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lecturelsipi.ca#stheorem updated whoto

the same kind of "solution by iteration
"
thatwe saw in Newton 's method and

Banach 's fixedpoint theorem can be used to solve ordinary differential

equations ; this method is usually referred to as Picarditerafion .

The technique

actually predates Banach 's fixedpoint theorem (for references seep -
181 of

W. Cheney
"

Analysis forappliedmathematics
" ) butnowadays it is usually proved

as a consequence of that theorem

Recall that in Example 44-2 we rephrased the problem of finding a solution
of an equation gu) = w (g : V→V, V a vectorspace, WE V fixed ) as the

problem of finding a fixed-pointof f- (x) = v - g (x) tw - suppose now

we want to solve an ODE
,
which is an equation in an unknown continuously

differentiable function 9 of a single veal variable :

¥7 = hoc 1,97 ( 1.1 )

where h : R'→ IR is continuous
,
and LI, T ) : IR→ IR

'
is set (x , Tla)) .

This is an equation of functions (so, an equation in Cts ( IR, IR) ) but it is

probably more familiar as an infinite family of equations in IR, i. e .

Y
'

(x ) = h (x , fCx ) )
.

Cl . 2)

In any case , the9¥ is : what is the function f whose fixed points
are precisely the solutions of this ODE ? That is

fly ) = Y ⇒ T - host , I > = O .

T
so our g ( Y ) is this expression, and w

= O .



②

But if Tisasolution and fly) =D then

¥ fly) = ¥9 =

hotel
,
'S >

:
. fly ) =

Ctfhcx
, Tca))dx .

12.1)

This gives usareasonableguessforf, although we need to fix C, which means
imposing an initial condition, say Uxo )=yo, on our ODE .

Theorem LIS - I ( Picard) Leth : U -7112 be continuous for some open set UEIRZ

containing ( Xo, yo ) and suppose there exists a constant a > O with

Ihlx
, y , ) -

hcx
,yz) I Ealy ,

- yal

for all ( x, Yi ) , C
x.

Ya) EU . Then there exists t >Osuch that

the initial value problem

Y' (x) =

h(
x
, Ycx) )

,
Koco )=yo (2.2)

has a unique solution on [Xo
- f
,
Kott ]

.

By a solution we mean
a continuously differentiablefunctions

: I→ Rmaking
y ( 2- 2) hold, I=[xo- dpcotd}

÷. . .

in.sn

.

Xo- 8 Xo Xot8
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Root Let S > O
,
b > O be such that IxJE U where I = [no- t , not t]

and J= [yo - b , yo t b] .

Since his continuous and IxJ is compact,
h text is bounded

, say 1h(a, y ) IE M for all C x , y)EIXJ . By shrinking
S we may assume

a 8 a I and M 8 < b . We look for solutions to the

initial value problem in the space

Cts ( I, J) = Cts ( I xo- I, scott 7, [yo- b, yo t b])

which by Corollary LB -6 is a complete metric space (since J is a closed

subspace of IR, and therefore complete by Ex .

43 - 9)
. of course we

need solutions which are notjust continuous but differentiable , but

this will work out
,
as wewill see . Define following (2 . I ) the map

f : Cts ( I, J)→ Cts ( I, J)

f- I Y) Cx ) = yo t I!h (t, y Its) at

Now T is continuous
,
so h o L I

,
T> is continuous on I and hence

Riemann integrable on I . By the fundamental theorem of calculus
x t hotel is> is differentiable on I

.

with derivative hotel , Y 7.

The function f ( T ) i I→ IR is therefore (continuously ) differentiable :

f-
'

(9) = ho Ll, 97.

for any continuous
Y

.

It remains to check that f I 9) I I ) EJ
,
and to show

that f is a contraction with respect to the do metric . Suppose fora moment

thatwe have done both of these things .
Then the Banach fixedpoint

theorem ( 44 - I ) tells us that f has a unique fixedpoint .



Note that since fly ) always has a continuous derivative, a fixed point
is necessarily continuously differentiable .

And

f- fly ) ⇒ y = yo t%htt,Kt) )dt

←→ Y
'
= hotel , T > on I

,
and Ycxo) = yo

⇒ T is a solution of the initial value problem on I .

The reverse implication C⇒ in the last step is by the second fundamental theorem

of calculus I two antiderivatives differ by a constant ) . This completes the proof, once
we have checked the two aforementioned items :

fly ) ( I) EJ for this we need (for x > no)

IS
,!htt, Htt )dtfsf.io/hltisltD/dt

x

E ↳ Mdt ( since lhlxy) IEM on IxJ)

= M (a-xo) E MS a b

and similarly for x exo .

