Exam solutions (MAST30026 52 2018) Total 110
${ }^{\prime}$ this is Lemma L9-1,
Q1 (a) A metric space (X, d) is sequentially compact if every sequence in X
(10) has a convergent subsequence.
(b) Given $\varepsilon>O$ suppose no such finite weer of ε-balls existed. (bose some (2) $x_{1} \in X$. Then $B_{\varepsilon}\left(x_{1}\right) \neq X$ so we may choose $x_{2} \in X \backslash B_{\varepsilon}\left(x_{1}\right)$. Since $B_{\varepsilon}\left(x_{1}\right) \cup B_{\varepsilon}\left(x_{2}\right) \neq X$ we may choose $x_{3} \notin X \backslash B_{\varepsilon}\left(x_{1}\right) \cup B_{\varepsilon}\left(x_{2}\right)$ and in this way construct $\left(x_{n}\right)_{n=0}^{\infty}$ with $d\left(x_{n}, x_{m}\right) \geqslant \varepsilon$ whenever $n \neq m$.
(2) wnstuction of a sequence (even. 0 obsewing By hypothesis $\left(x_{n}\right)_{n=0}$ contains a convergent subsequence, but this subsequence clearly cannot be Cauchy and so we have a contradiction.
$r_{\text {QL }}$ is Ex.LII-II(i), from assignment \#3」
Q2 (a) Suppose X is Hausdorff and $(x, y) \notin \Delta$, ie. $x \neq y$. Let U, V be open
(20) disjoint sets with $x \in U, y \in V$. Then $(x, y) \in U \times V$ and $U \times V \subseteq \Delta^{c}$, so Δ^{c} is open and hence Δ is closed.

If Δ is closed and $x \neq y$ then $(x, y) \in \Delta^{C}$ has an open neighborhood of the form $U \times V$ and so $x \in U, y \in V$ and $U \times V \cap \Delta=\varnothing$ implies U, V are disjoint so X is Hausdorff.
(b) Consider the continuous map $(\Delta(x)=(x, x))$ This is Lemma L17-2,

$$
X \xrightarrow{\Delta} X \times X \xrightarrow{f \times g} Y \times Y
$$

since Y is Hausdorff the cliagonal $\Delta=\left\{(y, y)\left|y \in \mathcal{E}^{-}\right|\right\} \subseteq Y x Y$ is closed, and its preimage under the above map $\{x \in X \mid f(x)=g(x)\}$ is therefore closed in X. Hence if $A \subseteq X$ is cense and $f|A=g|_{A}$ then
(2) $A \subseteq\{x \mid f(x)=g(x)\}$ and therefore $\{x \mid f(x)=g(x)\}=X$.
${ }^{r}$ This was Ex.L12-14,
Q3) For X locally compact Hausdorff the evaluation map
(20)

$$
x \times \operatorname{Cts}(x, y) \xrightarrow{e^{v_{x, y}}} y
$$

(10) for pouring the function is continuous
(10) for proving it is a homeomorphism
is continuous, and hence if $f: y \longrightarrow 2$ is continuous so is

$$
x \times \operatorname{Cts}(x, y) \xrightarrow{e v_{x, y}} y \xrightarrow{f} z
$$

and so by the adjunction property

$$
\begin{equation*}
\operatorname{cts}(x, y) \xrightarrow{f \circ(-)} \operatorname{cts}(x, z) \tag{s}
\end{equation*}
$$

is continuous. It therefore follows form the universal popery of the product that the given map in the question is continuous. It suffices to produce a continuous inverse, which corresponds under the adjunction property to

$$
\begin{aligned}
& X \times \operatorname{cts}(x, y) \times \operatorname{cts}(x, z) \\
& \mid \Delta \times 1 \\
& x \times X \times \operatorname{cts}(X, y) \times \operatorname{Cts}(X, z) \\
& 112 \\
& X \times \operatorname{cts}(X, Y) \times X \times \operatorname{cts}(X, z) \xrightarrow{e x_{x, y} \times e v_{x, z}} y \times Z .
\end{aligned}
$$

This map is continuous by wnstuction, and sends $\left(x, \pi_{y} \circ f, \pi_{z} \circ f\right)$ to $f(x)$, so it corresponds under the Ψ map of lectures to an invene for $C t_{s}(x, y \times z) \longrightarrow C f_{s}(X, Y) \times C f_{s}(X, z)$.

