
①

Lecturelbithestone-we.ie#trasstheoem updated 1610120

The subject of today 's lecture isWeiappwximahheon and its

generalisation, theStoneman, which tell us in particular that

any continuous function on la ,
b) (resp .

S
' ) may be approximated arbitrarily

well by a polynomial ( resp . a trigonometric polynomial), which is to say that

polynomials give a dense subspace of Cts ( laid, IR ) ( resp . Cts (S3 IR ) ) .

Recall : we have associateda space of functions Cb CX, Y) to any pairof topological
spaces X , Y ( see Lecture

12) with a list of goodproperties :

- if F : Z xx→ Y is continuous
,
so is 2→ Cts (XN ) defined by z I→ FIZ , -)

.

- if X is locally compact Hausdorff Cts (2x X, Y) = Cts ( Z, Cb (X, Y ) )

(see theorem L 12-4 and Ex .
42 - 13 )

.

- if X is compact and ( Y, dy) is ametric space then Cts ( x, Y) is a metric space
with the supmetric, andmoreover if Y is complete so too is Cts (X, Y)

(see Lecture 13
, specifically Theorem L B -2 and Corollary L13 - G ) .

We have applied this theory to prove the existence of solutions to ODES ( Lecture IS) ,
and we observed that forpolynomial ODES the solutions could be approximated by

polynomials (see Remark 45-2 ) .

Just as our ability to compute effectively with

real numbers is predicated on OT = IR, our ability to work with function spaces
Cts ( X

,
IR ) is often predicated on identifying a class of "simple

"

functions

A E Cts ( X, IR ) with II = Cts (X
,
IR )

.

If X = Carb ] and A is all polynomial functions, this works :



②

Theorem LIG- o (Weierstrass, 1885) Let f E Cts ( laid, IR) . Then there is a sequence
of polynomials Pn lx) which converges uniformly to f(x) on Ca , b]

.

Weneed a few ingredients before we are ready for theproof ( the proof we will

give is not Weierstrass 's originalone : it is due to Bernstein, see K . Davidson

and A. Donsig 's
"Real analysis with real applications

"
2002)

.

Exercise Llb - 0 Prove that if f : ( X , d x ) → I Y, dy ) is continuous and X is compact
then f is uniformly continuous , that is

He >OF 8 > OHXi, XzEX ( dxcxyxz) LS ⇒ dyffx , , fxz ) L E )
.

Deth Given a function f : lo , I ]→ IR the nth Bernstein polynomial Bn (f) is

Buff ) Igf(E) ( Ya ) xkli - x )" -k.
To avoid confusion we adopt the convention of writing f as ftz ) to

distinguish the input variable of f- from the x in Bn (f) .
Clearly

Bnf) is linear
,
so Bn ( ft g) = Bn (f) t Bn ( 9 ) and Bn I Xf ) = X But f)

for any scalar X
E IR

.

Remark The motivation for considering the Bernstein polynomials comes from

probability theory . We will not use the following ideas in the proof
( in order to keep the notes self-contained ) .

Consider the random variable
n

Z
, giving the number of successes in n trials, where each trial succeeds

with probability x E [0 , IT .

Then since f is uniformly continuous

Stx ) = HEI I ) = Linn.ELff]?
expected value Bn (f)Go)



③

Lemma 46 - 'k We have for n> I

Bn ( I ) = I
,

Bn ( z ) = x , Bn (ZZ ) =
nx2

t thx
.

Pivot The binomial theorem gives Bnl I ) =
Kat

I I - x) )
"

= I
. Note the

following identity of polynomials in x, y for n> I

If Iiio (1) xkyn
- k ) = # ( Cats' ) = ncxty )

" '

but computing differently , as Ek ( I ) Ex lock) y
" -k

we obtain

II=o(I ) k . xk
- '

y
" - k
= nlxtyj

- '

multiplying both sides by Fn gives

IEo (E) ten xky
"- h
= x Cxty )

" - '

C 3. D

substituting y = I -x gives Bn (⇒ = x. Tor the remaining identity , we

differentiate C 3. 1) again with respect tox , obtaining
zero if n= ,

{Eo ( E)I - k . xk
- '

y
" - k
= (at y )

" - '

t Cn - i beGetty)" - 2

again multiplying both sides by I gives

II, ( I ) Em xkyn
-k
= In (xty )

" 't x
' Cxty)

" - Z

C 3. z)

substituting y=/ - x gives the formula for Bn IE) . D
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Roof of Theorem 46 - O First we prove the [a , b)
= C917 case

.

Let continuous

f : [o , D→ IR be given .
We claim Bn (f)→ f with respect to da .

Since f is continuous it is
, by Ex . Llb - O, uniformly continuous .

Given

E > o let t > 0 besuch that

Ix - y k S ⇒ IfCx) - fly) I c 42 Hx , y E Eo , B .

