
Lecture 13 : Metrics on function spaces updated 5/11119

We have now defined a topology on Cts ( X
,

Y ) for any pair of spaces X
,

Y

which has special properties if X is locally compact Hausdorff .
But it

remains unclear how to think about the basic open sets SC K
,

U ) in this

topology .

In this lecture we will specialise to the case where X is compact
and Y is meth 's able

,
and

, by using a metric on Y C any one will do ) we can get
a better handle on the compact - open topology.

Exercise 43 - I with X
,

Y arbitrary ,
we have

( i ) If KEK
'

are compact then S ( K '
,

U ) E S ( K
,

U )
,

Cii ) If U EU
'

are open then S ( K
,

U ) E S ( K
,

U
' )

.

( iii ) If K
, K

'

are compact sets S ( KUKI
,

u ) = S ( K
,

U ) AS ( Kl
,

U )
.

Civ ) If U
,

U
'

are open then SC K
,

Unu
' ) = SIK

,
u ) n S ( K

, U
' )

.

Example 43 - I With X = IR
,

Y = IR the open set Sf [ aib ]
,

kid ) ) is

Cts 1113,1127

^

diff?
" "

✓ Skam , lady

•

g

a the graph off . ⑧I laid
,
Ed,

d 'D
c - - .  -
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- - .  - - - - - - - - - - -

of
.

'

I I >
a b

We can shrink this open neighborhood of fin Cts C IR ,
IR )

by either shrinking ( c
, d) to Ccl , d ' ) CCC ,

d ) ( which would

for example exclude the function g indicated above ) or

we can expand [ aib ] to [ a '
,

b ' ] s Ca ,
b ] .



②

This picture raises the question : if ft g in Cts ( X , Y ) can we separate
f , g by open neighborhoods ? That is

,
is Cts C X

,
Y ) Hausdorff ? we know

Cts ( 1*3
,

Y ) =
 Yas spaces so it  is certainly necessary that Y is Hausdorff

.

Lemma 43-1 If Y is Hausdorff then CB ( X
, Y ) is Hausdorff .

Root Suppose f
, g

:X → Y are continuous and ffx ) # 9k )
. Then let

U 7 flu )
,

V 79k ) be open with Uh VF of .
Then K = { x } EX

is compact and SHH
,

U )
,

Sl I A
,

V ) are disjoint open subsets

of Cts C x , Y ) with f E SCH )
,

U )
, g E S ( In }

,
V )

. D

Example 43-2 Again with X=Y= IR
, we can shrink [ a

, b) to a point { a }
,

to get open subsets S ( la )
,

U ) of Cb ( IR , IR ) sufficiently fine

to separate points

X I
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Exercise his -2 C i ) Let X be a compact Hausdorff space and ~
an equivalence

relation on X s .

t
. Xlr is Hausdorff I it is automatically

compact )
.

Let p : X - XL be the quotient map .
The map

f) of
Cts ( Yr

,
Y ) → Cts ( X

,
-1 )

is continuous
, by Lemma 42 - I

. Rove that this map is a homeomorphism

onto its image ,
Cts I Xlr ,

Y ) may be  viewed as a subspace of Cts ( x ,
Y )

.



③

Cc - )

( ii ) Prove that for any spaces X
,

Y with Xf of the function Y → Cts ( X , Y )

sending y EY to Cy
.

 
- X → Y with Cy ( x ) =y for all x EX is continuous

,

and induces a homeomorphism onto its image

( so we may view Y as a subspace of Cts C X , Y ) )
.

Question : When is Cts ( X ,
Y ) meth 's able ?

In light of the previous Exercise
,

a necessary condition ( assuming Xt lo ) is that

Y is meth 's able
. Let us consider the simplest case

,
which is X finite and discrete

and 4=112
,

so that by Exercise 42 - 5
, we have a homeomorphism

Cts ( lb . . . ,n3
,

IR ) = Rn

f- 1- ( flit ,
. .

,
flu ) )

where IR
"

has the usual topology .

We know at least three metrics which

induce this topology , namely di
,

da
,

do
,

which give rise to metrics on

Cts ( Eb . . . ,n3 ,
IR ) which likewise determine its topology .

