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We began these lectures with the question
"what is space ?

"

.

I summarised

some colloquial answers under three headings :

(1) Space as a stage for things

(2) Space as a stage for motion

(3) space as a channel for communication

I then sketched some of the mathematical abstractions invented to

formalise various aspects of our understanding of space (and time,
which from Lecture 5 we know cannot be deeply separated from space) .

Subsequently we have understood several of these : metricspaces ,
quadratics ( Tutorial 2) and topologicalspaces .

We also saw hints

of a more "combinatorial
"

pointof view on spaces in the guise of finite

CW-wmp . This has taken us roughly half of the semester, and
in all that time our examples have been things like subspaces of
IR
"

or finite CW-complexes, e. g .

Q. i ⇒

These are clearly things , ie . we have spent our time so far within

paradigm (1) on the above list . We will spend the remainder of

the semester developing an understanding of aspects of paradigm 12)
,

which involves a shift to studying .
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I. Motions are functions

Typically motions in a space X are represented mathematically by
continuous functions R→ X

,
where the domain is viewed as

a time coordinate . the space X might be "physical space
"
e. g. 1133

or
"configuration space

"
as in e. g. the motion of a coupled pair of rods :

•

E-. - t : R -7 s
'
xs

'

•
.

d.
.

UH - ( OH , YCH) .

What about periodic motion ? Suppose a motion 8 : R→ X has

period T > 0
,
which is to say that Ntt KT)

= Nt) for any KEZ .

# .̂̂ .

.

, +
-2T - T T 2-

The subset ZT:={KTIKEZ } is a subgroup of R and by Tutorial 4
we have IRHLT ± 51 as topological groups , so there is a unique
continuous map

F : St→ X such that the diagram below commutes :

r

R > ×

P Tg (p the quotient):
pyz, ± st
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Two separate motions (say of particles ) N : R→ X and K : R→ Y
,

give rise to a single combined motion

T : R-> Xxy rlt) = ( NIH ,
NH)

whatabouta continuous object in motion ? Say a piece of string ,
attached at two endpoints ? If we imagine the string as made up
of infinitely many particles , indexed say by ie [0 , D , then each
particle has its own motion K : R→ IR

,
let us say along a vertical axis :

^

•- • string configuration
•

at time t .

0
%)

I

Tilt)

Together the Ti form a continuous function F R→ Tie [o ,DR ,
but X = Tliea

,
,] R is not the correct configuration space of a string ,

because the Ti 's are not independent ! Of course if 8 is small then

T; ( t ) ~~ Tits ( t ) .

One reasonable way to say
" the Ji vary continuously in i

"
would be to

ask that the function

[0 , D × R- R , ( i, t ) l→ Jilt)

was continuous
.

We could define a motion of the string to besuch a function .
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But wait : a configuration of the string is itself a continuous functionhi[0 i D→ IR,giving the height at any point. So we could reasonablydescribe a motion of the string as a continuous map into this
"

space
"

of configurations .

Which raises the questions -

-

QY Is the set of continuous maps Cb ( co, D , IR ) a space ?

Q4 Supposing it is, is it then the case that

Cts ( Co, D x IR , IR ) = CB ( IR , Cts ( Co, D , IR)) ?

The answers are both Yes, as we will see .

/

Exercise 42 - I Let f : X→ Y be a function (not assumed continuous ) between

topological spaces X, Y .
The graph off is

Tf : = { (x, y) E XxY I y = fCx) }
.

Prove that

( i ) If Y is Hausdorff and f is continuous , Tf is closed in XxY .

C i it Give a counterexample to show that if Y is not Hausdorff,
it is not necessarily the case that the graph of a
continuous function f : X→ Y is closed

.

( iiiFIfY is compactand Tf is closed , f is continuous .

( First show Xx Y→ X sends closed subsets to closed subsets
,

using that Y is compact)
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So if we wanted to put time on a more even footing with space , we might also
want to view a motion of the string as a special kind of closed subset of
[o , if HR x IR , consisting of the tuples ( i, t, 2- Ct) ) for all ie CooD , tEIR .