Since [0 , it is compact f is bounded, say thx) IEM forall xefo , D
.

Claim For any a ,ye Co, D
,

I f-Cx) - fly) I

s
2M ( ' )

'

t 42

Proof of claim if I x- y ILS then I f Ix ) - fly) I C Etz so this is clear
.

Otherwise if I x - y I > S then (
" ) 27 I so

I f- Cx ) - fly) I E 2 ME 2M (
"
-

%)'t 42 .

D

Now observe that for a constant Xo Eloi D , we have an equality of polynomials in x,

Bn ( f - f-(Xo) ) = Bn ( f ) - f ( Xo) Bn C I ) = Bn If) - f C Xo)
.

Hence for a C- Co , D
, writing ellall

] for the evaluation of a polynomial at a ,levaBn ( f ) - f ( Xo ) I =levaBn ( f - f- (Xo) ) I
inspection of formula for Bn z

clearly if the g Cz) for all z eco , ,
⇐ ell

a
Bn ( I f - f(Xo) I )

then Bn(f)
la!

E Bn (9)

Ia.)
a

Eco
, D

so this is by the Claim→ I ella Bn ( 2M (Z) 't Elz )

= 2¥ ella Bn ( CZ - xo)
'

) t 42



⑤

= 21£ ella ( Bn ( ZZ-Zxoztxo ) ] t 42

= YI ella [ Bn I ZZ) - Zxo Bn IZ) t xp Bn 11) ) t 42

= 2GHz ella [ NIX' t thx - 2xox t Xo' ] t 42

= II ( th (a - a' ) t (a . xo )
2 ] t 42

Now substituting a= Xo, we have

I BnlH (Xo) - f CXo) I E Ek t 2¥ th ( xoxo' )
E Ek t 2¥ . th . ty = Elz t IFT

But this is true for all xo E Co , D , so do ( Bn If) , f ) E 42 t In
If we take N 7 Msk then for all n3N , we have 11/2 82 h E 42 and so
do ( Bn Ift , f ) E Etz t 42 E E which proves that Bn ( f)

→ f in

( Cts ( C0,17 , IR ) , do ) .

This completes the proof of the Coil] case .

For the general case, observe that of : Co , D→ [ a ,
b] lolx ) = I b- a)xtais a homeomorphism , and if f

'
- Ca , b)→ IR is continuous then g

= fo of

is continuous and with Bn (f ) : = Bn (g) of
- I

do ( Bn ( ft , f ) = sup{ I Bn I f) Cx) - Hx) I I x E Cai b] }

Is
,

up { I Bnl93143C) - g ( 0
- '
x ) I see Cais] }

up I I Bnl 9) l Y ) - g ly) I I ye Co , if )
= do ( Bn (9) , 9 ) .

Hence Bn I f)→ f in Cts ( Cai b] , IR) and moreover Bn If I is clearly
a polynomial . D
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Exercise Llb - I Let X be compact, CY,dy ) ametric space .

Given a subset

AE Cts I X,Y) the following conditions on fEcts (X, Y) are equivalent

I i ) felt
I ii) there is a sequence ( an )F=o in A converginguniformly to f
I iii) f may be uniformly approximated by elements of A,
that is , given E 70 there exists a C-A such that

I fly - a Ix)K E forall x E X .

DEI A subsetA of a topological space X is dense if At = X .

Next we turnto a generalisation of the Weierstrass approximation theorem which

will apply to any compact XE Rn, the Stone
- Weierstrass theorem

.

But

first we need to talk briefly about Cts (X, IR ) as an atgebra .

Recall

that the addition and multiplication give continuous maps

t : IR x IR→ R
,

• : Rx IR→ R

and hence given f, g Ects I X, IR ) (here X is any space ) we have continuous maps
•

fg : X Xx X 112×112→ R x is flogged

f-xg t

ft g : XIXx X→ Rx IR→ IR x to fCx) t g Gc )

Here we are using the diagonal A Cx) = la, x)
,
and the product f x g (see Ex .

42-2)
.

Moreover for fixed TE IR the map

To C-)

If : XtIR→ IR x to X. ffx)
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is continuous
.

Let a : Rx Cts ( X, IR )→ Cts (x
, IR ) be ( I, f )t If . For any

CE IR the constant function is continuous :

X- {*)IIR xt c

Usually we denote this function again by c .

Note it is a ( c, 1) .

Exercise 46-2 Check that A = Cts (X, IR ) with the above structures is a commutative

algebra ( over IR ) for any space X,whichis to say that
• ( Cts (X, IR ) , t , a) is an IR - vector space . 17 . D

( i) f ( gh ) = (fg ) h for all f, g , hEAIii ) F1 EA sit . If = f I = f for all f- C-A (namely I (a)=I )

I iii ) f (g th ) = fG t th for all f, g, h E A .

