide a

proof of this lemma at the end of the semester

,
but for the moment I will just

continue to flag explicitly which result depend on it .
In any case, the independence

is also a consequence of Fubini 's theorem when X, Y are of the form given
in Lemma 47- O .
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DEI A- topologi.cat/R-vectorspa- is a vector space V together with a topology
on the underlying set-of V, such that the structural maps

Vxv- V
,

IRXV→ V

( x , w ) I→ xtw ( 7. x ) t) Xv

are all continuous
.

A topological vector space is in particular a topological group .

Exerciser Phone that if X is locally compact Hausdorff and V is a topological vector

space
that Cts ( X, V ) with the compact -open topology and the pointwise

operations (as on p -⑥ ,⑦ of Lecture 16 ) is a topological IR-vector space .

( Hint : just copy the proof of Lemma Llb
- G )

.

Lemma
'k Let ( X, Tx ) , (Y, Sy ) be integral pain .

Then (XxY, fxxy ) is

an integral pair, called thepwductintegrapair where fxxx is

defined so as to make thediagram below commute :

fxxy
Cts ( Xx Y, IR ) - - - - - - - - - → IR

IX.YR ! =
"

f Ix ( 5.1 )

Cfs ( X, Cts (Y, IR ))-Cb ( x, IR)
Sy o -

Assuming the Ury sohn lemma the following diagram also commutes :

fxxy
2. yxxtxxy Cts ( XH, IR )- IR

ii.7,19%7%1
'

Hos in

Js,
' 52)

ctslyxx.IR )

Ily
,
X, IR f

,

I

Cts ( Y
,
ctslx.IR))- Cts ( Y, IR )

1×0 -



⑥

Pwot The space X×Y is compact- Hausdorff by Lemma 40-2, Lemma Lll
- 3

.

Let us first unpack the definition of fxxy. Given F : XM→ IR

Ctslxxy, IR ) F

! a
Cts ( X, CtsHR ) )

ICF
) at Fla, -)

!
,

Jyoti

ctslx.IR ) f,oI(F) atJIGiddy

! Sx
IR

1×(1×0747)
Jxfyflxiydydx

By Exercise 47-4 all spaces involved are topological rectorspaces .
The map

Ix
, -1,112 is linear since

IX.

y.ir/Fta)Cx)ly)=(Fta)Cx.y)--FCx,y)tGlx,y)=Ix,x,irlFKxlly)tIx.ynRl
a) IHH )

=#x. y,iR( F)Cx) t Ix,y,iR( a) Cx ) If y )

=Lftx.y.klfltkx.y.ir/a ) ) (x ) ](y)

which proves
IX. Y IR (Fta )=Ix , YR (F) tix,y,iR( a )

.
Similarly

one checks that IX.x.IR/7F)=XIx.YilRlF ) .

Themap Sy - C-) is also

linear
,
since ( Iyo (ftg ) ] (x) =fylflxltglx) ) = fyffxsltfylgcx) )

and similarly Iyo (Xf )
= 74 of .

Soas a composite of linearmaps, /xxy is linear
.
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It remains to check the axioms for an integral pair :

l i ) If F 70 then for x E X the function Fla, -I : Y → IR is non -negative ,
so since Sy is an integral pair fy FGs -) 70 . Hence x I→ Sy Floc. - )

is a non -negative function, which has non -negative integral Jxxy F .

I ii ) Suppose F30 and fxxy F = O . That means that the function

Fy :X→ IR defined by Fy (x )
= Sy Fla, - ) has Sx Fy = O .

By the axioms for f× we deduce Fy = O .

But then for x E X

Iy Fla,-1=0 yields F(x, -1=-0 and hence F= O .

Assuming Urysohn , we have to show the two ways around C5. 2) are equal
as continuous linear maps

Cts ( XxY, IR ) > IR

By Lemma L 17-2 below it suffices to show they agree on a dense subset A of
Cts ( XxY , IR ) .

Butas a consequence of Stone -Weierstrass (Ex .
Ll 6 - I 1) we

know a convenient dense subset
, namely the set of all finite sums of products

of functions f :X→ IR and g : Y→
IR
,
i. e .

A = { Ei fig i I fi Ects (X, IR) , gi Ects (Y, IR) } .

