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Lecture 14
: Banach fixed point theorem updated
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We now know that if X is compact and ( Y
,

dy ) is a complete metric
space

then Cts C X
,

Y ) is a complete metric
space

with the do metric
.

In
today

's

lecture we examine an important theorem about complete
metric

spaces ,

the Banach fixed point
theorem

,
which will be

applied
next lecture to

prove

the existence and
uniqueness

of solutions to ( ordinary ) differential equations
.

DEI A fixed point of a function f :X → X is x E X such that f ( x ) = x
.

A fixed point problem
is the problem of

proving
the existence and/oruniqueness

of a fixed point for a

given
f : X

→ X
.

Many problems in mathematics ( e.g .

root finding
,

convex optimisation ,

or solving
ODES ) can ( through varying

degrees of
chicanery

) be
phrased as fixed point problems . Hence

,
general

theorems about fixed points
tend to have widespread application .

Example 44
-

I ( Newton 's
algorithm ) Suppose g

: IR → IR is differentiable

and we wish to find a solution a of g (a)
=

O
. Newton 's method

is to iterate
, beginning with

any
xo E IR

,

the formula

"
"

"

°
" "

" )

g ( xn )

anti
: =

an
-

⇒
.

I
,

I

}

q
to

Knt  2

Xnt  I
Kw

g

Observe that a fixed point of f C x )
= x

- KY
g

'

f x ) is

precisely a root of
g

where g

'

(a) to since

a
= a

-

9 ' a)

1g
ya )

Es
g

-

la )
= O
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Example 44-2 Let V be a vector
space , g

:X → V
a function C

perhaps

non
-

linear ) and
suppose

we are
given

well and wish to solve

the
equation g

( v ) = w for v. This is

equivalent
to

finding

a fixed point of f I v )
= Vt

g k ) -

w
.

Why bother
rephrasing problems

as fixed
point problems

? Well
,

because

finding a fixed point of a function f
: X

→ X is ( at least conceptually )

trivial :

just
iterate f  

infinitely many
times ! Choose no EX and set

x
,

= f ( Xo )
,

xz
= f I x

, )
=

f

2

( Xo )
,

-
.

.

,

X
n ti

= f ( an )
.

In the
"

limit
' '

( whatever that means ) we have x* =

Lima f
"

( Ko )
,

and

provided f is continuous we find that x

*

is a fixed point

f- f x* ) = f ( Lienz f Yao ) ) =

tizz f

ht '

( no )
=

lnirnafhcxo ) = x*
.

This is an informal argument ,
but it can be made

rigorous provided
the

sequence
( f Tko ) ) 5=0

converges
:

one

way
to ensure this is to assume

f- is a contraction ( so the
sequence

is Cauchy ) and that X is complete

C so that
Cauchy sequence converges )

.

The fact that x

*

is a fixed point

follows by precisely
the above argument once we know it exists

.

Def Let ( X
,

d) be a metric
space

.

A function f : X → X is called

a
contraction if there exists Xe CO

,
1) such that

d ( foe
,

fx
'

) E Xd ( a

,
x

'

) It a
,

x

'

E X
.

Clearly a contraction is continuous
. ( we call f a A - contraction )



f

from his PhD thesis !No
pressure

.

③

Theorem LILI
- I I Banach fixed pt .

theorem ) Suppose
( X

,
d) is a complete

metric
space

and f :X → X is a contraction
.

Then f- has

a

unique
fixed point .

For
any

x E X the
sequence

( fnx )nFo

converges
to this fixed point .

Roof Let 7 be the contraction factor off as above
.

If fcp ) =p ,
ft 91=9 then

d ( p , q )
= d Cfp

,
fq ) E Xd

C
p , 9)

which is
a contradiction unless d ( P

,
9 )

= O
.

Hence a fixed point ,

if  it exists
,

is
unique .

It remains to
pure

existence
.

Given x e X set an f

"

C x )
.

Note that d ( f 2x
,

f- Zy ) E Xd ( fx
,

fy ) E A
'

d la
, y ) and by

induction

also dffkx
,

fky ) E 7k d C x
, y ) for k > I

.

We have for m > he

d ( am
,

an ) E d ( am
,

am -

I ) t
-

.  -

t d ( antz
,

anti ) t d ( anti
,

an )

= d ( fmx
,

fmtx ) t
.  