This shows f(9) ECB (FJ)
.

f- is a contraction do ( f 's
,
f4) = sup { I HTKX) - ft4)Cx ) I I see I}

= sup { I htt , UH)dt - J
,
!hltihttldtl leet }

.

E sup{ J.io/hltixtD-hltiYCHt/dt/xeI }



⑤

Butfor

TEI,
YHI
,
TH) are both in J, so by hypothesis

I htt, THD - htt , YHD I e at HH -UH I

Hence

I! I htt, HH) - htt , YHD late af!
.

I Htt -THI Idt

E a . Ix - xol .

sup { ISHI -HH I I teI)

⇐ a 8 . do (9,4 )
.

Then it follows that do ( ft, fY ) E a 8 . doo (BY)
.

We chose 8 such

that a 8 a 1 , this shows f is a contraction . D

Moreover the fixedpoint theorem tells us how to find a solution by iteration,
namely , choose any continuous function To

: I→ J ( To = yo is a safebet)

and then take the limit of To
,
f-To
,
f
2Yo
,

- - - , f
"

To
,

. .
-

. According to

W . Cheney (cited above, see p .
181 ) this method is " rarely used directly in

the numerical solution of initial value problems because the step - by -step
methods of numerical integration are superior ", but nonetheless this limit

is guaranteed to converge Ceventually) .

Remarkus - I We have not given the strongestpossible statement of
Picard 's theorem I see Cheney 's book ) .

The theorem is

easily extended to systems of first order ODES and

thereby in the usual way to higher-order ODES .

However
,

PDEs are a completely differentstory .
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Example 45-1 Leth : 1132-7112 be h ( x. y ) = y , so the differential eqN is

y
' =L

.

Then lhlxiy , ) - h (Xyz) I = ly , -Yal so a±I will do .
Take the initial condition

963=1 , and as the starting point of our iteration 90=-1 .
Then

y, = f I%) = I tfoyftdt = It x

Yz = fly, ) = It 9
, Holt = Itftt.tt= I txt 'sx2

One proves by induction that Tn
=Sio x

"
.
Note we are free to choose

I =L- 8,87
,
J = f I - b, Itb] arbitrarily provided 84 (so thatwemay choose

days ) and 8L b/c tb Cso just take b large, and any 84 will do ) .

So

on I we find that limn→ ooh = e
"

is the unique solution .

=
-

This example shows how the requirement 28<1 is a bit . . - cheesy .

We can
(1)

extend oursolution by first finding a solution Y on C- 'k
,
Y]and then

applying the same method to the IVP Y
'
= Y with9144=9" '( Ya ) .

Wewill get a unique solution Y
'" to this second problem on [O, I] , and by

uniqueness it agrees with Y
"'
on the overlap . We can repeat this in both

directions to show that there is aunique so IN ( namely e
" ) on all of IR .

Ya-th

¥2
' However if you look at thedetailsyen i

i
i

you will see this extension relied on
,

I

.

¥1
the particular nature of hcx, y ) = y .

i i
: l In general if h :Casb)HR→ IR we

'
,

V
i:/! i can always extend to all of [aib] .

I I I 7 I

- Yz Yz I

-

IVP # I
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There is something quite remarkable about this example : the iteration constructs a

sequence of polynomial functions converging to the unique solution .

It is clear that

this works more generally , to show that solutions of polynomial ODEs may
be written as the uniform limit of polynomials : if h : U→ IR is a polynomial
function andwe take To = yo then every function f

'

(To ) constructed by
the iteration will be a polynomial , because the integral of a polynomial is a

polynomial . We already know that convergence in CtsII, J) means uniform convergence .

Remark 45- 2 Why should we care about function spaces , say Cts ( X, IR ) ?

Beginning in Lecture 12 we have made the point that continuousmaps X→ R can

represent configurations ofphysical systems , with those configurations consistent

with physical law typically being a subset A E Cts I X, IR) consisting of so INs

to some differential equation .
We certainly care about the set A .

But why are

we forced to care about the set ofall continuous maps , and further, whymust

we cave about the topology on this set ?

Consider the expression e = LIMO ( I t t )
"

. Wecan view the righthand side as

a kind of algorithm which constructs the real number e beginning with integers ,
where the operations allowed in the construction are theusualarithmetic operations
( here used are addition

,
division and iteratedmultiplication aka exponentiation)

togetherwith the limit . By definition INplus these operations
"

generate
" IR

.

Moreover it we apply a continuous function f : IR→ IR to e
,
it transforms the

algorithm for constructing e to an algorithm for constructing fCe) , provided f

itself is computed by some algorithm :

feel = ft high IHtt
"

) = him
.

