
Lecture I I : Hausdorff spaces updated 1119119

So far we have two main sources of examples of topological spaces : the

underlying set of a metric space with the metric topology ,
and finite

CW - complexes I these two classes
, of course ,

have significant overlap )
.

We have seen a few other examples like the Sierpinski space

E = to , 1) To = lol ,
S

,
{ is )

but these examples seem rather
"

exotic? One way in which E is strange
is that the point 1 EE is not closed ( since its complement 103 is not open )

.

Clearly any point in a metric topology is a closed set
,

and "
non - closed point

"

seems like an oxymoron .
In many parts of mathematics I with important

exceptions ) one is only interested in spaces in which all points are closed
,

and even better
, any two distinct points may be separated by open

neighborhoods :

DEI A topological space X is Hausdorff  if for any pair x , y C- X

of distinct points there exist open U
,

V E X with a EU
, y E V

and U n 11=0 .

×

U V

•

•× y

Lemma Lll - I If X is Hausdorff and x C- X then { x } is closed .

Roof For ye Xl Ex } let VyE X be open with x tell , yell .

Then XK 'd = Uy Vy
. D
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Lemma LH - 2 If X is meth 's able then it is Hans dorff .

Root Say the topology is induced by a metric d. Given x , y EX distinct  d ( x. y ) > 0

and for any E

s
tzdlxiy ) the balls U = Be ( x )

,
V = Be IY ) will do

,
since

ZE sd ( x , y ) E d ( x
, z ) +  d ( Z

, y )

and so if z EU
,

so d ( z
,

x ) < E then d ( z , y )
>

ZE - E = E
,

so z € V
. D

Needless to say ,
E is not Hausdorff

, and hence not metn 's able .

Exercise UI - I Give an example of a space X in which points are closed
,

but which is not Hausdorff .

Exercise LH -2 Pwve any subspace of a Haus dorff space is Hausdorff
.

There are some obvious questions : which of the standard constructions on

topological spaces ( product , disjoint union
, quotient ) preserve the Hausdorff

condition ? And then
,

who cares ? What is this condition "

good for " ?

Lemma 41 - 3 If X , Y are Hans dorff then so is X×Y
.

Puff If ( x , , Yi )
,

( xz
, yz ) EX×Y are distinct

, without loss of generality x , txz
.

Then there exist open disjoint U
,

V E X with x ,
EU

, xze V
,

and then

U×Y
,

V×Y E X×Y are open , disjoint and ( x , , y , ) EU ×Y
,

( xz
, Yz ) EVM

. !1!

Exercise 41-4 Pwve that  if { Xi }ieI is a family of Hausdorff spaces that

Tiet Xi is Hausdorff .
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Exercise LH - 5- Pwve it X , Y are Hausdorff that X 't Y is Hausdorlf .

Example 41 - I Consider the push out

L

1121 { 0 } - R

t
It

Y ×

IR - X = ( R H R ) /~
g

where l is the inclusion
.

Here X is obtained from two copies of

the line glued along every point but the origin .
The space X

is often called the ' ' line with doubled origin
' '

.

Let as write

0
,

:= f ( o ) and Oz ' 
' = g ( o ) .

Then as a set

X = lR\{ 0 } u { Oi
,

Oz }
.

0

• .
. .

01
"

II
.

I I
...

- :
Oz

•

The open neighborhoods of 0
, in X are the images under the

quotient map of open sets U 't V EIRIIR which are
' ' saturated "

,

ie . closed under ~
,

and for which OEU
.

But such an open set

must contain points in the second copy of IR arbitrarily close to 0
,

and thus in X there can be no open neighborhood of 0 , avoiding
every neighborhood of 02

.

Hence X is not Hausdorff
,

and so the quotient of a Hausdorlf

space need not be Hausdorff ( as IRHIR is Hausdorff ) .
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Exercise 41-6 If X ⇐  Y and X is Hausdorff then so is Y
.

the Hausdovff condition is very useful
, as we will see .

But here are two immediately
useful consequences :

Lemma 41 - S Any compact subspace of a Hausdorff space is closed .