I.TO/oologiesonsetsoffunctions-

Wewill make the set Cts (X, Y ) of continuous maps between any
two topological spaces into a topological space ( the topology is called the
compactor topology ) in such a way that the function

¥2
,
X , Y

Cts (2x X ,
Y )- Cts ( 2 , Cts ( X, Y) )

Iz
, × , y (F)(2) ( x ) = F (z , x) .

"

If you're familiar with X-calculus, this is I (F)
= Az

.

Xx
.
F(z , x)

see Lambek & Scott " Introduction to higher order categorical logic
"

j

is well-defined for any triple of spaces X , Y, 2, and is a bijection whenever
X is locaHywmpaausdoMf ( the concept of local compactness is to

be introduced in a moment) . Any compact space is locally compact .

We refer to this bijection as the adjunctionpwpety of the compact -open topology .
In particular we will have in the situation of the moving string above

Cts ( Rx co , D , IR ) = Cts ( IR ,
Cts ( Lo , D , IR ) )

so that both definitions of such motions agree .



Remain Given sets A
,
B write BA for the setof all functions A→ B

. By
definition a function f : A→ B is the same thing as an indexed

family { Ha) }aeA of elements of B
,
indexed by A .

Given a function F : A x B→ C we can consider for each a EA

the partial function Fla, - ) : B→ C which sends bEB to Fla, b) .

The indexed family {F(9, - I }aeA of these partial functions is, by
the above logic, thesamehing as the function

B
A→ c

a 1-7 Fla, -)

we denote this function by A (F), i.e .

A ( F) E ( CB)
"

. We have defined

11 : CA XB→ (CB)
A

A- ( F ) = ( Fla, - ) } a c- A
E A (F) (a) = Fla, -)

ore A- (F) (a) ( b ) = Fla, b) .

We claim A- is a bijection .
Since the valuesof Fmay be recovered

from AlF) it is clearly injective ( if AlF) =A Ca) then for all a EA, beB

Fla , b) = HLF ) (a) lb ) = A- (a)(a)(b ) = G la,
b) )

.
If HE ( CB ) A

is given define F : A x B→ C by F (a, b) = H (a) ( b) then clearly

A (F) (a) (b) = Fla, b) = H(a) ( b )

Hence Alf) (a) = H (a) as functions B→ C
,
so A- (F) =Has functions.
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DEI Atopological space X is locallywmpact if for every xex there exists
an open set U and compact set k with x EUE K .

Clearly any compact- space is locally compact .

Example Ci ) IR
"

is locally compact ( but not compact) since any x C- IR ' lies

in some Cai, bi ) x - - ' x Can, bn ) which is contained in the compact
set [ai, bi] x - - - X fan , bn]

.

Iii ) Q is not locally compact (so subspaces of locally compact spaces
need notbe locally compact) .

We know from Ex 41-9 that a compact Hausdorff space is normal, hence regular.
A locally compact Hausdorff space need not be normal, but it is regular :

LemmaL Suppose X is locally compact . Then
( i ) If A EX is closed then A is locally compact.
Cii ) If X is also Hausdorff then it is regular .

Proof- fi ) Given x c- A let UE K be an open neighborhood ofx in X contained
in a compact set K . Then x C- UhAE KAA , and UNA is open in A

while KAA E K is a closed subspace of a compact space , hence compact - D
Iii ) Let see X and BEX dosed with x# B be given, and choose KE U E K

with U open and k compact . Then K is compact- Hausdorff, hence

regular, so we may apply regularity to x, B n k in K to find V,W

open and disjoint in k with KEV and B n K E W. Suppose V
'
, W

'

are open in X with V
' n k = V

,
W ' nk = W . Then UN Y

'
and

W
'

U K
'

give the required disjoint open
neighborhoods of x, B in X ( recall in

a Hausdorff space compact sets are closed ) . D
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Until further notice, we adopt the following hypothesis :

HYPOTHESIS : Suppose that we have assigned a topology Jxiy to
^ Cts ( X , Y ) for every pair X,Y such that for every

( continuous map F
: Z×X→ Y the function

facts conditional on Z - Cts (X, Y )
this hypothesis are

z - F (z, -)
labelled ( H )

Is continuous
,
and the resulting function ¥2,x, x is

abjection whenever X is locally compact Hausdorff .