Civ) (g th ) f = gf th f for all f, g , h C-A .

I v) ( A f) g = f I X g ) = X. fg for all f, g EA , X E IR

Hi ) f g = g f for all f, g

EA
I Note : occurrences of brackets above do not mean evaluation ) . A subset

A E Cts (X, IR ) is a subalgebra if I C- A , andwhenever f , g EA

we have ft g EA , Fg EA and XfEA for any 7 E IR .
For example,

the constant functions give a subalgebra of Cts (X, IR ) isomorphic to IR

,
and moreover every subalgebra contains the constant functions .

Def An IR -algebra A is a vector space over
IR equipped with an additional

operation . : AXA → A (multiplication ) which satisfies axioms

Ci ) - Cv ) above .

The algebra is commutative if itsatisfies Cui ) .

A homomorphism Y : A→ B of IR -algebras is an IR -linearmap which

satisfies 911A ) -- 1B and YC f-9) = 91ft 919 ) for all f, g EA .
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DEI A function f : IR
"

→ IR is polynomial if there exists a function F : IN
"

-7 R

Iwhere IN = to, h . . -3 ) with the property that { I C- IN
" I F ( e) to } is finite

and for allx E IR
"

( w vile I for ( Ny . . .

,
Nn ))

f- fx ) = I F ( Ne ) Th (x)
N !

.
- In (x)

""
14 .

I)
I C- IN

"

where ITi
'

- IR
"

→ IR are the projection maps

Tila
's . . . , xn ) = Xi . We denote

by Poly ( Rn, IR ) the set ofpolynomial functions IR
"

→ IR
.

Lemma Llb- I Every polynomial function f : IR
"

→ IR is continuous
,

and Poly ( IR ? IR)

is the smallest subalgebra of Cts I IR
"

,
IR ) containing Ty . .#n

. We

say that Poly ( IR
"

,
IR ) is generated as an algebra by the set L Tty . .

.

,
Tin }

.

Proof The polynomial function f of (4. I) may be written as

£ = Earn Ffa ) IT,
"

.
. . Team

where the products Ce -g .

ITY '
= Ti . - . IT

, ) , scalarmultiplications and sums
are all the algebra operations in Cts ( IR

"

,
IR ) as defined abone .

Since the

set of continuous functions is doted under these operations (and the ITi are
continuous ), fmust be continuous .

Moreover if a subalgebra A E Cb IRn, IR )

contains { Ky . . ., Tn } itmust contain f
,
and the subset Poly ( IR

"

,
IR) is

doted under addition
, multiplication and scalarmultiplication (and contains

1) so it is a subalgebra , implying the second claim . D

'

: X→ Y such that theDEI An embedding is an injective continuous map j
induced continuous map X

→j IX) is a homeomorphism (wherej (X)

has the subspace topology ) .

We say j is a homeomorphism onto its image .

Roughly speaking we identify X as a subspace of Y via j .
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Example 46 - I Given a subspace X E Y the inclusion X→ Y is an embedding .

Def Given an embedding j : X→ R
"

we define the subspace Poly ( X, j , IR)

of CH ( X, R) to be the image of

C-to j

Poly ( IR
"

,
IR ) Cts HR"

,
R)→ Cts I X

,
IR)

that is
,
the set of continuous maps which are arestrictions

"to X of polynomial
functions on IR

"

,
where a restriction

"

means precomposition with j .

If the

embedding is clear from the context we write Poly ( X, IR ) for Poly (X,j , IR) .

Exercise 46-3 Rove Poly ( X,j , IR) is the smallest subalgebra of Cts CX, IR ) containing
the functions { IT,

o j
,

.
. .

, In oj ] .

Example Llb -2 Let X = { (x. y ) E R' I x'ty
'
= I }

,
and letj , : X → 1122

be the inclusion .
Let jz be the composite

j, Ro
X→ IR

'

- 1122

cosO -since

where Ro is multiplication by ( since wso ) . Since Ro is a

homeomorphism this is again an embedding .

Then
( IT, o j z ) ( x. y ) = xcos O - y sin O

( The o ja ) (x, y) = x sinO t y cos O

Since O is fixed these are polynomial functions of x, Y and so

Poly ( X
, ja , IR ) E Poly (X ,ji , IR ) . Since j z = R-o ojz

the same argument shows Poly ( X ,ji , IR ) = Poly IX, ja, IR).
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However in general Poly (X,j, IR) does depend onj
'

.

Example 46-3 Let j . , ja : ( 0, 1)→ IR be j , (x) = x , ja (x ) = x ? These are

both embeddings , but the function x
3

: (0 , 1)→ IR lies in

Poly ( C o , it , ji , IR ) but not in Poly ( CO, D, ja, IR ) .

Def
'
We say a subalgebra AE Cb (X,R) separates points ifwhenever x,yEX
are distinct points there exists fEA with floc)t fly) .