These are

• d
, ( f , g ) = I I ,

I f Ci ) - gli ) I

• da ( f , g ) = { II ,If Li ) - gli ) I 2)
Y '

•  doo ( f
, g) = sup { If Ci ) - g C i ) III ,

Replacing ( IR
,

I . I ) by any metric space ( Y
,

dy ) and I flit - gli ) I by

dy ( Hit
, gli ) ) similarly provides three metrics on Cts ( L b . .

.

,
n }

,
Y )

inducing the compact - open topology .
The real issue is how to general is e

these metrics from X = I b .  - .

,
n ) to an arbitrary compact space .



④

Naturally if X is infinite we would like to replace I by f and define

a metric d on Cts ( X
,

Y ) for X compact,
and Y having the topology

induced by a metric dy
, using

• d
, ( f , g ) = f× dy ( fl x )

, g l x ) ) du

• da ( f , g ) = { f ×
dy ( f Gi) , g la ) )

-

dm )
" '

•  doo ( f
, g) = sup { dy (

Hx
)

, g C x ) ) I x EX )

The
"

definitions
"

of di
,

dz require that we have a theory of integration
on the space X

, say the Riemann integral if X = [ a
,

b ] or more

generally a compact subset of IR
"

,
or more generally the Lebesgue

integral ,
when X is given a measurer . However the third definition

always works :

Exercise 43-3 If ( Y
,

dy ) is a metric space prove that the metric dy : Yxy → IR

is uniformly continuous when YXY is given the product metric

( see Ex
.

L 13 - 8 for the definition )
.

Def
" Given a subset A EX of a topological space X

,
the closure A of A

and the interior A
°

of A are defined by

At = N { CE X I C is closed and C Z A )
Ao = U I U E X I U is open and U E A }

.

So At is the smallest closed set containing A
,

and Ao is the largest

open set contained in A .
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Exercise 43-4 C i ) x E At if and only if everyopen neighborhood of a

contains an element of A

Iii ) In a metric space ( X , d) we have Bela ) E { ye X I d la , y ) E E }
.

Ciii ) Iff :X → Y is continuous then f I A ) EFTA) .

Civ ) If AE B then At EB
.

Theorem 43-2 Suppose X is compact and Y is meth 's able . Then for any

metricdyinducing the topology on Y
,

there is an associated metric

doo ( f
, g) = sup { dy ( Hx)

, g Cx) ) I x EX )

on Cts ( X
,

Y ) whose topology is the compact -

open topology .

Boot First we must show do is well - defined . The function

< f , g > dy
X - Y x Y → IR

x I → ( f Cx )
, g ( x ) ) 1-3 dy ( f f x )

, g ( x ) )

is continuous and X is compact ,
so its image is compact in IR ( Bop .

29-3 )

and hence bounded
,

so the supremum exists and do is well - defined . We

have to show it is a metric and that it induces the compactopen topology .

do is a metric ( Mt ) Clearly do ( f
, g) 70

.

( M2 ) If doo I f , g) = O then using ( MI ) for Y
,

f- I x ) -

- g ( x )

for all REX so f  = g .

( M 3) do ( f
, g) = sup I dy ( Hx )

, glx ) ) I see X }
= sup { dy ( g ( x ) , f-Cx ) ) I see X }
= do ( g , f )
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( 144 ) We need to show do ( f
,

h ) Eda ( f
, g) + do (91 h )

. But for , ( e X
,

dy ( f ( x )
,

h ( x ) ) e dy ( f ( × )
, g ( × ) ) + dy ( g ( ×) ,h ( × ) )

s da ( f
, g) + do ( g ,

h )

which proves the desired inequality .

Tda is the compact . open topology Let Jx ,Y denote the compact . open topology .

To show Jd
.

E Jx
, -1 it suffices to pwve

Be (f) E Tx
, y for all f Ecb ( X , Y )

and e > 0 . Since f is continuous , FCX ) is compact ,
and hence { Be , }

( y ) IYEHX ) }
has a finite subwver { 1343 ( fx )

,
...

, Bets ( fxn ) }
.

Define

Ki  - . = f-
'

Beb ( fxi )
,

Ui :  = Bek ( fxi )
.

then

f ( Ki ) = f ( f
'  '

Beblfxi ) )

E f ( f-
 '

Beb ( fxi ) )

E Bets ( fxi )

c- { ye YI d ( y ,
foci ) c- 43 }

E Bqz ( fxi ) = Ui
.