Roof Say KEX is compact ,
X Hausdorff .

Given x¢K choose for each

KEK a pair of disjoint open sets Uk
,

Vk with KE Uk and xe Vk
.

The { Uk ) kek cover K
,

and since it is compact

finitely many , say { Uki
,

...

, Ukn } will do .

But then XEVK
,

n .  . . n Vkn is an ¥#&0
open neighborhood of x disjoint from K

.

0
This pwvesk is doled . D

Lemma 41-6 Suppose X is compact and Y is Hausdorlf . then any continuous

bijection f :X → Y is a home omoyohism .

Pwot It sulfites to show that if UE X is open then f 10 ) EY is open .
But HU

is closed and therefore compact ( Ex L9 - 5) and so ( by Pwp L9 - 3)

f ( XW ) = Y \ flu ) ( note flx ) =Y ! )

is compact
,

and therefore doled by lemma 41-5 . Hence the complement
flu ) must be open . D

Exercise 41-7 C i ) If  ~ is an equivalence relation on a space X
,

and Xh is the

quotient, prove there is abjection between open sets of XK

and open subsets U of X which are saturated
,

i. e. x ~

y and

XEU implies y EU .



!5!

( Ii ) Let E be a non empty set
,REEXEa subset

,
and define

E to be the set of all pairs (e) e
' ) such that there exists a sequence

e = eo
,

ei
,  

. .  .

, en = e
'

n 70

with ei EE and for each Oei < n either @i
,

ein ) C- R E

( ein
,

ei ) ER
.

Pwue E is the smallest equivalence relation

containing R ( the n=O case says ( e. e) e Pifor all ee E) .

DEI A continuous map f : X → Yisopen if whenever UEX is open so is f ( U )
.

Theorem
41-4 Any finite CW - complex X is compact Hausdorff .

Pw# The compactness was Theorem 40 - 5. We pwve X is Hausdorff by induction on

a presentation of X as Xo
,

Xi
,

. . .

,
Xn= X

.
Since Xo is finite and

discrete it is Haus dorff ( every point is its own open neighborhood )
. Suppose

we have shown X it is Hausdorff .
the space Xi is constructed from Xi - I

by a push out :

f
t

as usual we sometimes

I

*AS

i ' '

- Xi . ,

label the copies of sin
,

Di
with indices a

, and while

l ) | sick
, Ding

× ×Iaea
Di - Xi = ( Xii It Hadi )/~

Now a generic quotient will not be Hausdorff
,

so we need a special argument

unique to this quotient . We use the following observations
,

which all follow

from Exercise 41-7 .
Let p

: × it H Hx Di → Xi be the quotient .

We dwp the L and view Iasi ' '
as a subspace of Ha Di ( as it is ! )

.
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( 0 ) If say E Xi . ,
H Hadi are distinct points and pkkply ) then

there is a sequence x= eo
, ey .  .

.

, en = y with for

Oej
< neither

( ej ,

ejn
) or (

ejh
,

ejl
in { ( f ( s )

,
s ) 1 se Iasi ' ' }

In particular if xiy E Xi - i \ H Has " ' ) then p ( x ) # ply )
,

and if x , ye 11 xD '

'

\ Has it '
then p ( x ) tp ( y ) .

In fact

~ = { ( a ,u ) luexi . I k Hadi ) u { ( s
, fls ) ) , ( Hsl

,
s ) Is e Has

" ' '

)
u { ( x , is ) I x , ye I  xsi ' '

such that f ( x ) = fly ) }

( i ) f- ( Ha

Sift
) =

Uaf( s

Yat
) is compact ( Pwpl 9- 3) hence closed

( using Lemma 41-5 and the inductive hypothesis that Xi - I is Hans dorff )
.

(2) the map Xi - I
> Xi is injective and the restriction to

the complement of

Uaflsist
) is open .

