Exam solutions (MAST30026 52 2018) Total 110

This is Lemma 19-1, (a) A metric space (X,d) is sequentially compact if every sequence in X|Q||(10)has a convergent subsequence. — 2 (b) Given $\varepsilon > 0$ suppose no such finite cover of ε -balls existed. Choose some $2^{(2)}$ $x_1 \in X$. Then $B_{\varepsilon}(x_1) \neq X$ so we may choose $x_2 \in X \setminus B_{\varepsilon}(x_1)$. Since $B_{\varepsilon}(x_1) \cup B_{\varepsilon}(x_2) \neq X$ we may choose $x_3 \notin X \setminus B_{\varepsilon}(x_1) \cup B_{\varepsilon}(x_2)$ and in this way construct $(x_n)_{n=0}^{\infty}$ with $d(x_n, x_m) \ge \varepsilon$ whenever $n \neq m$. By hypothesis (In) n=0 contains a convergent subrequence, but this hidion of a requence subsequence clearly cannot be Cauchy and so we have a contradiction. (even w.O observing) complete argument (2) Q2a is Ex. LII-II (i), from assignment #3 (a) Suppose X is Hausdorff and $(x,y) \notin \Delta$, i.e. $x \neq y$. Let U, V be open Q2 (20)disjoint sets with $x \in U, y \in V$. Then $(x, y) \in U \times V$ and $U \times V \subseteq \Delta^{c}$, so \triangle^{c} is open and hence \triangle is closed. - (5) If Δ is closed and $x \neq y$ then $(x,y) \in \Delta^{c}$ has an open neighborhood of the form $U \times V$ and so $x \in U$, $y \in V$ and $U \times V \cap \Delta = \phi$ implies U, V ave disjoint to X is Hausdorff. - (5) This is Lemma L17-2 (b) Consider the continuous map $(\Delta(x) = (x, x))$ $\chi \xrightarrow{\Delta} \chi \times \chi \xrightarrow{f \times 9} \chi \times \chi$ 2) since Y is Hausdorff the diagonal $\Delta = \{(y,y) | y \in 1\} \subseteq Y \times Y$ is closed. and its preimage under the above map $\{x \in X \mid f(x) = g(x)\}$ is therefore closed in X. Hence if $A \subseteq X$ is dense and $f|_A = g|_A$ then $A \subseteq \{x \mid f(x) = g(x)\}$ and therefore $\{x \mid f(x) = g(x)\} = X$.

This was Ex. L12-14

[Q3] For X locally compact Hausdorff the evaluation map

$$X \times C + (X, Y) \longrightarrow Y$$

(10) for proving the function is continuous

homeomorphism

(10) for proving it is a

is continuous, and hence if $f: Y \longrightarrow 2$ is continuous so is

$$X \times C^{+}(X, Y) \xrightarrow{e^{V_{X,Y}}} Y \xrightarrow{f} Z$$

and so by the adjunction property

(20)

(s)
$$Ct_{3}(x, Y) \xrightarrow{f_{\circ}(-)} Ct_{3}(x, Z)$$

is continuous. It therefore follows from the universal property of the product that the given map in the question is continuous. It suffices to produce a continuous inverse, which corresponds under the adjunction property to

$$X \times Cts(X,Y) \times Ctr(X,Z)$$

$$\int \Delta \times I$$

$$X \times X \times Cts(X,Y) \times Ctr(X,Z)$$

$$\lim_{\substack{IIZ \\ X \times Cts(X,Y) \times X \times Ctr(X,Z)} \xrightarrow{e_{X,Y} \times e_{V_{X,Z}}} Y \times Z.$$

This map is continuous by construction, and sends $(x, \pi_{x^o}f, \pi_{z^o}f)$ to f(x), so it corresponds under the \mathcal{Y} map of lectures to an inverse for $(t_1(x, \gamma \times z)) \longrightarrow Ct_1(x, \gamma) \times Ct_2(x, z)$.