Lemma Llb - 2 If j :X→ IR
"

is an embedding then thesubalgebra
Poly (X, j , IR ) E Cts (X , IR ) separates points .

Roof If x. y E X are distinct, then for some Is is n we have Hi Cj x) t Ii Ijy),
and so Ii Oj E Poly ( X, j , IR ) will do . D

Example 46 - 4 Consider the embedding

j : IRIzitI→ IR
'

, j IO) = (wsd, since)

where 112/2TIE is the quotient of IR by the relation 7 -M it X -M C- 247L

( see Tutorial 4)
.
We claim that A = Poly ( 113/2*2 , j , IR ) is the smallest subalgebra

of Cb ( Rlzaz
,
IR ) containing the set { cos Ino ), sin C no ) ) n ez . By Ex .

Llb - 3

A is the smallest subalgebra containing cosO, since, so the claim follows from

cos (no) = Re ( eino ) = Re ( I wso tisince ]
" ) E A

sin (no ) = Im ( einO ) = Im ( (wso tis in 01h ) c- A

using the binomial formula Ithis does n > O, but this suffices ) .
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DEI with S1 : =
"42172 and j as above , we call TPoly ( S7 IR ) : = Poly ( S7j , IR)

the set of trigonometric polynomials .

Lemma 46-3 The element of JPoly ( s
'

, IR) are precisely the functions

f-( O ) = ao t €=
,

( anCosmo) tbn sin (no )) G. c)

for some ao
, ay . . .

, an , by . - .

,
bN E IR

,
and N 7 I

. This collection of

functions thereforeseparates points of 112/2172 .

Root clearly these expressions give functions in Poly ( RKTLTL , j , IR ) , so itsuffices

to prove functions ofthis form compose a subalgebra of Cts ( IR12hE, IR) .

For

this it is enough to observe that these functions are closed under multiplication :

sin Imt ) cos (ht ) = If sin ( Im tht t ) t sin ( C m - n ) t ) ]
sin Imt ) sin I n t ) = I ( Ws ( (m-nlt ) - cos ( Cmtn ) t ) ]
cos Imtl Ws Ihtt = I ( cos I (m -htt) t cos ( CMtn ) t ) ] .

The claim about separating points is now immediate from Lemma 46-2 . D

Theorem

46-3
( Stone - Weierstrass)

Let
X be a compact Hausdorff space and

A E Cts I X , IR ) a subalgebra which separates points .
Then

we have At = Cts (X, IR) .

Corollary 46-4 Given X EIR
"

compact we have Poly ( X, R) = Cts (X, R) .

Root Immediate from the theorem and Lemma 46-2 . D
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Corollary 46-5 The trigonometric polynomials are dense in Cts ( St, IR ), lie .

J%ly (St, IR ) = Cts ( 5-, IR ) .

Root Again , immediate from the theorem and Lemma 46-3 . D

ofcourse with X as in Example 46-2 there is a homeomorphism X
= S1 (where

for the moment Sit means 112/2×2 ) and hence a homeomorphism Cb (STIR)Et (X , IR)

which identifies TRY (STIR) with a dense subset A Ecb(X, IR ) .

Before proving the Stone -Weierstrass theorem we need some preliminary result .

Lemma Llb -6 If X is locally compact Hausdorff the functions

Cts lX, IR ) x Cts IX, R )→ Cts CX, IR )
,

( f , g) t ftg
Cts IX, IR ) x Cts (X , R )→ Cts ( X, IR), Cf , g) to fg

IR x Cts ( X, IR ) Icts IX, IR) , (X , f) I→ Xf

are continuous
.
We say Cb C X, IR ) is a topological IR -algebra, to emphasise this .

In particular Cts I x, IR ) is a topological abelian group under
addition

.

PWI Consider the map ( 3 denotes an interchange X,xXz= XXX , )

S x txt

Xx Cts ( X, IR ) x Cts (X, IR )→ XxXxCts ( X, R ) x Cb IX, IR)

!
,

1×6×1

IRc- Phx IR- Xx Cts ( X, IR ) x XxCfs C X, IR )
t eXx,R×eYx

,
IR



④

which is continuous since X is locally compact Hausdorff and hence evx, R
is continuous . Corresponding to this is thecontinuous map

Cts ( X, IR ) x Cb C X ,
IR )→ Cts IX, IR ) (f, g) IT ft g .

The other claims are handled similarly. D

Lemma 46-7 Let X be locally compact Hausdorff and A E Cb (X, IR) a

subalgebra . Then AT Ects ( X, IR) is also a subalgebra .

Root Clearly 1 EA, so we have to show At is closed under the operations t, • and

scalarmultiplication . Suppose t.ge#butftgtEA .
Then there is

U Ects I X, IR ) open with ftg EU and U nA
= of . But then by

Lemma LIG - 6

Q '

.
= { ( a , b) Ects (X, RT I atb E U }

is open , and we may therefore find C
,
D Ects IX, R ) open with

(f, g) E C xD E Q .