Eventually we will provide such topologies Jxsy (the compact - open topology )
and prove that the hypothesis is the in this case, so that all we are about
to say will become theorems about Cts ( X, Y) with the compact - open topology .

The point of setting things up this way is that we will derive the compact-open
topology as the weakest topology consistent with the hypothesis .this
serves to both

"explain " the topology, and at thesame time the
fundamental position of the adjunction property ( also sometimes called
the " exponential law" since Cts (X, Y) behaves like Y× ) .

Taking Z= Cts (XY ) with X locally compact Hausdorffwe have
¥

Cts(Cts ( x,Y)xX , Y ) ± Cts ( Cb (x. Y ), Cts 1 XY ) )

and 4-
" ( Ictscxn ) ) is the evaluation map
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ek,,y
: Cts ( X , Y ) x X- Y

exx
,
y ( f , x ) = f 1x )

which must therefore be continuous, for all X locally compact Hausdorff .

Exercise 42-2 Given continuous maps f :X ,
→ Yi

, g
: Xz→ Yz

pwue that fxg : X ,
× Xz→ Y, ×Yz defined by

(x , , xz ) 1-7 ( fxi , gxz ) is continuous .

At)

Lemma 42 - 1 C i ) The composition map

cxyz : Cts ( Y, 2) x Cts (X, Y )- Cts ( × ,
2 )

( g , f ) 1- g of

is continuous
,
whenever XY are locally compact Hausdovft .

CIi ) If f :X→ Y is continuous and Y is locally compact Hausdorft,

Cts ( Y, 2)→ Cts ( ×,2) , gi→ got

is continuous for any space 2 .

(iii ) If g : Y→ 2 is continuous and X is locally compact Hausdorft

Cts ( X, Y )- Cts ( X, 2 ) , f- i→ g of

is continuous
.
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Roof lit By the adjunction properly it suffices to pwve

Cts ( Y, 2) xcts (x, Y ) x X→ Z
,
( g , f , x )H g ( fed )

is continuous
,
since ¥as (x, 2) xcts ( x. y) , ×, 2 applied to this map is CXYR .

Butthis map is
1cts ( y, 2)

× EV × , Y evy, 2

Cts ( Y, 2) x Cb ( × , Y ) x X- Cts ( Y, 2) XY- Z

which as a composite of continuous maps , is continuous .

Iii ) Fixing fects (KY) in the above we have
1 x f eVy

,
2

Cts ( Y, 2) x X-Cts ( Y, 2) XY- 2

which is continuous provided Y is locally compact Hausdorlf ,
and the induced map Cts (Y, 2)→ Cts ( X, 2) is g to gof .

liii) Fixing ge Cts ( Y, 2) in the above we have

Cts ( ×, Y ) xx ¥1, y 9-z

continuous
, provided X is locally compact Hansdorff , and

the induced map Cts (X, Y )→ Cts ( X, 2) is f - g of . D
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I H)

Lemma 422 For X compact Hausdorff, the set { Xx } consisting
of the characteristic function of X is open in the topology
Tx

, e
on Cts ( X , E ) ( E denotes the Sierpinski space 40,13 .)

Root Since X is compact the projection map Ti : Cts IX, E) x X → Cts I x, s)

closed Isee Ex U2 - I ) and sinceevx,
e

: Cts I X, I ) x X→ E is

continuous the set M Ti ( evx
,
e-

' ( { 03 ) ) is closed in Cts (X, E ) .
But

this set consists of those characteristic functions Xx for VEX open
for which x EX exists sit . evx

,
e ( Xx , x ) = O, i. e . x¢ V .

That is
,

M = { Xv I V proper } and so Mc = { Xx } is open . D

IH )

Lemma 42-3 If X is locally compact Hausdorff and Y is arbitrary, then for

any compact KEX and VEY open, the set

S ( K, U ) =L f Ects ( X, Y ) I f ( K ) EU }

is open in the topology Tx ,y on Cts (X, Y ) .