Since the two ways around I
5- 2) are linear

,
to show they agree on A

it suffices to show they agree on a single fg with f : X→ IR
, g

: Y→ IR .

But then both waysaround are easily checked to send F= fg to the product
( Sx f ) . ( Iy 9 ) so we are done . D
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LemmaL2 If f , g :X→ Y are continuous maps of topological spaces,
with Y Hausdorff

,
and A EX is dense then f la = 91A

implies f = g .

Root consider the continuousmap ( s k )
= (x , x ) )

s f x g

x- Xx X- Yxy

since Y is Hausdorff the diagonal S =L ( Y , y ) l yet ) EYXY is closed
,

and its pre image under the above map { x E X I f- (x) = g (x ) ) is
therefore closed in X . Hence if A E X is dense and f IA = g IA then

A E { x I f-(x) = g (x) } and therefore { x I fix) = 91×13 = X . D

The outcome of Lemma L 17 - l is essentially Fubini 's theorem : we may interchange
the order of integrals , so roughly speaking (roughly because

"dx"
,

"

dy
"

have not entered our notation )

↳ f× Flxiyldxdy = J*y Ffx, y ) = 1×1, F ( x, y ) dydx

ExampleL Combining Lemma 47- O, 47 - l 't we have an integral pair

( far, bid x - -
- x (an ibn)

, fca.is, fca.is . ) - - - Scanian] )

for any collection of intervals .

We learned in Lecture7 a few otherways of constructing spaces : disjoint
unions and quotients ( and push outs , which were a combination of the two ) .

It is natural to extend these operations to integral pairs .
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Exercise 47-5 (i ) Rove that if V, V'are topological IR -vector spaces so is VXV
'

with the product topology and the usual operations .

Iii) Let X ,Y be locally compact Hausdorff and V a topological
IR-vector space . Rove that the bijection

=

Cts ( XIY, V ) s Cts IX.v) x Cb lY, v)

F 1-7 ( FI x , Fly )

of Ex LI - 6 is a linear homeomorphism ( that is
,
an isomorphism

of topological vector spaces ) .

Here youare using Ex . 47-4
,
and ( i ) .

(see also Ex . Lll - 5 and Lemma LIO - 5) .

l Hint : you might like to

first prove (X14 ) x 2 = ( X x 2) it (xx2) . )

Lemma Ln- 3 Let ( X, Sx ) , ( Y, Sy ) be integral pain .

Then ( X # Y,Sx #y )
is an integral pair where Ix hey is defined so as to make

the diagram below commute :

SXIY
Cts ( X # Y, IR ) - - - - - - - - -s IR

^

Ex. 17-5 I t

I

Cts (X , IR ) x Cts (Y , IR ) > Rx IR

Ix × Sy

Proof The space X HY is compact Hausdorff by Lemma 40-5, Lemma Lll - 5.

The map is continuous and linear as a composite of continuous linearmaps
( using Ex .

47-5 ) . Theaxioms of an integral pair are immediate since

if F :XHY→ IR then F 70 iff .
F 1×70 and Fly 70 . D
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Lemma 47-4 Let (X , Sx) be an integral pair and ~ an equivalence relation

on X such that Xlr is Hausdorff . Then ( XIN, fan ) is an

integral pair where Sxh is the composite (p is the quotientmap )

(top Sx
Cts ( Xlr , IR ) > Cts ( x, IR ) > IR

Pwof The composite is continuous and linear ( and X is compact by Lemma Ll 0 - I )
.

If f-DO then f of > O and hence fxp f = f× ( fop ) 70 .
If f 70

and O = f×µ f = f× ( f op ) then f op = O and hence f = O . D

Example 47-2 We define ( S
it

, Sse ) : = ( "'
"%

, Ico
,say ) ,

where 021T
.

Note thatas Exercise 47-3 shows, a space can be equipped with many

integrals, and for instance using the definition Co , D I- would

induce a different integral on St . We choose 10,21T ] so that

Is I I = 21T .

Of course we are free to use a different model of S ? say
"2/242

,
butwhile

these spaces are homeomorphic if we want to
4
move

" Is 1 to be defined on
1121242 we have to specify

which
homeomorphism 4 : S

'

→
"4217L we

mean and then we would obtain an integral pair from

C-So of IsI
Cts ( 11212ha , IR )→ Cts (S ? IR)→ IR

.