- . .

t d ( frit
 

2x
,

fhttx ) t d ( f

ht

's
,

fha )

S Xm

-

 '

d ( foe
,

x ) t
- .  -

t It 'd C f  x
,

x ) t And I fx
,

x )

= [ Xm

-  '

t . . .

t I ] d ( foe
,

x )

= Xn ( Eino

-  '

Xi ) dffx
,

x )

E 742Eo Xi ) dffx
,

x )

= In .

. d ( fx
,

x ) ( since OCXCI )



④

Since KI
we

may
make the RHS

arbitrarily small
by making

n sufficiently

large
,

and so it follows that ( an ) F-
 o is

Cauchy .

Since X is complete

this
Cauchy sequence converges ,

say
to x* EX

,

that is

x*
 

=

moan

=

him
f

"

Ge )
.

But
by Lemma L 8-4 we have

flat )
=

Ling
f ( f

"

C x ) ) =

nliynofnt

'

( x ) = x

*

so
x*

is a fixed point . D

While Example 44
-

I
,

44-2 hint at some of the problems that
may

be

phrased as fixed point problems,

it
may

be still some work to show the

function
g

is a contraction ( for example Example 44-2 can be used to

prove
the Implicit

Function Theorem
,

the
hypotheses for which create the

circumstances for that particularg
to be a contraction )

.

Here is an exercise

that walks
you through the linear case :

Exercise 44
- I

Let A E Mn ( IR ) and let
g-

 
. IR

"

→ Rn be

g
( x )

=

A v

Define f
'

- IR

"

→ IR
"

by f ( v )
=

v
-

Av
t w

,

where w

is a fixed vector
.

Prove that if there exists X e lo
,

1) with

n

§
.

 

= ,

I
Sij

-

A
ij

I E X for each Kien

then Av = w has a

unique
solution v

,

using the

Banach fixed point
theorem

applied
to f

:
IR

"

→ IR ?

( Hint : choose
your

metric on IR

"

wisely ) .



⑤

Exercise 44-2
Suppose

( X
,

d ) is a compact metric
space ,

and for XE to
,

1) let

Cts
,

( X
,

X ) Ects C XX )

be the
subspace of X - contraction

mappings ,

with the

subspace topology ( as usual Cb ( X
,

X ) has the
compact

-

open

topology ) .

Prove that the function

fix
: Cts

a
( X

,

X ) > X

sending a contraction
mapping

to its
unique fixed point

is continuous .



http://www.math.jhu.edu/~jmb/note/invfnthm.pdf
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Example 44-3 Applications of the Banach fixed point theorem include :

(1) The Picard theorem on existence of solids to ODES ( see Lecture 15 )
.

(2) There is a proof of the Implicit Function Theorem ( fundamental to

higher
calculus aka differential geometry ) via the fixed point

theorem

( see for example ) .

This follows the

idea outlined in Example 44-2 .

(3) the Bellman equation is a functional equation ( ie . an equation

in which the =

sign means equality of functions
,

as in a DE )

which is foundational in optimal
control

, dynamic programming

and reinforcement learning .

The functions involved are value functions

U Cs )
assigning

to each
possible state

s (
say

of an agent playing
an

Atari
game ) its

utility .

Such a value function determines the
agent

's

behaviour
.

You

may
be familiar with one application from DeepMind

:

V. Mnih
,

K
. Kavukcuoglu ,

D
.

Silver
"

Playing Atari with
deep

reinforcement
learning

"

arXiv : 1312.5602 ( published

in Nature in 2015 )
.

The
paper

starts
by explaining

the Bellman equation ,

how to
converge

to an optimal policy by
iteration ( more on that in a moment ) and how

that's too slow
,

so instead
they use a C

deep ) neural network as a

substitute
.

The theoretical
convergence

is based on the Banach fixed pt .

th m
:

•

S
. Russell

,

P
. Norvig

"

Artificial intelligence
: a modern

approach

"

3rd ed
.

517 . 2.3

• R
.

S
. Sutton

,

A. G. Barto
"

Reinforcement
learning

"

f 4 .

I
.



⑦

The
following

is Exercise 17-6 of Stuart & Russell 's AI book :

Exercise Htt

-3

Consider an agent acting
in an environment in order to achieve

some
objective ,

the
degree

of attainment of which is measured

by
scalar rewards

.

At
any given

time ( which is discrete ) the

agent can be in one of a number of states S
,

and if

they are in slate SES then
they

choose from a finite set of

actions Als )
.