Q4 (a) The revere triangle inequality says $|\|v\|-\|w\|| \leqslant\|v-w\|$
(20) so given $\varepsilon>0$ if $d(v, w)<\varepsilon$ then $d(\|v\|,\|w\|)<\varepsilon$ hence $\|-\|$ is uniformly continuous. This is Lemma L18-3」
(b), (c) We pore font that $+: V \times V \rightarrow V$ is continuous at $\left(v_{0}, w_{0}\right)$, by calculating $\Gamma(b),(c)$ are Ex. L18-10,

$$
\begin{aligned}
\left\|+\left(v_{1}, w_{1}\right)-+\left(v_{0}, w_{0}\right)\right\| & =\left\|v_{1}-v_{0}+w_{1}-w_{0}\right\| \\
& \leqslant\left\|v_{1}-v_{0}\right\|+\left\|w_{1}-w_{0}\right\|
\end{aligned}
$$

with respect to the product metric on $V \times V$ this is

$$
\begin{equation*}
=d_{v \times v}\left(\left(v_{1}, w_{1}\right),\left(v_{0}, w_{0}\right)\right) \tag{S}
\end{equation*}
$$

so continuity is clear. Similarly for scalar multiplication

$$
\begin{align*}
\left\|\lambda_{1} v_{1}-\lambda_{0} v_{0}\right\| & =\left\|\lambda_{1} v_{1}-\lambda_{0} v_{1}+\lambda_{0} v_{1}-\lambda_{0} v_{0}\right\| \\
& =\left\|\left(\lambda_{1}-\lambda_{0}\right) v_{1}+\lambda_{0}\left(v_{1}-v_{0}\right)\right\| \\
& \leqslant\left\|\left(\lambda_{1}-\lambda_{0}\right) v_{1}\right\|+\left\|\lambda_{0}\left(v_{1}-v_{0}\right)\right\| \tag{s}\\
& =\left|\lambda_{1}-\lambda_{0}\right|\left\|v_{1}\right\|+\left|\lambda_{0}\right|\left\|v_{1}-v_{0}\right\| \\
& =\left|\lambda_{1}-\lambda_{0}\right|\left\|v_{1}-v_{0}+v_{0}\right\|+\left|\lambda_{0}\right|\left\|v_{1}-v_{0}\right\| \\
\leqslant & \left|\lambda_{1}-\lambda_{0}\right|\left\|v_{1}-v_{0}\right\|+\left|\lambda_{1}-\lambda_{0}\right|\left\|v_{0}\right\| \\
& +\left|\lambda_{0}\right|\left\|v_{1}-v_{0}\right\|
\end{align*}
$$

Given $\varepsilon>0$ choose $\delta \leqslant \min \left\{\sqrt{\frac{\varepsilon}{3}}, \frac{\varepsilon}{3\left\|v_{0}\right\|}, \frac{\varepsilon}{3\left|\lambda_{0}\right|}\right\}$
Then if $d_{\mathbb{F} \times V}\left(\left(\lambda_{0}, v_{0}\right),\left(\lambda_{1}, v_{1}\right)\right)<\delta$ we have

$$
\left|\lambda_{0}-\lambda_{1}\right|+\left\|v_{0}-v_{1}\right\|<\delta
$$

and hence $\left|\lambda_{0}-\lambda_{1}\right|<\delta,\left\|v_{0}-v_{1}\right\|<\delta$ and so

$$
\begin{align*}
\left\|\lambda_{1} v_{1}-\lambda_{0} v_{0}\right\| \leqslant & \left|\lambda_{1}-\lambda_{0}\right|\left\|v_{1}-v_{0}\right\|
\end{aligned}+\left|\lambda_{1}-\lambda_{0}\right|\left\|v_{0}\right\|\left|=\left|\lambda_{0}\right|\left\|v_{1}-v_{0}\right\|\right| \begin{aligned}
& <\delta^{2}+\delta\left\|v_{0}\right\|+\left|\lambda_{0}\right| \delta \\
& \\
& \leqslant
\end{align*}
$$

as required.
${ }^{T}$ This is Ex. L19-3
Q5 (a) Let $\left(T_{n}\right)_{n=0}^{\infty}$ be given. We claim for $v \in V$ that $\left(T_{n}(v)\right)_{n=0}^{\infty}$ is Cauchy in \mathbb{T}.
(20)

Let $\varepsilon>0$ begiven and choose N s.t. for all $n \geqslant N\left\|T_{m}-T_{n}\right\|<\varepsilon$. Then

$$
\left\|T_{m}(v)-T_{n}(x)\right\|=\left\|\left(T_{m}-T_{n}\right)(x)\right\| \leqslant\left\|T_{m}-T_{n}\right\| \cdot\|v\| \leqslant \varepsilon\|v\|
$$

It follows that $\left(T_{n}(v)\right)_{n=0}^{\infty}$ is Cauchy and thus converges in F. We set

$$
\begin{equation*}
T(v):=\lim _{n \rightarrow \infty} T_{n}(v) . \tag{5}
\end{equation*}
$$

