Lecture 10: Compactness III

Which spaces are compact? So far we know that closed and bounded subsets of \(\mathbb{R} \) (e.g. intervals \([a, b]\)) are compact (using Bolzano-Weierstrass plus Theorem L9-2). This is not a very impressive list. Let us improve it. We will begin to use “space” to mean “topological space” unless otherwise indicated.

Lemma L10-1 If \(\sim \) is an equivalence relation on a compact space \(X \) then \(X/\sim \) is compact.

Proof The quotient map \(\pi: X \rightarrow X/\sim \) is continuous so this follows from Proposition L9-3. \(\square \)

Exercise L10-1 If \(X \) and \(Y \) are homeomorphic then \(X \) is compact iff \(Y \) is compact.

So at least \(S^1 \cong [0, 1]/\sim \) is compact. If we knew \([0, 1] \times [0, 1]\) was compact we could use the same trick to show e.g. the torus is compact.

Lemma L10-2 If \(X, Y \) are compact spaces then \(X \times Y \) is compact.

Proof By Lemma L9-1 it suffices to show any open cover of \(X \times Y \) of the form \(\{U_i \times V_i\}_{i \in I} \) with \(U_i \subseteq X, V_i \subseteq Y \) open has a finite subcover. If either \(X, Y \) is empty then \(X \times Y = \emptyset \) is compact, so suppose \(X \neq \emptyset, Y \neq \emptyset \) and choose some \(x \in X \). Then \(\{x\} \times Y \subseteq X \times Y \) is covered by the \(U_i \times V_i \), and since \(\{x\} \times Y \approx Y \) is compact there is \(J_x \subseteq I \) finite such that (here we are using Ex L10-1 and Ex L9-4, to be more precise)

\[
\{x\} \times Y \subseteq \bigcup_{j \in J_x} U_j \times V_j.
\]
We may assume $x \in U_j$ for all $j \in J_x$ (otherwise $U_j \times V_j$ is superfluous and we may remove it from J_x) and so x lies in the open set $U_x := \bigcap_{j \in J_x} U_j$. Note $U_x \times Y \subseteq \bigcup_{j \in J_x} U_j \times V_j$. Since $\{U_x\}_{x \in X}$ is an open cover of X and X is compact, there is a finite subcover $\{U_{x_1}, \ldots, U_{x_r}\}$. But then

$$X \times Y = \bigcup_{i=1}^r U_{x_i} \times Y \subseteq \bigcup_{i=1}^r \bigcap_{j \in J_{x_i}} U_j \times V_j.$$

We deduce that the torus $\mathbb{T} = [0,1] \times [0,1]/\sim$ is compact. It is true that any product (even infinite ones) of compact spaces is compact, but this is much harder to prove — it is called Tychonoff’s Theorem (alas, we do not have time to prove this). Clearly by induction we deduce from the lemma that any finite product of compact spaces is compact.

Theorem L10-3 (Heine-Borel) A subset of \mathbb{R}^n is compact iff. it is closed and bounded.

Proof If $Y \subseteq \mathbb{R}^n$ is compact then it is sequentially compact (Thm L9-2) and so closed and bounded by the same argument as in Bolzano-Weierstrass (see Exercise L8-2). If Y is bounded then $Y \subseteq [a,b]^n$ for some a, b (Exercise L8-4) and if Y is additionally closed then it is a closed subspace of a compact space, hence compact (Exercise L9-5).

Exercise L10-2 A function $f : X \to Y$ between topological spaces is continuous iff. $f^{-1}(C)$ is closed for every closed set $C \subseteq Y$.

Corollary L10-4 The n-disk $D^n \subseteq \mathbb{R}^n$ and n-sphere $S^n \subseteq \mathbb{R}^{n+1}$ are compact.

Proof We need only show these subspaces are closed. The easy way is to note that $f = \| - \| : \mathbb{R}^n \to \mathbb{R}$ is continuous, so e.g.
D^n := f^{-1}([0,1])

is closed, and similarly for S^n. □

Exercise L10-3 Recall real projective space \(\mathbb{RP}^n\) from p. 60 of Lecture 7. Show \(\mathbb{RP}^n\) is compact by exhibiting it as a quotient of \(S^n\).

Lemma L10-5 If \(X, Y\) are compact spaces then \(X \sqcup Y\) is compact.

Proof. If \(\{U_i\}_{i \in I}\) is an open cover of \(X \sqcup Y\) then (identifying \(X, Y\) with subspaces of \(X \sqcup Y\)) we have \(U_i = (U_i \cap X) \cup (U_i \cap Y)\). Choose \(J \subseteq I\) finite such that \(\{U_j \cap X\}_{j \in J}\) covers \(X\) and \(\{U_j \cap Y\}_{j \in J}\) covers \(Y\). Then \(\{U_j\}_{j \in J}\) covers \(X \sqcup Y\). □

Exercise L10-4 Let \(X\) be a space and \(Y_1, \ldots, Y_n\) compact subsets. Then \(Y_1 \cup \cdots \cup Y_n\) is compact.

Theorem L10-5 Any finite CW-complex is compact.

Proof. By definition if \(X\) is a finite CW-complex there is a sequence of spaces \(X_0, X_1, \ldots, X_n = X\) with \(X_0\) finite and discrete, and each \(X_i\) obtained from \(X_{i-1}\) via a pushout:

\[
\begin{array}{ccc}
\coprod_{a \in A} S^{i-1} & \longrightarrow & X_{i-1} \\
\downarrow & & \downarrow \\
\coprod_{a \in A} D^i & \longrightarrow & X_i = (X_{i-1} \sqcup \coprod_{a \in A} D^i)/\sim
\end{array}
\]
We prove X is compact by induction: X_0 is clearly compact, and if X_{i-1} is compact then so is $X_{i-1} \cup \bigcup_{\alpha \in \Delta} D^i$ by Corollary 40-4 and the previous lemma (it is important Δ is finite!). But then the quotient X_i is also compact by Lemma 40-1, which completes the inductive step. □

That is a respectable supply of compact spaces!