Roof The inclusion f '

- K→ X is continuous andas a subspace ofa Hausdorff

space K is Hausdorff , and g = Xu
: Y→ E is continuous

, so

the function

(- to f Xu o C- )

Cts ( X, Y ) > Cts ( K,Y ) > Cts I K,E ) C8. i )

h 1- h of 1- Xu o h o f

is continuous
, by Lemma 42 - I Cii ), Ciii) .
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By Lemma 42-2 the set { Xk } Ects Ck, I ) is open and hence the pre image
under ( 8. It is open , which is

{ he Cts (X, Y ) ( Xu oh of = Xx )

= { h Ects (X, Y ) / Xu ( Cho f) (k)) = 1 for all KEK}

= { he Cts ( x , Y ) / h ( Hk) ) EU for all KEK }

= { heats ( x ,Y ) I hlk ) EU }

= S ( K , U ) . D

Example Let X = 4=112 and K = Ca , b) u [ a
'
,
b ' ] with b ca

'
and

U = (c, d) u ( c '
,
d ') with de c ' . Then SCK , U ) consists

of those continuous functions passing through the
"windows

"

defined by the pair ( K, U ) :

Y X . c l

d ' - - - IT . . Ti Ti ,
- - - - IT a

-

% A ¥ t g es ( kN)
is % is E

.

c
.
-
-
- if - - - -

Eee .#

" µi÷÷"""---÷÷÷now
i i

c - --
- - - -

.

-
- - - - -

i
- - -

f
- f ES ( K, u )

l l
,

I

i .
. l
is

a b a
' b

' X
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Now weoHYP0TH and start again !

-1

First we introducethe notion of a sub -basis
-

'

-

DEI The topology on a set X generated by a collection S of subsets of X
(possibly empty ) is the intersection

(s) : = A { J l T is a topology on X and JZ S } .

By definition if J is a topology and J Z S then T z CS ) .

DEI Let (X, J) be a topological space . A sub-basin for J is a subset QEJ

such that LQ > = J
.

Exercise 42-3 ( i ) Prove that it { Ji ) ice is a collection of topologies on-

a single set X that nie 't Ji is a topology on X .

Iii ) with the above notation prove that U ELS) if and only
"

the convention is if U can be writtenas a union of sets, each of which
that X Ess) can

bewritten as the
is a finite intersection of elements of S .

intersection of ne Ciii ) If f :X → Y is a function and S is asub- basis for the
elements of S

,
I - e .

the " empty intersection
" topology on Y, then f is continuous iff . f-

' (u) E X

is the whole space, is open for every U E S .
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DIE Let X, Y be topological spaces .
Thewmpac¥ugy Tx, Y on

Cts (X, Y ) is the topology generated by the set

{ S ( K ,
V ) } kex compact , VEY open,

where S ( kN) = If I f ( K ) EU}
.

More explicitly , a subset W E Cts (x, Y )

is open if and only if it is a union of sets, each ofwhich is of the form

S ( K, , U , ) n - - - n S ( kn ,
Un )

.

(ki compact, Vi open )

Remain A special case of interest is when X is compact Hausdorff,
where by Ex L 9 - S and Lemma Lll -S the compact subsets K EX
are precisely the closed subsets .

Lemmas 42-2,42-3 show that the compact-open topology is theweakest topology
(at least when X is locally compact Hausdorff ) which is consistentwith the

adjunction property . It is an important theorem that in fact the adjunction
property holds forthis topology .



@

Theorem 42-4 With Jx, Y the compact - open topology , the earlier hypothesis
is fulfilled

,
that is : for any continuous map F

: 2 × X→ Y

the map Z t FIZ ,
- ) is a continuous map 2

→ Cts ( X, Y)

and for X locally compact Hausdorff there is a bijeotion

Xz
,
X , 4

Cts (2 × X ,
Y ) > Cts ( 2 , Cts ( X, Y) )

.¥2
, x. y ( F)
(2)( x ) = F (z , x)

We will delay the proof fora minute, to examine some consequences .

Some

we have already elaborated : as a consequence of the Theorem, Lemma 42-1

and Lemma 42-2 now become absolute facts, conditional on nothing

,
and the

evaluation map

ek,,y
: Cts ( X , Y ) × X- Y

exx
,
y ( f , x ) = f 1x )

is continuous whenever X is locally compact Hausdorlf .

since Rn ± Rx . . . × IR is locally compact we deduce that there is no difference
between a real-valued function of multiple variables and functions which
return functions which . . .