Hence fe hit ,
S ( Ki ,

Ui ) E Cts ( XY ) .

It remains to show his ( Kiwi ) EBEIH

( since then we will have shown that given FEQEJD .
that there is an open set

Q
'

in Jx ,y with f EQ
'

EQ
,

which shows QEJX
, -1 for any QE Jolo )

.



⑦

Suppose g e hi SC Ki
,

Ui ) so that g ( Ki ) E Ui for all i .
We will show

dy ( 964 ,
fix ) ) a 546

for all x EX
,

then the supremum
do ( 9 ,

f ) must be E 546 and hence < E
,

so g E Be If )
.

But since the Bets ( foci ) cover f ( X ) there is some is . t
.

fx E Bef ( foci )

that is
,

dy ( fx ,
foci ) L 43

,
and hence KE Ki

.

But then by hypothesis
g ( x ) E Ui  = Bek ( foci ) and so

dy ( g x
, fx ) E dy ( gx , foci ) t dy ( foci ,

f x )
<

E Iz t E 13

= 546

as claimed
.

This proves Tda E Tx
, y .

For the inclusion Tx
, y

E J doo we have to show SCK ,
0 ) E Tda for any KEX

compact and VEY open .

If f E S C Ki 0 ) then f ( K ) is compact and

so by Lemma 43 - 4 below there is E > O with dy ( fl k )
,

y ) > E for all

KEK and yet U
. We claim Be (f) E S ( K

,
U )

.

If g C- Be (f) then

dy ( f k , g k ) s E for all ke K
,

and hence g KE U
,

so g ( K ) EU and

this proves the claim
,

and more over shows that S Ck ,
U ) E Td co .

Hence Tx
, y

= Tda and the proof is complete .
D

Corollary 43 - 3 For X compact and Y meth 's able the metric topology on

Cts ( X , Y ) is independent of the choice of metric on Y
.
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Detn Let ( Y
,

d) be a metric space ,
AEY a subset  then for YEY we define

d ( y , A) := in f{ dly
,

a ) 1 a e A }
.

Lemma 43-3 The function df , A) : Y → IR is continuous .

Roof Given x
, ye Y we have for a C- A

d ( x
, A) e d ( "

, a ) c- d ( x ,y ) td ( y
, a)

Hence d ( x
, A) - d ( x , y ) e in f{ dly

,
a ) ) at A } =D ( y

, A)

so d ( x , A) - d ( y , A) c- d ( x , y ) and hence I dcx , A) - dly ,
A) I E day )

.

( swap the role of × , y )
.

It now follows easily that df , A) is continuous . D

Lemma 43 - If ( Yidy ) is a metric space ,
K compact and U open with

KEU then there exists E > O such that for all KEK and

x¢U we have dy ( x ,
k ) > E .

II.f@Eu.x

Roof The function dt , U c) / k
: K → IR is continuous and by the Extreme

value theorem there exists

KOEK
with

d ( k .
,

U
' ) = in f{ d ( k

, U
' ) I kek }

.

The number E = Yzd( to
,

U
' ) > 0 does the job . D



⑨

Exercise 43 - 5 Let X
, Y be topological spaces with Y meth 's able

,
and let

dy be amebic inducing the topology on Y
.

For C

EX
compactE > O and f E CH ( X , Y ) defineBc

( f
,

E ) :  = I g Ects ( X ,
Y ) I sup I dy ( foe, ga ) I see c) s E }

Prove that

( i ) The sets Bc ( f
, E) form a basis for a topology on

Cts ( X , Y )
,

and that

Lii ) This topology is the compact -

open topology .

Pointwise and Uniform convergence

When X is compact and Y is meth 's able we know that Cts ( X
,

Y ) is metis able
,

with metric do
.

What does it mean for a sequence of functions ( fn ) ! to

converge to f in this metric ?

Deff Let X be a set
,

( Y
,

dy ) a metric space ,
Cfn ) F-

- o a sequence of functions

f- n

' 
- X → Y

, and f : X → Y a function .

Then

• ( fn )I=o is pointwise convergent to f  if for every x EX the sequence

( fn ( x ) ) F-o converges to flu ) in Y
.