Since f, g eII we have CAA to and DNA to ,

say f
'
E C A A and g

'
ED n A.Then f 't g

'
EA and

( f '

, g
' ) E C xD E Q ⇒ f 'tg

'
E U

which contradicts UNA =p .

Hence ftg E At . Similarly we show
f-g E At and Xf E At for any X EIR . D

Exercise

46-342
Give an alternative proof of the Lemma in the case where

X is compact using the do metric .
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Def
"

Let Xbea topological space and fecblx.IR ) .

Then Ifl Ects (X, IR)

is the composite

X
t

s IR
' "

> IR
,
xi→ If I

.

Given fig E Cts (X, IR ) we define

min { f, G ) :X→ IR
,

xi→min{ Hx)
,
glx) }

max { f, g } :X-3112 , xl→max{ fix ) , glx) }
.

These functions are continuous since

minff, g } = If ft g - If -g I )
maxffig } = 'z( ftg t If - 91 )

.

Exercise 46-4 Bove that if Xis locally compact Hausdorff then

I - I : ctsfx.IR )→ Cts (X,R)
min
,
max : Cts C X, IR ) xctscx, IR )→ Cts CX, R)

are all continuous functions .

Themost difficult part of purring Stone -Weierstrass is proving that acted

subalgebra A Ects (X , IR ) has the property that IAIEA , i. e . iffEA

then also Ifl EA. To pure this wewill use that I
- I can be approximated

by polynomials ( so we use Weierstrass to prove stone -Weierstrass) .
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Lemma Llb - 8 Let X be a compactspace and AE Cts (X, IR ) a closed

subalgebra .

If f
, g EA then If I

,
min{ f, 93

,
MaxL f , g) E A .

Roof It clearly suffices to provethat If I c-A . Given fEcts C X, IR ) are know

f- is bounded, since X is compact . Say I f- (x) I E M forall xEX .

Then

the function If I may bewritten as

f- I - I

X- L- M , M]→ R

Let pn E
Cts I L- M , MT , R ) be a sequence of polynomials converging

to I - I ( this exists by Theorem L 16 -O) . The function

(→of

Cts ( I- M , MT, IR)→ Cts (X, IR )

is continuous by Lemma 42
- I
,
and since Pn→ I - I wehave

pnof
→ If I as n → oo . But if forsome fixed n we have

pn
= aot a , t t .

.

- t ak t
''
for constants ai E IR then

pin of
= ao t a , f t - - - t a kf

k

is an element of A . Hence ( Pno f)E-o is a sequence in A , and

since A is closed the limit If I also lies in A . D

We are now prepared for the proofof the stone- Weierstrass theorem .

Our proofwill

use the Weierstrass theorem to prove the move general result .
All the proofs of

stone -Weierstrass I am aware of hinge ultimately on a polynomial approximation
of I - I

,
sometimes done "

by hand
"

using a Taylor series of ft .

This has its own

complexities , and seems tome no easier thanjust proving the Weierstrass theorem .
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Proof of Theorem 40-3 Let A Ects (X, R) be a subalgebra which separates

points .

Then by Lemma Llb -7, F is also a subalgebra , and itclearly

separates points since AEA, so we may assume from the beginning that

A is closet and our goal is to show A
= Cts ( X

,
IR )

.

Let f Ects lX, IR ) be given : we have to show fEA .
Given E >O we will

produce gEA such that do ( f, g)

E
E

. This shows f E I = A .

To produce

g we take distinct points s , t EX ( if X is empty or X = 1*3 there is

nothing to prove, as Cts I 1*3 , IR ) I IR and any subalgebra contains the constants ) .
We claim there exists fs, t E A agreeing with f on { s, t} , that is

f-s
,
t ( s ) = Hs) , fs

,
t ( t ) = ft t)

I
I

'

,

ifl I
X = La , b]i,!#fs , t

I
I

I I

a S t b

Since A separates points there exists heA such that h Cs)t htt ) . Then

we canjust appropriately "massage
" h to pwduufs , t with the desired property :

fat Htt t
t

, Ch
- hits ]

Moreover since A is a subalgebra it is clear that fs , t EA . Nowwe construct

g from the collection { fs, t } s t t
E A ( the construction involves for each s, t

choosing a h, but we don't care, any fs, t EA agreeing with f on { s, t)
will do ) .
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The idea is to use the fs, t to construct the required approximation g to f. Now,
fs

,
t approximates f only near { s, t} (as far as we know) but

Ds
,
t
= Ifs

,
t - f / : X→ 112

is continuous
,
so the following set Iwhere fs it approximates f sufficiently ) is open :

Us
,
t = Dsit

'

( too, e) ) = { see X I f(x ) - ECfs . t Ia ) c f Ix) t E )
I

I
I

,
I

,
I

*ii:÷In.toIS
a S t b

- -

the set Us
,
t is the union of thesetwo open intervals

Wewantto stitch g together from the fat by switching to adifferent pair ( s
'it ')

once we leave Us , t , and we can use Max,
min to do the switching .