H CIttT)
.

For example , e
'
= II

,ma
( It I )
"

presents e
2
as a limitof rational numbers .
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It is the topology on IR which provides the ambient structure that gives
limits

,
and thus such algorithms, meaning . Incidentally, such considerations

are developed at length in Tuning 's paper : A . M . Tuning ,
"
On computable numbers,

with an application to the Entsche idungsproblem
"

,
1936

,
which is more

famous for introducing whatare now called Universal Turing Machines.

Returning to differential equations and our set of solutions A E Cts (X, IR),
with say

YEA expressed as a uniform limit Y
= limn→a Tn of polynomial

functions The Cts (X, IR ) (not themselves solutions)
,
we see that polynomial

functions play a role analogous to integers or rational numbers, as the
"simple

"

functions which generate via limits ( and thus the topology on Cts CX, IR ) )

other functions of interest
.

Moreover the "algorithm
" Y = limn -soo Tn for

constructing Y may be transformed to an algorithm for constructing
quantities that are a continuous function of X, for example it X = Ca, b]

Samit = Scam hittin = It'smole
.
,
. ,

Tn

and Sca
, by
Yn is easily computed since Yn is polynomial. Here we have

used that Ka
, by C

- ) is continuous
,
see Exercise Ll 5-3 .

Inconclusion : to compute with solutions Y we use constructionsof such solutions

Y = limn
-soo Yn as limits of "approximate solutions

" In taken from a classof
"simple

" functions (e . g . polynomials) . It is the topology on Cts (X, IR ) which

provides the ambient structure that gives such constructions meaning .

This all points to a natural question , whichwewill address in Lecture 16 :

Question : which functions YE Cts ( laid, IR ) may be written as

auniformlimit of polynomials ?

(
meaning , a limit in (Cts ( said, IR ) , do )
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*

Exercise

LISI
This exercise walks you through the extension of thetheorem
to systems of first-order ODES, i.e .

Y
,
'(a) = ht x , 9,64, . . . in Ca ) ) 9. Ix. ) - yo

" '

L' (x ) = h:(x ,9, ( x), - - .in (x)) Ll Xo ) - yo
" )

y
'

Cx) = hnlxihlxl , .

"

. .ifnlx ) ) In
o ) = you !

Leth : U -7112
"

be continuous where UEIRXIR
"

- IR
" '

is open,

then a solution of the above IVP on an interval IER containing

Xo is a function I : I→ IR
"

Iwhose components are the Y.- Ix ) )
which is continuously differentiable (meaning each Yik ) is so)
with the property that as functions (where 94×1=19141, . . ihlx)) )

Y
'
= hotel

, Y > , Hao)=yo=(yo
"! .

. ,yd")
.

Supposed > O exists with

Khloe , y , ) - hlx , Ya) HE ally , - yall thx,y, ) , Kiya) EU

with H - It : IR
"

-3112 given by 11911
- Sii, Hit . Also assume

that (Xo, yo) EU . Pure that there exists t > Osuch that the IVP

has a unique solution on Geo - disco tf ]
.

I Note : by Ex . 43 - to

you can choose
a metric on IR

"

which suit you)
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Exercise Pure using the previous exercisethat the IVP y
' '
= -T

,
901=0 ,

y
'
(o) = I has a unique solution on ft , IT forsome f, and

use Picard iteration to give a powerseries expansionof the solar .
(for the secondpart youwill need to know the appropriate f) .

Exercises Prove that the function

Cts ( Ca , b), IR )→ IR

fT Sca
,
b] f

is continuous
,
where I denotes the Riemann integral (see Tutorial 8

and T. Tao 's book "Analysis
"

for a reminder ), and Cts (Ca, b], IR ) has

the compact - open topology .

I Hint : use Lemma L8-4 and recall the

interaction ofuniform convergence and integrals, from say Tao 's book,
Theorem 14.6 . l of Vol . 2)

.

Remain For Picard 's theorem we need a> 0 such that

1h (x, y , ) - h (x, ya ) l E al Yi - Y - I ( lo . , )

for all ( x, y , I, (x,b) E U - Suppose for simplicity that whenever (x,b) EU

and ( x, y a)EU with ya> y , then ( x , y ) EU for all y , Ey ⇐ ya .
Then

if 242y exists on U and 12h lay Cail) Is d for all Cx, y) C- U then

given ( x, y , ), ( x , ya) C- U with y isy , we have

h (x, ya) - h HiT) )
=

2h

ya - y ,
Ty (x, c) some CE [y ,, y)

and hence ( 10.1 ) holds for the given 2 .
This is the most common source of

the bound ( lo - t ) necessary for Picard 's theorem .