This action is an
interaction with the environment

,

which causes the
agent

-

to transition to state s
'

with
probability

denoted PCs
'

la
,

s )
.

At each time
step

the agent receives a

reward Rls )
depending

on their state
,

with Rls ) EIR
.

We

assume the set L Rls ) Ise S3 EIR is bounded

,

and that
given

fixed a
,

s the
probability

Pls
'

la
,

s ) is nonzero only for finitely many
s !

Teg . 8=2
,

Als )
=

{ left
, right ) for all s

,

and

P ( s

'

la ,

s )
=

{

I  if s

'
- Stl

,

a =

night

1
 if s

'
=

s
- I

,

a
= left

0 otherwise

and
say

R ( s )
=

min { 1000,

es ) Move right to win !
Note the probabilistic

aspect
is there because sometimes

you try and fail
,

i.e . we
could take

instead

pcsya.sk f
I:

'

It:night
1  if s

'
-

- s
- I

,

a = left

0 otherwise -1

The discounted reward of a
sequence

of slates E
= ( so )F=o is

RIE
,

T ) :  = It
> o

Tt R ( St ) (why is this finite ? )

where Oak I is a fixed discount factor .



⑧

The optimal control
problem ( or reinforcement learning problem ,

or

dynamic

programming problem ,

or

cybernetic
feedback

problem,

-
. . .

) is to determine

how the agent should behave so that  its
sequence of States so

,

so

,
-

- . maximise

the expected discounted reward
.

Here
by

"

behaviour

"

we mean the choice of

action a C- Als )
given

a current state s
.

Let A
 =

Uses Als ) and define a

policy
to be a complete

set of such choices
,

ie .
a function IT :S → A such that

IT ( s ) E ACS ) for all S E S
.

Given a starting state s
,

a
policy

TL
,

and the
"

transition model

"

( meaning
all the

probabilities
Pls

'

la ,

s ) ) we obtain a

probability
distribution over state

sequences

s

,

with PCs )
being

the probability an agent initially in state s
, following IT

,

and subject
to the transition model

,
experiences s as its

sequence
of states

.

The expected discounted reward in this case
is

E U

"

I s ) :  = E ( RH
,

s ) )
=

§
PIE ) Rtr

,
E )

.

§

&

±

a- The optimal policy
Tis

beginning
in state s is the one that maximise U

"

( s )

over all IT
,

and it turns out this is independent
of s

,

call it
 It

.

The

the
E

E utilityof a state s is then U
"

*( s )
,

which we denote U I s )
.

This all seems

I

-

unsatisfying
: how would

you
even find such a

It's ? Recall S

may
be infinite .

Now here's the brilliant trick
!

To get around the morass in the box
,

we can define

the value function U I s ) as the solution ( among functions U
'

- S → IR ) of an

equation ( the Bellman equation )

U I s ) = Rls ) t 8 .

ameaays

,
§sP

l s

'

la
,

s ) Us
'

)

-

^

I only
nonzero for finitely many

s !

finite



⑨

The idea is that if U :S → IR is a solution of the Bellman equation then

the optimal policy of the
agent

is derived from it via

I
*

Cs ) :  =

aargem.mg,x÷s
Pls

'

la
,

s ) VCs
'

)
.

So to solve the
optimal control

problem we need
only

solve the Bellman

equation .

But this is
obviously a fixed point problem

!

I i ) Let X be the set of bounded functions
U

: S → IR and

prove
that d I U

,
U

'

)
=

sup
{ I U Is )

-

o

'

Is ) I I se S } makes X

a complete
metric

space
.

Iii ) Prove that f
: X → X defined by

flu ) I s ) = Rls ) t 8 .

ameaays

,
⇐sp

l s

'

la
,

s ) Us
'

)

is a
contraction with contraction factor

8-

Conclude that
by the Banach fixed point

theorem f has a unique fixed point

( hence the Bellman
eq

"

has a unique
som ) and that

given any
initial value

function Uo the
sequence

Ui
:  =

f
'

'

( Uo )
converges

to that so IN
,

and hence

It
Cs ) :  =

aargemn.gg?s
Pls

'

la
,

s )Ufs
'

)

"

converges

"

to
an optimal policy

as
i → a

.

(
the set of

policies
does not have

any
reasonable topology as A is  discrete

.

We can however consider
probabilistic policies

and
thereby make sense of this

.