. return functions :

Cts ( 1123
,
R ) ± Cts ( 1122×112 , R )
± Cts ( 1122, Cts (R, IR ) )±
Cts ( IR × R, Cts ( R, R ) )

± Cts ( R , Cts (R , Cts I R, R ) ) )
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Example 42- I Let Y be any space .

l i ) [0 , D is compact Hausdorlf and if y EY is a fixed "basepoint
' '

the subspace PYY of Cts ( [0 , D, Y ) with the compact -open topology
of functions f : [0/1] → Y with flo)=Y is called thepath space
of Y with base point y .

at
The evaluation map eV[an,y

: Cts ( [0, D, Y) x [0,1]→ Y is

continuous and hence the
"evaluation at 1

"

map

evf, 1)

Pyy inducts ( [o, it , Y)- Y

is also continuous
.

Its image is the set of points connected by a
path to the basepoint y EY .

ii) St is compact Hausdorff and LY : = Cts ( St, Y ) with

the compact-open topology is called the free loop space of Y.

¥6
Amusing but probably meaningless : loops upon loops !

Cts ( st, Cts ( st, Y ) ) ± Cts ( IT, Y ) .
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Exercise 42-4 Let LY denote the free loop space of Y. Pwue the function
const : Y -> LY sending y EY to the constant loop at y
4. e. OES't YEY) is continuous .

Exercise 42- S Rove that if X is finite and discrete ( hence compact
Hausdorlf ) that there is a homeomorphism

Cts ( x. Y ) ±→ II ex Y
f 1-2 ( fk ) )xex

which identifies S ( x , U ) with II
' ( U ) where

Tx : Tlxexy→ Y is the projection .

Exercise 42-6 Let ( 51, + , 0) be the circle as a topological group
(see Tutorial 4) .

Pwve that the map Stx LY- LY

sending (O , f) to the function 0
'
H f IO + O ' ) is continuous

.

This map
" rotates the loops

"
in Y

.

Def
"

Given a topological space ( X. F) we define Open (X) to be the

topological space whose points are open subset of X , with a basis for
the topology given by sets TK where KEX is compact and

TK = { UEJ 1 UZK }
.

Note that ¢ is compact and T 01 = J .

Exercise 42-7 Pwve the set { TK I K E × compact } is a basis fora topology on J .
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Lemma 42-6 For any space X

there
is a home omouphism

Cts ( X, E)- Open (x)

f- f- ' ( { is )

Roof By Lemma LG-2 we already know this map is abjection .
The topology

on Cts (X,E) is generated by the sets S (k, U) with KEX compact
and UEE open, so UE { $, E , {

' ) }
.
We have

SCK
, $ ) = 0 , SCK ,E) = Cts (×, s )

so in fact the topology isgenerated by thesets (using that every
continuous map X→ E is the characteristic function Xv of
a unique open set VEX )

S(K, { / } ) = { Xv / Xv (k ) e { 1 } }
= { Xv I Vzk }

.

= { Xv I V E T K }
.

This corresponds to a basis for the topology on Open (X), completing the proof D

Defn Let X be a Hausdorff topological space, and let Closed ( X) be the set of
closed subsets of X with a basis for the topology given by the sets IU for
UEX open with Uc compact , where

LU = { 2 closed in X 1 ZEU }
.
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Example 42-2 Let X = [oil]×[ ° , D and Tf e X the graph of a continuous
function f : [on] → [0/1] so that Tf is closed , and so determines

a

point
of Closed ( X ) .

Let us denote thispoint by [Tf ] .
For every open set UEX containing Tf we getabasic open
neighborhood 1 U of [ Tf ] in Closed (X ) :

X -
otherelements of t, U

t.ME#ie
a

In particular

UE{ ( x , y) E [ 0 , if | dz ( f (x), y ) < E }

gives an open neighborhood t.VE of Tf, which contains Tg
for g :[

0 , D - [oil] another function iff . for all xe foil]

we have dz ( f(x ) , g (x ) ) < E .

Exercise 42-8 If X is Hausdovff the bijection Open (X) → Closed (X )

sending U to Us is a homeomoiphism .