2

(b),(c) We prove fint that $t : V \times V \longrightarrow V$ is continuous at (v_0, w_0) , by calculating $\Gamma(b),(c)$ are Ex. LI8-lO,

$$\| + (v_1, \omega_1) - + (v_0, \omega_0) \| = \| v_1 - v_0 + \omega_1 - \omega_0 \|$$

$$\leq \| v_1 - v_0 \| + \| \omega_1 - \omega_0 \|$$

with respect to the product metric on $V \times V$ this is

$$= \mathsf{d}_{\mathsf{V}\times\mathsf{V}}\left((\mathsf{V}_{,,\omega_{1}}),(\mathsf{V}_{\circ},\omega_{\circ})\right) \xrightarrow{\mathsf{S}}$$

so continuity is clear. Similarly for scalar multiplication

$$\| \lambda_{1} v_{1} - \lambda_{0} v_{0} \| = \| \lambda_{1} v_{1} - \lambda_{0} v_{1} + \lambda_{0} v_{1} - \lambda_{0} v_{0} \|$$

$$= \| (\lambda_{1} - \lambda_{0}) v_{1} + \lambda_{0} (v_{1} - v_{0}) \|$$

$$\leq \| (\lambda_{1} - \lambda_{0}) v_{1} \| + \| \lambda_{0} (v_{1} - v_{0}) \|$$

$$= |\lambda_{1} - \lambda_{0}| \| v_{1} \| + |\lambda_{0}| \| v_{1} - v_{0} \|$$

$$= |\lambda_{1} - \lambda_{0}| \| v_{1} - v_{0} + v_{0} \| + |\lambda_{0}| \| v_{1} - v_{0} \|$$

$$\leq |\lambda_{1} - \lambda_{0}| \| v_{1} - v_{0} \| + |\lambda_{1} - \lambda_{0}| \| v_{0} \|$$

$$+ |\lambda_{0}| \| v_{1} - v_{0} \|$$

Given $\varepsilon > 0$ choose $\delta \le \min \left\{ \int_{\overline{3}}^{\varepsilon} , \frac{\varepsilon}{3||v_0||} > 3|\overline{\lambda_0}| \right\}$ Then if $d_{|F \times V}((\lambda_0, v_0), (\lambda_1, v_1)) < \delta$ we have

 $|\lambda_{o}-\lambda_{i}|+||v_{o}-v_{i}|| < \delta$

and hence
$$|\lambda_0 - \lambda_1| < \delta$$
, $||v_0 - v_1|| < \delta$ and so

$$||\lambda_1 v_1 - \lambda_0 v_0|| \leq |\lambda_1 - \lambda_0| ||v_1 - v_0|| + |\lambda_1 - \lambda_0| ||v_0|| + |\lambda_0| ||v_1 - v_0||$$

$$< \delta^2 + \delta ||v_0|| + |\lambda_0| \delta$$

$$\leq \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon$$
(S)
as required.
This is $Ex. L19-3$.

 $\begin{array}{l} \hline (a) \quad Let (T_n)_{n=0}^{\infty} & be given. We claim for v \in V \\ \hline (T_n(v))_{n=0}^{\infty} & is (auchy in F. \\ \hline (20) & Let \in O \\ be given and choose N \\ \hline (s.t. \\ for all \\ n > N \\ \|T_m - T_n\| < \\ \hline (s. \\ Then \\ \hline (s. \\ for all \\ n > N \\ \|T_m - T_n\| \\ \hline (s. \\ for all \\ n > N \\ \|T_m - T_n\| \\ \hline (s. \\ for all \\ n > N \\ \hline (s. \\ for all \\ n > N \\ \hline (s. \\ for all \\ n > N \\ \hline (s. \\ for all \\ n > N \\ \hline (s. \\ for all \\ n > N \\ \hline (s. \\ for all \\ n > N \\ \hline (s. \\ for all \\ for all \\ n > N \\ \hline (s. \\ for all \\ for a$

$$\| T_m(v) - T_n(v) \| = \| (T_m - T_n)(v) \| \leq \| T_m - T_n \| \cdot \| v \| \leq \varepsilon \| v \|$$

It follows that $(T_n(v))_{n=0}^{\infty}$ is Cauchy and thus converges in F. We set

$$T(v) := \lim_{n \to \infty} T_n(v).$$
 (5)