That is
,

the EX 'VE > OF NEIN ( n > N ⇒ dy ( fax
,

f  a ) a E )

• ( fn ) F- o is uniformly convergent to f  if

V-E > OF N E IN Hue X ( n > N ⇒ dy I fnx
,

foe ) c E )
.
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Since uniform convergence is equivalent to

HE > OF N EIN ( n > N ⇒ sup { dy ( fax , foe ) I x EX } L E )

it is clear that if X is compact and ( Y
,

dy ) is a metric space ,
then a sequence

of continuous functions fu :X → Y converges to a continuous function

f :X → Y in the metric space ( Cts C X
, Y )

,
do ) if and only if Cfn ) 5=0

converges to f uniformly in the above sense .

So at least when X is compact ,
the

compact -

open topology captures the notion of uniform convergence .

Example 43-3 The sequence
( fu : Col D → IR ) 7=1given by fu (a) =

" In converges

uniformly to the constant function f- C x ) = O
, since

sup { Ifn ( a ) I Ix e Co , D } = Yn
,

which we can make arbitrarily small .

Uniform convergence implies pointwise convergence ,
but the reverse is false .

Example LB - 4 Consider the function f C x ) = e-
" ? with graph

-

'

t

I
.

We can concentrate this bump onto a compact subset I - Yu
,

HEIRby pre composing with the continuous map I -

'

In
,

Yn) → IR sending
x I → ( I -n3e5" '

and extending by zero outside of C - h
,

n ) to define

a sequence of continuous functions ( n > I an integer )
/ - I

f  n

: ft , D → IR fn Cx) =

{
exp a ) - Yncxc Yn

O otherwise



④

f-
a

- I

f fi

.
-  I -  ' Iz I

Clearly we have for each - I Ex E I
a limit limn →  as fn Cx ) = So ( x )

meaning O if  x # O and 1  if  x = O
. So there is pointwise convergence

fn → So
. However this convergence is not uniform . We can show this

directly ,
but it is also an immediate consequence of the next theorem .

A uniform limit of continuous functions is continuous :

Theorem 43-5 Let X be a topological space and C Y
,

dy ) a metric space .

If f :X → Y is the uniform limit of a sequence (An :X → Y Info

each member of which is continuous then f is also continuous
.

Pioof Let VE Y be open ,
and let xo

E f
-

'll be given ,
with say Be (

fxo
) EV

Then by uniformity there exists N > O such that for NIN and x E X

dy ( fnx
,

foe ) s 43
.

Set y fusco .

Since fu is continuous
,

the set fit
'

Bets ( Y ) is open ,

and if x lies in this open set then

dy ( f x
,

fxo ) s dy ( fx , Fox ) t  dy ( fix , y ) t dy ( y ,
fxo )

< 43 t 43 t 43 = E

Hence do Eff
'

1343 (Y ) E f-
- '

Be Cfxo ) E f
-  ' V so f-

'

V is open . D



④

Since for X compact and C Y ,
dy ) a metric space convergence in Cts C X , Y )

means uniform convergence ,
and uniform limits of continuous maps are

continuous
,

this suggests that as long as Cauchy sequences in Y converge ,

Cauchy sequences in Cts C X ,
Y ) ought also to converge .

Recall that a sequence ( an ) Fo in a metric space
C A

,
d ) is Cauchy if for every

E > O there exists N > O such that for all n ,
MD N we have d I an

,
am ) a E

.

Any convergent sequence is Cauchy I Ex
.

L9 - 3)
,

but the converse is not true :

for example ( Yn ) FEI is a Cauchy sequence in I 0 , I ) which does not converge .

Exercise 43 - 6 Any Cauchy sequence in CA , d ) is bounded ( as a subset )
.

Exercise 43 -7 Any Cauchy sequence which contains a convergent subsequence
is itself convergent .

DEI A metric space ( A
,

d ) is complete if every Cauchy sequence in A converges .

Example 43-5 R with its usual metric is complete ( by definition ,
the way

we have set things up ,
in Tutorial S )

.

Exercise LB - 8 Let ( Ai
,

di )
,

. . . ,
( An

,
d n ) be metric spaces and with A  = IT

, ,
Ai

define d : A  x A  → R by d ( ( ai )
,

( bi ) E , ) = Sidi Cai , bi )
.