Let Y be Hausdorff
.

then Are diagonal DEYXY is closed ( Ex .

Ul -II )

and hence I is open and we have the continuous map

Xac : YXY- E
.
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By the Theorem, the corresponding map

sing : Y-Cts ( Y, E )

is continuous
,
where sing ( Y) = X{yy . If we think of Cts 1 Y, E) as the set

of doled set of Y then this continuous map sends a point to the closed

Singleton set containing it . That is , using Lemma 42 - 6 and Ex 42 . 8 there

is a continuous function

Y- Cts ( Y, s ) = Open ( Y ) ± Closed ( Y)

y 1- { y } E Closed IY)

Sending a continuous map to its graph gives an injective map from Cts ( × , Y )

(for Y Hausdorff ) to Closed (X×Y) . As Example 42-2 shows, the neighborhoods
of a graph in the latter space have a clear intuitive content . The next theorem

gives some conditions underwhich this is a homeomorphism .

Theorem 42-7 Let X be locally compact Hausdorff, Y compact Hausdorff. Then
To→

Cts ( X, Y )+ Closed ( X × Y )
f - Tf

sending a function to its graph, is continuous and injective .

Denote its image by 9 ×,x c- Closed ( XM)
,
the "space of graphs

"

with ib subspace topology .

Themap IT . ) induces a homeomouphism

±

Cts ( X, Y )- 9 ×, y .
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Roof By Lemma 40-2 and LH-3 the product X×Y is locally compact
-

.

Hausdorff ( to see local compactness , given XEX, YEY choose XEUEK
,

yeVEL with U, V open and K,
L compact .

Then (x, y) EU×V = K×L

and Kxl is compact ) .

By Ex 42- I
,
Tf EXM is closed

,
so the map D well -defined .

Consider

the continuous map

Cts ( x. Y ) xxxY IIm yxy¥, g
.

This sends ( f , x , Y ) to ( f(x ) , Y ) and then to OEE if ffx) = y

and I E E if Hx)FY. It comesponds under I to a continuous map
Cts ( x, Y )- Cts ( X×Y, s )

sending f :X→ Y to { (xD H Sy¥fix) } which is precisely
the characteristic function of the complement of Tf . Now

composing with the homeomorphisms

Cts ( Xxy
,
s ) = Open ( Xx Y ) = Closed IXY)

we find the graph map Tf) is continuous .

It is clearly injective .

Let ls e Closed ( X×Y ) denote the subspace of graphs, i. e. the image of
TH

.
To prove that there is a homeomophism Cts (XY) → 9 it suffices

to show that the image of SCK, U ) is open in 9 for KEX compact and

UEY open . this is a little subtle
.
Nole that the inclusionK×Y±X×Yis continuous and by Lemma 42-1 the composition map
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Cts ( XXY, E)- Cts ( K×Y, s )
f 1- fo (

is continuous
,
since K×Y is locally compact Hausdorlf .

There is a commutative

diagram of functions

( - ) o L

Cts ( XXY, s ) > Cts ( KXY, E)

± ±

x -1

Closed ( X×Y ) > Closed ( K×Y)
L
' ' f)

where the vertical maps are the homeomouphisms obtained from
Lemma 42-6 and Ex 212 - 8 . The bottom map sends a closed subset

ZE X×Y to L
- ' (2) = Zn ( k ×Y )

. wmmutatinity of this diagram
expresses 5't) as a composite of continuous maps , so it is continuous .
Hence the open subset KXUE K×Y determines an open
set 1 ( Kx U ) in the topology on Closed ( KXY ) ( here we use that Y
is compact , so K×Y is compact and hence ( K×U)

'

is also compact ) and so

[
' ( t, ( kxu ) ) = { ZEXH closed I Zn ( KXY ) c- KXU}

.

is open in
Closed (XM ) . Finally , this proves that

I A [
' ( t, ( kxu) ) = { Tf I Tfn ( K×Y) a- K×U }

= { Tf I f ( k ) EU }

is open in the subspace topology on 9, which is what we need to show . !1!
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Proof of Theorem 42-4 First we prove that for arbitrary spaces X, Y, 2
and any continuous function

F : 2x X→ Y the function

ICF) : 2→ Cts ( X, Y)

I
(F)

Cz) (x) = F Cz , x )

is well-defined and continuous
,
when Cts ( X, Y ) is given the compact

open topology .