(b) $T(v+\omega) = \lim_{n \to \infty} T_n(v+\omega)$ $= \lim_{n \to \infty} (T_n(v) + T_n(\omega))$ $= \lim_{n \to \infty} T_n(v) + \lim_{n \to \infty} T_n(\omega)$ $= T(v) + T(\omega)$ (4)

$$T(\lambda v) = \lim_{n \to \infty} T_n(\lambda v)$$

= $\lim_{n \to \infty} (\lambda T_n(v))$
= $\lambda \lim_{n \to \infty} T_n(v)$
= $\lambda T(v).$

(c) we need to estimate

$$|T(v)| = |\lim_{n \to \infty} T_n(v)|$$
$$= |\lim_{n \to \infty} T_n(v)|$$

Now we would like to say this is less than $\lim_{n\to\infty} \lim_{n\to\infty} \|T_n\| \cdot \|v\|$ but we must find argue that $\lim_{n\to\infty} \|T_n\| \exp s_n$. But $\|-\|\cdot\|v\| \to \|F\|$ is uniformly continuous so $(\|T_n\|)_{n=0}^{\infty}$ is Cauchy and hence converges. So

$$\leq \lim_{n \to \infty} \|T_n\| \cdot \|r\|$$

$$= \left(\lim_{n \to \infty} \|T_n\| \right) \cdot \|r\|.$$

This shows T is bounded and more over $||T|| \leq \lim_{n\to\infty} ||T_n||$.

(d) We need to show $||T - T_n || \rightarrow 0 \text{ as } n \rightarrow \infty$. Note that with $m, n \in IN$ and $v \in V$ with $||v|| \leq 1$

$$|T_{m}(v) - T_{n}(v)| \leq ||T_{m} - T_{n}||$$

Let N be sufficiently large that this is $< \Sigma$. Take $n \rightarrow \infty$ to obtain

$$|T_m(v) - T(v)| \leq \varepsilon$$
 m $\mathbb{P}N$

Hence

$$||T_m - T|| = \sup \{ |T_m(v) - T(v)| | ||v|| \le 1 \} \le \varepsilon.$$

as claimed.

Q6

$$(a) |\langle a, b \rangle| \leq ||a|| \cdot ||b|| - (s)$$

(b) Let $f(a) = \langle q, h \rangle$. Then if h=0 f=0 is continuous. If $h\neq 0$,

$$|f(a) - f(b)| = |\langle a, h \rangle - \langle b, h \rangle|$$

= |\langle a - b, h \rangle |
\leq ||a - b || \cdot ||h||.

To pure f is writinuous at b, let $\varepsilon > 0$ be given and set $d = \frac{\varepsilon}{\|h\|}$. Then $\|a - b\| < \delta$ implies $|f(a) - f(b)| < \delta \|h\| = \varepsilon$.

(c) Suppose $\langle ui, f \rangle = 0$ for all $i \in I$. Since $\langle -, h \rangle$ is linear and continuous $\{h\}^{\perp}$ is a closed vector subspace. If it contains $\{ui\}_{i \in I}$ then it contains U and thus $\overline{U} = H$ so h = 0.

(d) set
$$U = span_{\mathbb{C}} \left(f e^{inQ} \right)_{n \in \mathbb{Z}} \right)_{so} \overline{U} = H$$
. We set $u_n = \int_{\overline{2\pi}}^{1} e^{inQ} and$
$$f' = \lim_{N \to \infty} \sum_{n = -N}^{N} \langle f, u_n \rangle u_n$$

Then

$$\langle um, f-f' \rangle = \langle um, f \rangle - \langle um, f' \rangle$$

$$= \langle um, f \rangle - \lim_{N \to \infty} \sum_{n=-N}^{N} \langle um, \langle f, un \rangle un \rangle$$

$$= \langle um, f \rangle - \lim_{N \to \infty} \sum_{n=-N}^{N} \langle un, f \rangle \langle um, un \rangle$$

$$= \langle um, f \rangle - \langle um, f \rangle = 0$$

S

Hence f = f'.