(3) The restriction of DingHaDin
→ Xi to the open disk

BIE Di is injective and open ,
where Bi = { EERI I 11×-11<1 }

.

f- ( si -  '

)

Xi - I

£
,

✓
"xeinttfetiofs

•g.si#fe=,¥¥#⇐0EE I8.
Di

t
,

a

open  subset of B
i
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Let x , ye Xi be distinct
.

Easy cases say both lie in the image of one of the injective open

maps from (2) ,
(3) above ( perhaps different maps ) .

Since Bi
,

Xi - I are Hausdorff and these maps are open ,

it is clear we can find open neighborhoods of xiy
which are disjoint .

Otherwise at least one of the point lies in the image of 11×5
" '

, say x
.

( x )

a.
a

,
, .

¥0,5.it#Y_%0FYpack) % ¢
.

• %
,

I
( a )

1

Now p
"

( x ) contains precisely one point xo of Xi - I
,

and for each a some

closed subsetC ( x )
:  =p

- ' ( × ) A Did ) of the boundary sphere ( maybe
Ga ) = $

,
but it can be nonempty for multiplex and is nonempty for

atleast one a ) .
Given an open neighborhood U of xo in Xi - I each

fj
'

( U ) E Sift is an open neighborhood of f- I
'

( xo ) :

" " Igate.ie#Q.oti.EQEEee*Ek*c
"

f
( a )

Ua
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Since Sits E Dla ) has the subspace topology ,
we can find an open

subset Ux E Dix ) such that Uxn S Taj = fat
'

( o )
.

Then

J :  = U u Ua #
Ua

is an open subset of Xi - i
I Hx Dia ) and f

'

PJ ) = 5 so p
0 is open ,

and it is a neighborhood of x in Xi
.

Note we chose U arbitrarily ,
and

Ux arbitrarily subject to Van Sid ,
- FI

'
lu )

.

Cash y also lies in the image of Hx Sis's
.

Let yo be the unique

pre image in Xi - I and find ( using Xi - I Haus dorff ) open

neighborhoods xo EU and yoe V sit .
Un 11 = $ .

Then

running the above construction also for y and V
,

we have

fat
 '

( u ) n fin
'
( V ) = FI

 '

( Un V ) = ¢ and we may choose

Va
,

Vx E Dix ) disjoint with Va as above and

Vx A Sift = fat ( V ) ( why ? see Ex 41-10 )

( x ) Xi - 1

III.Eyre.it#&.@fx I "

ii.
Exogamy

%
,

( x )
Ua

Then

I := V v Uaenlk

gives an open neighborhood PI of ydisjoint from PJ .
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Case I
y is not in the image of 1×542's

.

since Uaflsiia's )
is doled we can find an open neighborhood V of y disjoint
from U which does not meet Uaf ( Sica's )

.

Then pv is an

open neighborhood of y disjoint from PJ , completing the pwof D

There are some stronger separation axioms that are also in common use :

DEI Suppose one - point sets are closed in X. Then X is called

• regular if for each pair of a point x and Be X closed

disjoint from x
,

there exist disjoint open , EB containing
x and B respectively

:O0€
• normal if for each pair of disjoint closed sets A ,

BEX there

exist disjoint open sets containing At B respectively .

#and
Remark It is clear that normal ⇒ regular ⇒ Hausdorff .

Exercise

41-8
Pwve any meth 's able space is normal .

Exercise 41-9Prove any compact Hausdorff space is normal .

I Hint :
use the proof of Lemma UI - 5 ) .

Hence a finite CW - complex is normal .
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Exercise Ul -10 ( i ) Tori > , l
,

o<h< 1

, prove 8 : Si ' '
× [ 0

,
h ) -7 Di defined by

8( ±
, a) = ( I - a) ±

gives ahomeom orphism of Si
. '

x ( 9h ) with an open neighborhood
of sit in Di ( usually called a collar )

.

liil Fill in the final detail in the pwof of Theorem 41 - 4 ,

by showing that if G) Cz E Si - '
are disjoint closed

sets
,

and U , ,
KE Si

' '

are disjoint open sets
.

withUjzg.

there exist disjoint open subsets W , ,W< of D '

suchthatWjnSit '
=Ujfor j⇐{1/2} .

iBI%de¥dI£

Exercise LIHI ( I ) Pwve X is Hausdorff if and only if the diagonal
D= { ( x , x ) E Xxx I xe X } is a closed subset

of Xx X .