To check ICF) is well -defined means to check that

x t F ( Z, x ) is actually continuous as a function X→ Y
.
But FIZ, -)

is the composite of continuous functions

X = { z} x X 2xX y

hence continuous
,
so
I (F) CZ) Ects ( X, Y ) .

To see the assignment
z t F ( Z, - ) is continuous

,
it suffices by Ex 42-3 Ciii ) to show

thatfor KEX compact and U E Y open that

{ z E 2 I F ( Z, - ) E S ( K, U ) }

= { ZE 2 I HKEK F (Z , k) E U )

= { z E 2 I { Is x K E F - ' ( U ) }

is an open subsetof 2 . Suppose {

Zo
} X K E F

- ' ( U )
,
and choose for KEK

an open neighborhood Ak X Bk of (

Zork
) in F - ' I U ) .

The { Bk }Kek

cover K in X, and there is a finite subcover { Bk, . . . ,
Bkr }

.

Then

for WE Air, Aki we have { w} x K E (ME, Aki ) x ( UE,
Bki) E F

- ' I U )
.



④

HenceZoE ME,
Aki E { ZE 2 I { Z's x K E F - ' ( U ) } so that

this set is open in 2 . As a result
, for X, Y, 2 arbitrary we have a

well - defined function

Iz
,
X , Y

Cts (2x X ,
Y ) > Cts ( 2 , Cts ( X, Y) )

.Iz
, x. y (F)
(2)( x ) = F (z , x)

This function is clearly injective , since F may be recovered from ICF) .
Now, assuming X locally compact Hausdorff we prove Iz , x , y is surjective .

Let f : 2→ Cts (x, Y ) continuous be

given
and define

F : 2xX→ Y
,

F I Z, x ) : = f (z) (x ) .

We need only show F is continuous : then clearly Iz, x. T ( F ) = f and
we are done .

Note that continuity of f- tells us precisely that for KEX

compact and VEY open, the set

{ ZE 2 I fcz) E S ( K, u ) )

= { z E 2 I f Iz ) l k) E U for all KEK }
(*)

= { z E 2 I F ( Z , k) E U for all KEK )

= { ZE 2 I { z } x K E F- ' ( U) }

is open in 2 . We have to employ this somehow to prove F is continuous .



@

So we take UEY open and ( Z,x ) E F
' ' ( U)

.
Then

Cz := { p e X I ( z , p ) E F
' ' ( U ) }

= { p e X I Flz , p ) EU }

= {PEXI flz ) ( p) EU }

is open in X since f( Z) : X→ Y is assumed continuous . Moreover

xe Cz by hypothesis .
Since X is locally compact Hausdorff it is regular

I Lemma 42-0) and applying regularity to the pair x, Cz
'

we find
there exist W, ,

Wz EX open with xewi, Czcewz and W , nWE ¢ .

€) × This shows there is a closed set K:= WE
111/1
-

w.
with the property that x E K E Cz and

-

, . -#w, xew,
E K

.
Since X is locally compact there is\ ~

-

1 \ T open and L compact with XETEL .
Set K := Lnk

Then
k
is closed in L hence compact, and

(z, x ) E { z } ×KE F
' ' ( U)

.

We also shrink Wi to the open neighborhood WT :

I
Win T of x in E .

Now
, applying C*)

overleaf
to the compact set K we find that

V : = {we 21 {w } × K E F
' ' 1 U ) } is opens in Z .

Butthen

( z , x ) E V x T,
E F

- 1 ( U )

which shows F-
'( U) is open and completes the pwof . D
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Exercise 42-9 In this exercise Y is compact Hausdotf .

( i ) Rove that the singleton map of p . 07 induces a
homeomorphism of Y with the subspace of Closed (Y)

consisting of singletons . .

So we may identify Y as a subspace of Closed ( Y) .