.

But we have

to be careful : in the context of the above picture , say fsi, t ' L f - E on Us , t , then

m in Ifs
,
t
,
fsl
,
t ' } is net an approximation to f on Us,th

Us '

,
t '

. The trick is to fix one

of the points , says, and compute instead min { fat , fs, t ' } which is an

approximation to f near s, and is at least bounded above by ft E on Us , t U Us, t
'

.

By compactness finitely such min 's can arrange this to be the case on all of X

Istill with s fixed ) , so we 'll have an approximation h s tof near s which
is at least L ft E everywhere .

But then we can take mae 's of these hs 's

to impose a lower bound aswell .

Ok
, so enough preamble, let 's perform the construction .
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For each s E X
,
use compactness of X to find Ty . . .

,
tr Cdepending on s) such that

Us
,
ti
,

. - .

,
Us

, tr cover X , and set

h
,

'

. = min { fs
,
ti
,

. . -

,
fs

,
tr }

.

By Lemma Ll 6 - 8 (and hence ultimately by our polynomial approximation to H )
we have hs E A -

Moreover h s (s ) = f(s) and if xEX then x E Us , t,
- for

somej and hence

h s Ca ) -E f s
, tj (x) L f Ix ) t E

Also for x in the open set Vs
= Us ,

t
,
n - - . n Us

,
tr we have

h , Cx ) = min { fs , ti Ix) I I E c
'

Er } 7 fCx ) - E .

The open sets L Vs }sex cover X , and we may take afinite subcover
Vs.
,

. .
.

, Vsn Then g
'
. = Max { hsi, .

. .

, hsn } is by the same argument
an elementof A , and if xE X then

g (x) = Max { hs , (x), . .
.

,
h s n (x) } a f- foe) t E

while there exists I Ej Eh with x E Vg - and so

g. ( x) > hsj (x) > f Ix ) - E

This shows that do ( 9 , f) E E and completes the proof . D



④

The construction of the approximating polynomials Bn (f ) in Weierstrass 's theorem

was explicit (although the N we have to take sit . n> N ensures do I Butft , f) a E

depends on 8 which we may not be able to easily calculate ) . The stone -Weierstrass

theorem is less constructive
,
since it is not necessarily clear how-to pick the finite

subcovers involved
,
or howto choose the h EA . However the other ingredients can

be made constructive
,
in the way outlined by the following exercise :

2

Exercise Llb -5 Let X E IR be compact, f :X→ IR continuous
,
let

A = Poly ( X, R) and suppose IfG) Is M forall x E X .

(i) Compute Bn ( I - I ) on EM , MT , as explained at the

end of the proof of Theorem 46
-O

.

( i i ) Set s = '

(O , 0 ) and t , = ( 0, I )
,

t z = ( 0, 2) .
Then

h IKy ) = y is a polynomial which separates both the pain
(s

,
ti ) and CSits )

,
andwe may define ( a = ffs) , P

-

-fCti ) , F-f(ta))

Fs
,
t , Lx . y ) : = P - [a - p ] ( y - I )

fs
,
ta ( x , y ) : = 8 - I (a - o] ( y - 2) .

Compute using lil a sequence ofpolynomial functions

converging to min { fs , ti , fats } .

DEI A topological space is separable if itcontains a countable dense subset .

Exercise 46-6 Prove that if XE IR
"
is compact then Cts IX, IR ) is separable ,

and hence second-countable Ithis means that there is a basis 13
for the topology with 13 a countable set) .



⑧

Exercised Recall from Ex .
42 - H that if X is locally compact Hausdorff

and Y, E Yz is a subspace then there is an embedding

Cts ( X, Y , )→ Cts ( X, Yz)

given by post- composition with the inclusion Y , → Yz
. We identify

Cts ( X , Yi ) with a subspaceof Cb ( XMs) viathis map .
Prove

( it If X is compact and Y,
EY
z
is open , Cts ( X ,Yi ) E Cts (X, Yz ) is open .

Iii ) If Y ,
E Yz is closed

,
Cts ( X ,

Y , ) E Cts (X, Yz ) is closed .

We say a function f : IR
"
→ IR

m

is polynomial if each of the composites

IR
"t IR R IE ie m

is polynomial, andwe write Poly ( IR
n

,
IR
m ) E Cts ( Rn

,
Rm ) for the set of

polynomial functions . Ifj : X→ Rn is an embedding then as above we define

Poly ( X ,j , Rm ) : = ( foj Ects ( X, Rm ) I f- is polynomial }
.