(b)

$$
\begin{aligned}
T(v+w) & =\lim _{n \rightarrow \infty} T_{n}(v+w) \\
& =\lim _{n \rightarrow \infty}\left(T_{n}(v)+T_{n}(w)\right) \\
& =\lim _{n \rightarrow \infty} T_{n}(v)+\lim _{n \rightarrow \infty} T_{n}(w) \\
& =T(v)+T(w)
\end{aligned}
$$

$$
\begin{align*}
T(\lambda v) & =\lim _{n \rightarrow \infty} T_{n}(\lambda v) \\
& =\lim _{n \rightarrow \infty}\left(\lambda T_{n}(v)\right) \\
& =\lambda \lim _{n \rightarrow \infty} T_{n}(v) \\
& =\lambda T(v)
\end{align*}
$$

(c) We need to estimate

$$
\begin{aligned}
|T(v)| & =\left|\lim _{n \rightarrow \infty} T_{n}(v)\right| \\
& =\left|\lim _{n \rightarrow \infty}\right| T_{n}(v) \mid
\end{aligned}
$$

Now we would like to say this is less than $\lim _{n \rightarrow \infty}\left\|T_{n}\right\| \cdot\|v\|$ but are must fint argue that $\lim _{n \rightarrow \infty}\left\|T_{n}\right\|$ exists. But $\|-\|: V \rightarrow \mathbb{F}$ is uniformly continuous so $\left(\left\|T_{n}\right\|\right)_{n=0}^{\infty}$ is Cauchy and hence converges. So

$$
\begin{aligned}
& \leqslant \lim _{n \rightarrow \infty}\left\|T_{n}\right\| \cdot\|v\| \\
& =\left(\lim _{n \rightarrow \infty}\left\|T_{n}\right\|\right) \cdot\|v\| .
\end{aligned}
$$

This shows T is bounded and moreover $\|T\| \leqslant \lim _{n \rightarrow \infty}\left\|T_{n}\right\|$.
(d) We need to show $\left\|T-T_{n}\right\| \rightarrow O$ as $n \rightarrow \infty$. Note that with $m, n \in \mathbb{N}$ and $v \in V$ with $\|v\| \leq 1$

$$
\left|T_{m}(v)-T_{n}(v)\right| \leq\left\|T_{m}-T_{n}\right\|
$$

Let N be sufficiently large that this is $<\varepsilon$. Take $n \rightarrow \infty$ to obtain

$$
\left|T_{m}(v)-T(v)\right| \leqslant \varepsilon \quad m \geqslant N .
$$

Hence

$$
\begin{equation*}
\left\|T_{m}-T\right\|=\sup \left\{\left|T_{m}(v)-T(x)\right| \mid\|v\| \leq 1\right\} \leqslant \varepsilon . \tag{5}
\end{equation*}
$$

as claimed.

Q6 (a) $|\langle a, b\rangle| \leqslant\|a\| \cdot\|b\|$ Material covered in lectures,
(b) Let $f(a)=\langle a, h\rangle$. Then if $h=0 \quad f \equiv 0$ is continuous. If $h \neq 0$,

$$
\begin{aligned}
|f(a)-f(b)| & =|\langle a, h\rangle-\langle b, h\rangle| \\
& =|\langle a-b, h\rangle| \\
& \leq\|a-b\| \cdot\|h\| .
\end{aligned}
$$

To pore f is continuous at b, let $\varepsilon>0$ be given and set $\delta=\varepsilon /\|h\|$. Then $\|a-b\|<\delta$ implies $|f(a)-f(b)|<\delta\|h\|=\varepsilon$.
(c) Suppose $\left\langle u_{i}, f\right\rangle=0$ for all $i \in I$. Since $\langle-, h\rangle$ is linear and contin yous $\{h\}^{\perp}$ is a closed vector subspace. If it contains $\left\{u_{i}\right\}_{i} \in I$ then it contains U and thus $\bar{U}=H$ so $h=0$.
(d) Set $U=\operatorname{span}_{\mathbb{C}}\left(\left\{e^{i n} \theta\right\}_{n \in \mathbb{Z}}\right)$ so $\bar{U}=H$. We set $u_{n}=\frac{1}{\sqrt{2 \pi}} e^{i n \theta}$ and

$$
f^{\prime}=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}\left\langle f, u_{n}\right\rangle u_{n}
$$

Then

$$
\begin{aligned}
\left\langle u m, f-f^{\prime}\right\rangle & =\langle u m, f\rangle-\left\langle u m, f^{\prime}\right\rangle \\
& =\langle u m, f\rangle-\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}\left\langle u_{m},\left\langle f, u_{n}\right\rangle u_{n}\right\rangle \\
& =\left\langle u_{m}, f\right\rangle-\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}\left\langle u_{n}, f\right\rangle\left\langle u_{m}, u_{n}\right\rangle \\
& =\langle u m, f\rangle-\left\langle u_{m}, f\right\rangle=0
\end{aligned}
$$

Hence $f=f^{\prime}$.