Anyway , the point is that while we can switch around between
"2/2 TIE

,
192%

,

[ o , idk , { Cx, y ) laity't} as space we must be more careful as in-Ear.
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Example 47-3 Let X bea finite CW -complex with presentation
Xo
,
Xi
,

. . .

,
Xn - i

,
Xn= X

.
For j 7 I choose a homeomorphism

Yj : ft , Dj→ DJ Cthej -disk)

y
This is not the usual

Riemann integralon
thedisk !

andwemake ( Di, Sisi ) an integral pair using Yj and to,gi .
We make Xo = { I, . .

.

,
r } an integral pair with Iof . Ex LIZ -5)

Cts ( Xo , IR) ) IR
,
ft EE,

fli )

Then by induction and Lemmas 47-3, 47-4 we obtain a

continuous linearmapIxs .
t

. ( X
,Sx) is an integral pair . This

will depend on thechoiceof presentation and of the Yj , butwe
can at least choose Y .

= id canonically .

Exercise 47 - 6 Leta be a finite uhoriented graph and X (a) the associated
CW-complex ( Ex . LI - 4) . Compute fxca , 1 .

Lemma L17-5If ( X
,
S ) is an integral pair then diff, g) = ft f - g I

defines a metric on Cts (X, IR ) .

Pwd ( Mt) Since If - g 170 we have diff , g) 70 .

( 172) If diff , g) = O then by axiom Iii ) of an integral pair If-91=0
and hence f =g .

( 173) Clearly did is symmetric .

( 144 ) Since I f- g It I g - ht > If - ht by the triangle inequality in IR ,
we have by Lemma 217- Ili ) that ft f- g I tf Ig -ht > ft f- ht
and hence the triangle inequality holds .
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Warning the metric topology on Cts (XDR) induced by dis is not necessarily the

compact -open topology ! In particular DP and do need notbe

Lipschitz equivalent . As we will see next lecture the metric space
( Cts (X,

IR )
,
d f ) is not complete ( of . Corollary 43 -G , Ex .

43 -9)
.

It's completion is a metric space L1 ( X , IR ) which is an important
and genuinely new object, to be studied next lecture .

Remarks the notion of " integral pair
"
is based on an approach by Bourbaki to the

Lebesgue integral in the book
" Integration

"

. By the Riesz representation
theorem every integral pair (X , S ) in our sense arises from a unique regular
Borel measureµ,

with ff = ffdu (the RHS being the integral defined

by the measure ) .

So once you have acquired measure theory everythingwe

say about integral pain fits naturally into that story (see also E. M .
Stein
,

R -
Shakarchi " functional analysis

"
Ch

.
I 57 for the details )

.

Remark Let V be a topological IR-vector space . By ExLll -H , V is Hausdorff

itandonly if points in V are closed (this hypothesis is sometimes

added to the def
" of topological vector spaces , see e - g .

Rudin

"

Functional analysis
"
p . 7)

.

Exercise Let X be compactHausdorff so that C : = Cts ( X , IR) is a topological
vector space (which is Hausdorff by Lemma 43

- t ) . Prove that C

is finite - dimensional it and only if X B a finite setof points

( you may use the UrySohn lemma ) .

Exercised
**

Let X be compact Hausdorff . Prove Cts (X, IR ) is locally compact
if and only if X is a finite setof points (necessarily with the discrete top . )



Solutionstoselectedexercises

1Ll Suppose ao t Ent , ( anarcho) t bnsin (no ) ) = O as functions .

Then differentiating yields

{ n'I , ( - nan sin ( no ) t n brews ( no ) ) = O .

[NI , ( - nZan cos ( no ) - n - b n sin (no) ) = O
:
I

Setting 0=0 in all these equations yields

II
,
n bn = O

[ n'I
,
n
2
an = O

En! , n 3 bn = O

i.

Collating every second equation gives the matrix eg
"

iii.÷:÷÷ : : iii. to
which is

I:* :÷÷÷:÷n÷÷x÷.to-
l

- I - l

-

B



But B is a VanderMonde matrix whole determinant is nonzero, so we conclude

bi = O for l E is N . Similarly ac- = O for l si E N , and then also go = 0 . D