Exerciser Prove that Poly (Xj , Rm) is dense in Cts ( X, IR
m )
,
if

X is compact Hausdorff and j :X→ IR
"

is an embedding.

Exercised Prove that for any space X and VEX open, A
E X dense that

UAA is a dense subset of U , with its subspace topology .

Exercised Pure that if X E IR
"

is compactand Ye Rm is open then the set of

polynomial functions is dense in Cb (X, Y), where we call f : X → Y

polynomial if X→ Y→ Rm is the restriction of a polynomial function .



④

Theorem ( Ury sohn lemma ) Let X be a normal space, A, B disjoint closed subset

of X . Then there exists a continuousmap f : X→ Ioil] such that

f-(a)= O for all.aeA and f (b) = I for all BEB.

Exercise 46-11 Assuming the UrySohn lemma, prove that if X , Y are compact

Hausdorff spaces and h : XxY→ IR is continuous then

for every E
20 there are continuous functions ( for some n)

fi
,

. . .

,
fu E Cts lX, IR ) , 9 y . . ., 9n E Cb ( Y, IR) such that

do ( h
,
Ei fig i ) < E

,
where given f :X

→ IR

and g
: Y→ IR we write fg for the function (fg ) (x, y ) = fix)g Iy) .

Note There is for X locally compactHausdorff a homeomorphism

Cts I X, Y x 2) Ects (X, Y ) x Cfs ( X, 2) .

It is not true that Cts ( 4×2, X ) = Cts (Y, X ) x Cts (2, X) Cwhatwould a natural

map relating LHS and RHS even be ? It doesn'tmake sense ) .

But if X , Y are locally

compact Hausdorff we have thecontinuous map

X x Y x Cts (X, IR) x Cts C Y, IR ) = (Xx Cts ( X , IR) ) x ( Yx Cts IY, IR ) )

I
,

ex
×
x eVy

IR x IRTIR

associated to which is a continuous map (not injective if either X# to or Y to)

I : Cts I X , IR) x Cts CY , IR )→ Cts ( XxY, IR)

The Exercise says : the subalgebra generated by the image of It is dense , if
both X

,
Y are compact ( this is not the same as saying Im I Io ) is dense ) .



②

Exercise 46-12 Set S
it
= Klutz and IT= S

'
x S1

,
with angular coordinates

( O, 4) . Give an appropriate class of trigonometric polynomials
in Cts ( IT, IR) and prove that your set of polynomials is dense .

(Youmay assume the Urysohn lemma, but you can also give a directproof )

Exercise 46-13 Let X be locally compact Hausdorff, set Y : = X 1103

( here 00 denotes anything , = O will do (although it looks nuts))

and define a topology on Y as follows : the open sublets of Y

not containing are precisely the open subsets of X , and
the open subsets of Y containing A are of the form Kc I { a}

where K E X is compact . The space Y is called the

one - point compactification of X :

( i ) Pwve Y is compact Hausdorff and X→ Y is continuous

Iii ) Prove that the one -point compactification of IR

is homeomorphic to Sit fsee Ex .

42 - 12 )
.

The next exercise gives the generalisation of Stone -Weierstrass to locally compact spaces .

We say
A E Cts (X

,
IR) is a nonunital subalgebra if whenever f, g EA we have

f-tg , fg , If EA for
all XE IR ( but not necessarily I C- A ) . If X is locally compact

Hausdorff we say f : X→ IR vanishes at infinity if
I

HE >OF KEX compactHxcfk( Ifk ) K E )
.

We write Cbo ( X, IR) E Cts (X, IR ) for the subspace of functions vanishing at infinity .

Exercise Llb - I4* Suppose X is locally compact Hausdorff and that A is a non unital

subalgebra of Cto ( X, IR) which separates points and has the property that
for every xEX there exists FEA with fat to - Then II = Cto (X, IR ) .



④

Solutions to selected exercises

6-O Suppose f is continuous butnet uniformly , so thatforsome E > O

no matter how small we make 8 , say 8
= Yn

, there exists a

pair xn, yn with dx ( xn , yn ) a Yu but dy ( fan , fyn ) 3 E .

Since X is sequentially compact C yn )EE, has a convergent

subsequence ynk , with say ynk
→ y as k→

a
. We claim

Xh k→ y also , since

dx ( xn n , y ) E d x ( Kun, Yun ) t d x ( Yhk , y )
< Yuk t d x ( Yuk , Y )

so given E
'
> O let K be sit . hk >¥it k>K and dx ( Yhk , y ) EEtzfor k> K , then dx ( xn a, y ) c42tEh = E

'

. But then since

f is continuous tank→ fy and fynk→ fy as k-soo and
hence (again using a triangle inequality , or that dy is continuous )
we have dy ( fann

,
fyhk ) → O as k-soo . Butthis contradicts

the lower bound dyffxn , fyn ) 7 E . D

Llb -3 Let j :X
-7 R

"

bean embedding .