Prove that

( i ) ( A
,

d ) is a metric space

Iii ) The topology on A induced by d is the product
topology on Ti  I , Ai ( giving each Ai its metric topology )

.

( iii ) If each ( Ai
,

di ) is complete so is ( A ,
d )

.



④

Since ( O
,

I ) is homeomorphic to IR
,

but ( IR
,

I - I ) is complete while

( I 0
, l )

,
I - I ) is not

,
this shows completeness is not a topological property .

It is genuinely a property of the metric ( so except in some exceptional
circumstances

,
like topological groups ,

we only talk about completeness of a metric ) .

Exercise 43 - 9 Ii ) Prove that if two metrics di
,

dz on A are Lipschitz equivalent
( see Tutorial 3) then ( A

,
di ) is complete if and only if ( A

,
dz )

is complete .

Iii ) Prove that if CA
,

d ) is complete and BEA is closed then

( B
,

d ) is also complete .

In particular Ex
.

43 - 8 plus 43 - S gives that ( IR
"

,
di )

,
( IR ? da ) and

I IR "

,
do ) are all complete ,

as they are Lipschitz equivalent I Tutorial 2 Q to )
.

Lemma 43-6 Any compact metric space ( A ,
d ) is complete .

Root If ( an )F=o is Cauchy then by compactness it contains a convergent

subsequence ,
and by Ex . 43 -7 the original sequence converges . D

Corollary 43-6 If X is compact and ( Y
,

dy ) is a complete metric space ,
then

The metric space ( Cts ( x
,

Y )
,

do ) is also complete .

Root Let ( fin ) Eo be Cauchy in Cts ( X
, Y )

,
with respect to do

.
Then

for each x EX the sequence ( fnx ) 5=0 is Cauchy in Y and we define

f- ( x ) to be the limit .
Then f :X → Y is a function .

If we can show

that the sequence ( fn ) F- - o converges to f uniformly then by Theorem 43-5

f- must be continuous ,
and it is then immediate that fu → f with respect

to do
,

and the proof is complete .



④

Given E > O choose N s .
t . for m

, NZ N and x E X we have

dy ( fm x
, fn x ) L E 12

( This we may do since Cfn ) n-70 is Cauchy w .
r

.

t - doo )
.

For any fixed x e X

convergence fn ( x ) → f C x ) means we can find m ( x ) 3 N such that

dy (fma ,
f x ) L E 12

and then for any n 7 N we have for all x EX

dy ( fn x
, f- x ) E dy ( fn x

, fine , x ) t dy ( fm pg , f x )
< Elz t Etz a E

.

Hence fn → f uniformly and the proof is complete .
D

Example 43 - 6 If X is compact then Cts ( X
,

IR ) is complete ( by default

when we say such a thing ,
we mean it with respect to the

do metric on Cts ( X
, IR ) associated to I - I on IR ) .

Exercise LB - to Suppose X is compact and Y is meth 's able
,

with d
'

y ,
d f being

Lipschitz equivalent metrics inducing the topology .
Prove that

the two associated metrics d '
a

,
do on Cts ( X

,
Y ) are

also Lipschitz equivalent .

The importance of completeness of function spaces can hardly be overstated
,

since it allows us to construct exact solutions of differential equations by

taking a limit of approximate solutions
,

as we will see in the next two lectures
.



Solutions to selected exercises

13-3 We have

d ( x
, y ) E d ( x

,
z ) tdlz , y )

.

'

. d ( x , y ) - d I Z
, y ) E d ( x

, Z )

Exchanging the vole of x
,

't yields d ( Z , y ) - dlxiy ) Edfz , at =D 1%2-1
,

so

I dlx , y ) - dfz , y ) I E d Hit )
. Ct )

Hence

I dfxyxz ) - d ( Yi , Yz ) I = Id ( Xi
,

Xz ) - d ( x , , Yz )
+ d ( x . , ya ) - d for , ya ) /

E I d ( Xi , Xz ) - d ( Xi , Yr ) I

+ Id ( Xi , Yz ) - d ( Yi , Ya ) I

by ④

S d ( Xz , ya ) t d ( Xi , Yi )
.

which proves dy : YXY → R is uniformly continuous
,

where we give
YXY the product metric of Ex .

43-8
.