C ii ) Rove that there is abjection between paths
f

[0 , if- Closed ( Y)

beginning at YOEY ( so flo ) = {Yo} ) and ending at
y , EY (so f ( 1 ) = { 9 , } ) and closed subsets Fe [0)B×Y
with Fn 40}xY )⇒( 0, yo)} and Fn ( { DXY ) ={ ( 1. y , )} .

In the case 4=51 an example of such a path is

•
/ '

'

'

,
Y

'°

if
0:#

KEITTIi ,
'

(
• Yi

o 1

Exercise 42-10 Two continuous maps fig : X- Y are homotopic if
there exists F: [0 , D × X- Y continuous with Flo, - ) = f

and FCI, -1=9 .

Pwve that if X is locally compact Hausdorff
there is abjection between such homotopies F and

paths in Cts ( X , Y ) from f to g .



④

The requirement in Theorem 42-7 that Y be compact (rather thanjust locally
compact) is not such a big deal . There is a construction Cthe one -point compactification )
which produces from a locally compact Hausdorff space Y a compact Hausdorff

space I such that Y is homeomorphic to an open subset UEF and FIU is

a single point ( Y= IR and I
= S
'

is the canonical example ) .

Exercise 42-It Suppose X is locally compact Hausdorff and that Y, E Yz
is a subspace , with inclusion C : Y, → Yz

.
Prove that the

continuous map

Cts ( x, Y , )→ Cts ( X,
Ya )

f- 1-3 to f

is a homeomorphism onto its image, so that we may identify
Cts I X, Yi ) with the subspace of f E Cts ( X, Ya) with image
contained in Yi

.

Hence if X
,
Y are locally compact Hausdorff , and I is the one-point

compactification of Y, we have that Cts Cx, Y) embeds as a subspace of Gx ,F
:

Thin 427

Cts ( X, Y ) → Cts ( X, 5)⇒ 9×5 ↳ Closed ( Xx I )
.

Ct)
.

where continuous f :X→ Y is sent to the closed set T,of =L (x, tx ) la EX } .

Exercise 42-12 The map
IR→ (Oil)

,
x t tanh (x ) is a homeomorphism,

and composing with co, 1)→ I01 D→ Co,Dh = S1 embeds

4=112 as a subspace of S
'

with complement a point. with
X = (O, I ) and f : X→ Y given by f- Ix ) = ¥ sketch the
closed subset of XxI = (o, i ) x S ' associated tof by Ct) .



④

Exercise 42-13
't
Prove that if X

,
2 are locally compact Hausdorff

and Y is arbitrary that the bijection of Theorem 42 - 4
Iz

, X, Y

Cts ( 2x X , Y ) s Cb ( 2 , Cb l X, Y))

is a homeomorphism where both sides are given the

compact - open topology .

Exercise 42-14 Prove that if X is locally compact Hausdorff and Y, 2 are arbitrary
then the canonical bijection

Cts ( X
,
Yxz )→ Cts I X ,Y ) x Cts ( X, 2)

of Lemma LT -2 is a homeomorphism .



④
Solutions to selected exercises

Ex 42-13 If X, 2 are locally compact Hausdorff so is XXZ and hence

evzxx
,
y

: 2 x Xx Cts (2xX, Y )→ y

is continuous .

It follows that

Z x Cts I 2x X , Y )- Cts (X, Y)
( z , F ) 1-7 evzxx

, > (Z, -, F)

is continuous
.

But eilzxx
, y ( Z, -, F) = F ( Z, -) , and so

associated to this map is precisely ¥2, x.Y which is therefore
continuous .

It remains to show that the inverse I ×
,
y is

continuous .
But (with 32

,
x

: 2x X → Xx2 is the swap )

Z xXxCts (
2
,
Cts ( x, Y ) ) y

be
,
xx

11
= I evx,y

-,
Ix× e Vz

,
Cbc x,Y)

Xx 2x Cts ( 2 , Cts IX. Y ) )- X x Cts I x, Y )

is continuous since both 2, X are locally compact Hausdorff .

Associated to this is a continuous map

Cts ( z, Cts I X, -1 ) )→ Cts I 2xX,
Y )

j ,→ [ evx, yo ( Ix x e Yz, cb Cx, y ) ) o 62, xx I ] ( - , - , T )
11

{ C z,x) t Hz) (x ) }

But this is II , × , y so we are done . D