The induced map

R : Cts ( IR
"

,
IR)→ Cts (X

,
IR ) RH) = foj I 23.1 )

is continuous by Lemma 42 - I since IR
"

is locally compact Hausdorff . By
definition Poly ( X ,j, IR) = RC Poly ( IR

"

,
IR ))

,
and by Lemma 40 - I ,

Poly ( IR
"

,
IR) is thesmallest subalgebra of Cts C IR ", IR ) containing { Tty . .

, In }
.

We know by Ex .
16-2 that both Cts ( IR ", IR ) , Ct (X, IR ) are commutative

IR -algebras I in fact by Lemma 46 - 6 they are topological IR -algebras) .

We claim R is a homomorphismof topological IR -algebras, that is,



④

Claim : let j : X→ Y be a continuous function - Then

R : Cts (Y, IR)→ Cts (X, IR ) RC f) = foj

is a homomorphism of IR-algebras . If further X, Y are locally compact
and Hausdorff, Risa homomorphism of topological IR -algebras .

Roofof claim :
• R ( fg ) = R (f) R (9) for all f, G Ects ( IR

"

,
IR ) :

{ Rlfg ) } (x) = I ( fg) oj } (x ) = ( fg ) ( jCx) )
= fCj Cx) ) . gcjcx) )
= ( foj )Cx) - (goj ) (x )
= { Rcf) Rls ) } Cx)

• R ( I ) = I RCI ) Cx) =D o j ) Cx) = Icjlx)) = 1=164 .

• R (ftg) = R (f) tR(9 )

RC ft g) Cx ) = { ( ftg) oj } (x ) = ( ftg) ( jcx ) )
= fCj I x) ) t g Cj Cx ) ) = (foj ) Cx ) t (goj) Cx )

= { RCH t Rls ) } Cx)

• R ( if ) = X RIH

R ( X f)(x ) = ( If oj ) (x ) EXf) C jcx) )
= X . fcjcx ) ) = X - Rcf) (x) = ( X - RIH ) (x)

.

The claim about continuity follows fwm Lemma 42 - I - D



③

Returning to 123 . D
, we see that this particular R is a homomorphism of

topological IR - algebras .

Claim If Yi . A→ B is a homomorphism of IR-algebras, then TCA ) is

a subalgebra of B .

Proofof claim We have 1B = T ( 1A ) E 9 (A )
,
and if a, y ET (A ) , say

x = UH , y
= Y(9) then

aty = TCH tf(g) = Httg) E TCA )

ay
= Y ( ft 919 ) = if I f-g) E YCA )

so 91A ) is a subalgebra . D

Hence in particular Poly ( X,j, IR ) Ects (X, IR ) is a subalgebra .

It contains

IT, oj , . . ., Tlnoj } . To show it is smallest with this properly let BE Cb (X, IR )
be a subalgebra containing { IT, oj, . .

, Tlnoj } .

Then for any (formal) polynomial
F E IR IXy . -

,
xn]
,
say

F = I Fe a Y '
- . - x! " Fe E IR

I C- IN
"

The function

F(I oj ) : = I Fe ( IT, oj )
" '
. . . ( In oj )

"h

I C- IN
"

belongs to B , because it is obtained from the Tlioj by a finite numberof

multiplications, scalar multiplications and additions (and for I - Q we use IfB)
.

But we have also the element



②

FIE ) :=±€µFe Th
" '

-
. . In
""
e Poly (Rn, IR )

and since R is a homomorphism of algebras

RC HE ) ) = RC Seenu Fe IT,
" '

.
. . Them)

= I
a earn RC Fe IT,

" '
.

. . Them )
= See inn Fe R( I,

" '
.

. . Them )
= I einn Five R ITi )

"
- . . R ( In )

""

= F( I oj )
.

We have shown R ( FIE )) EB for any polynomial F, which shows

Poly ( X,j, IR ) EB as claimed .

46-11 Given X ,Y compact Hausdorff let

A = { SE, fig i I fi, . -

, fine Cts IX, IR ) , gu . . , g n E Cb I Y, IR ) )
.

We need to show A'= Cts I Xx Y, IR ) . The product Xx Y is compact
Hausdorff so by Stone - Weierstrass itsuffices to show A is a subalgebra
and that it separates point . It is easy to see that A is asubalgebra .

Suppose (x . , y , ) , (Xz, Yz ) are distinct points of XxY. so either x , txz
or y ,#ya .

Let us treatthe case X, t Xz C the othercase being identical ) .

A compactHausdorff space is normal, so by Urysohn there is f : X→ IR

continuous with f Ix , 1=0, f-IXz ) = 1. Then with g =L on Y
, fg C-A

and (fg ) (x, , y , ) = fCx, ) = O, Cfg ) C Xz, Ya) = f IXz)=/, as required .