Iii ) Let 6 be a topological group ( see Tutorial 4) .

Pwve

that G is Hausdorff if and only if { e } is closed
,

where

e is the identity element .

l iii ) Let G be a topological group and HEG a normal

subgroup .

Rove GIH is Hausdorff  if and only if

HE a is closed .
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Exercise Lll -12 In the context of Example Lll - I
, prove that there does not

exist a continuous function f : X → IR with Flo , ) t ft Oz )
.

Aside on the Hausdorff condition

The following statement from Munk res is typical :

"

Topologies in which one - point sets are not closed
,

or in which

sequences can converge to more than one point , are considered

by many mathematicians to be somewhat strange . They are not

really very interesting ,
for they seldom occur in other parts of

mathematics
.

"

Exercise Lll - I 3* Let k be an algebraically closed field .

An affine variety
( see § I of Hartshorne "

Algebraic Geometry
" ) is a closed

subset of An ' - = k
"

which cannot be written as a union

of two proper closed subsets
,

where k "
is given the topology

in which sets of the form

Z ( T ) =L PEA I f ( P) = O for  all PET }

for T E k [ Xis . . .

,
X n ]

,
are closed I this is called the Zariski

topology )
.

Prove an affine variety is Hausdorff  iff . it is

a single ton ( this is Exercise 1.7 (d) of Hartshorne )
.
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So
,

I suppose algebraic geometers are strange . More seriously ,
as hinted

at on p - ⑤ of Lecture 6
,

the purpose of a topology on X is to tell you which

maps out of X are continuous
,

and in algebraic geometry there is a

mismatch between the underlying topology of our spaces ( which is " bad " )

and the topology which is implicit in the category of spaces we use ( which

is better ) .

To be more precise, even though varieties are rarely Hausdorff ( and the situation

for schemes is even worse ! ) algebraic geometers are effectively still working
most of the time with " Hausdorff "

spaces ,
since we ask for our schemes

to be separated , which means the image of the diagonal

X - Xxx

is closed in Xx X ( see Exercise 41 - H )
.

Note this is a morphism of schemes
,

so this not the same as saying the underlying space of X is Hausdorff I but

it  is the "

right
" notion of Hausdorff for our purposes ) .

So Munk res is right , conceptually ,
that "

everyone
" likes Hausdorff spaces ,

if that term is appropriately interpreted .
However he is flat wrong about

non - closed points .

- those are great !

Remain For a discussion of non - closed points in algebraic geometry see

Example 2.3
. 4 of Hartshorne or Eisen bud

,
Ham 's

"
Geometry of schemes

"
.



Solutions to selected exercises

Ex Ul - 10 Define Qin:  = { IE Ri I th < HE HE 1 }
.

This is an open subset

of Di
,

as { I
1 11111 > th } e Ri is open ( 11 - H : Ri → R is

continuous ) . Clearly J is continuous and

HK ±
,

X ) 11 = I - t > I - h

sot factors via a continuous map
5

'  ' '
× [ ah ) → Qin

.

Define

T : Q in → Si
'  '

x [ 0
,

h ) by

TCI ) = ( a 't ,
I

,
I -11111 )

.

This is continuous and gives a two - sided in veneto So "x[ °
, b) → Qin

.

lii ) Using the notation of C I )
,

set

Wj
'

 
-

= T( Uj × [ ah ) )
.

this is an

open subset of Qin and thus of Di ,and Win Wz = $ since

( U
, × [ 0

.
h ) ) n ( Uzx [ 0

,
h ) ) =¢ .

Moreover
,Wjnsi' '

= HVjx[ o
,

h ) )nJ( Si
' '

x { 0 } )
= of [vjx[ 0

,
h ) ] n ( si ' '

x { 0 } ) )
= 8 ( Uj x { 0 } )
= Vj


