Metric and Hilbert Spaces (MAST30026) Assignment 2 (2021)

Beaudon Anasson XXXX Tutorial: 10am Wednesday with Daniel Murfet

Exercise L11-1 (Not Hausdorff)

Define the cofinite topology \mathcal{T} on the integers \mathbb{Z} by

$$U \in \mathcal{T} \iff U = \emptyset$$
 or $U = \mathbb{Z} \setminus S$ for some finite subset $S \subseteq \mathbb{Z}$

This is a valid topology since

- (i) $\emptyset \in \mathcal{T}$ by definition and $\mathbb{Z} = \mathbb{Z} \setminus \emptyset \in \mathcal{T}$ as the empty set is finite.
- (ii) For any collection of finite subsets $(S_i)_{i \in \mathbb{N}}$ of \mathbb{Z} we have

$$\bigcup_{i\in\mathbb{N}} (\mathbb{Z}\setminus S_i) = \mathbb{Z}\setminus \left(\bigcap_{i\in\mathbb{N}} S_i\right)\in\mathcal{T}$$

with the set inclusion justified by the intersection of finite sets being finite.

(iii) For any finite collection of finite subsets $(S_1, ..., S_n)$ of \mathbb{Z} we have

$$\bigcap_{i=1}^{n} (\mathbb{Z} \setminus S_i) = \mathbb{Z} \setminus \left(\bigcup_{i=1}^{n} S_i\right) \in \mathcal{T}$$

with the set inclusion justified by the finite union of finite sets being finite.

We now claim that the cofinite topology on \mathbb{Z} has closed points but is not Hausdorff.

Proof. (Points are closed) Let $x \in \mathbb{Z}$. Since the set $\{x\}$ is finite then $\mathbb{Z} \setminus \{x\}$ is open in \mathcal{T} and hence $\{x\} = \mathbb{Z} \setminus (\mathbb{Z} \setminus \{x\})$ is closed in \mathcal{T} .

(\mathcal{T} is not Hausdorff) Assume for the purpose of contradiction that \mathcal{T} is Hausdorff. Then for any $x, y \in \mathbb{Z}$ there exists there exists disjoint open sets $U, V \in \mathcal{T}$ such that $x \in U$ and $y \in V$.

Since *U* and *V* are open, then by the definition of \mathcal{T} there exist finitely many integers u_1, \ldots, u_m and v_1, \ldots, v_n such that $U = \mathbb{Z} \setminus \{u_1, \ldots, u_m\}$ and $V = \mathbb{Z} \setminus \{v_1, \ldots, v_n\}$.

This implies $U \cap V = \mathbb{Z} \setminus \{u_1, \dots, u_m, v_1, \dots, v_n\}$ is non-empty as the removal of finitely many elements from an infinite set leaves an infinite set.

However, this contradicts that U and V are disjoint and hence \mathcal{T} is not Hausdorff.

Exercise L11-12 (Doubled origin)

Proof. Let $f : X \to \mathbb{R}$ be a function and assume for the purpose of contradiction that f is continuous and $f(O_1) \neq f(O_2)$.

Since \mathbb{R} is Hausdorff, then there exists open and disjoint neighborhoods V_1 and V_2 of $f(O_1)$ and $f(O_2)$ respectively.

It then follows that since f is continuous and the preimage of disjoint sets is disjoint, then $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint and open neighborhoods of $f^{-1}(O_1)$ and $f^{-1}(O_2)$ respectively.

However, this is a contradiction, as example L11-1 shows that O_1 and O_2 have no disjoint neighborhoods.

Hence there does not exist a continuous function $f : X \to \mathbb{R}$ such that $f(O_1) \neq f(O_2)$.

Exercise L12-4 (Constant loops)

Proof. We want to show that

$$const \in Cts(Y, \mathscr{L}Y) = Cts(Y, Cts(S^1, Y))$$

Since S^1 is compact Hausdorff (by L12-1) and so locally compact Hausdorff, then we will have shown this to be true by the adjunction property if we can find a function $f \in Cts(Y \times S^1, Y)$ so that const = $\Psi(f)$ where Ψ is the bijection of theorem L12-4:

 $\Psi : \mathsf{Cts}(Y \times S^1, Y) \longrightarrow \mathsf{Cts}(Y, \mathsf{Cts}(S^1, Y))$

Denote $\pi_Y : Y \times S^1 \longrightarrow Y$ as the projection map $(y, \theta) \mapsto y$, which we know is continuous by exercise L7-5

i.e. $\pi_Y \in Cts(Y \times S^1, Y)$

Since for all $(y, \theta) \in Y \times S^1$ we have

$$const(y)(\theta) = y = \pi_Y(y, \theta) = \Psi(\pi_Y)(y)(\theta)$$

then const = $\Psi(\pi_Y)$ and so by our reasoning above

const \in Cts($Y, \mathscr{L}Y$)

i.e. const is continuous.

Exercise L12-14 (Product preserving)

Proof. The canonical bijection Φ of lemma L7-2 will be a homeomorphism if we can show it is both continuous and an open map.

To first show it is continuous, we define the maps,

 F_Y : Cts $(X, Y \times Z) \rightarrow$ Cts(X, Y) and F_Z : Cts $(X, Y \times Z) \rightarrow$ Cts(X, Z)

by

$$F_Y := \pi_Y \circ \operatorname{id}_{\operatorname{Cts}(X, Y \times Z)}$$
 and $F_Z := \pi_Z \circ \operatorname{id}_{\operatorname{Cts}(X, Y \times Z)}$

where π_Y and π_Z are the projection maps from $Y \times Z$ to Y and Z respectively.

Now by definition $\Phi = F_Y \times F_Z$ and since π_Y and π_Z are continuous (by exercise L7-5) and X is locally compact Hausdorff, then lemma 12-1 (iii) implies F_Y and F_Z are continuous and hence Φ is continuous as it is the product of continuous functions.

To show Φ is open, it suffices to show by exercise 12-3 (iii) that $\Phi S(K, U)$ is open for any compact $K \subseteq X$ and open $U \subseteq Y \times Z$ as the collection of all such sets S(K, U) form a sub-basis for the compact-open topology on Cts $(X, Y \times Z)$.

Let $K \subseteq X$ be any compact subset of X and let $U \subseteq Y \times Z$ be any open subset of $Y \times Z$ so that $U = U_Y \times U_Z$ where $U_Y \subseteq Y$ and $U_Z \subseteq Z$ are open.

Now

$$\Phi S(K, U) = \Phi S(K, U_Y \times U_Z)$$

= { (F_Y f, F_Z f) | f ∈ S(K, U_Y × U_Z) }
= { (π_Y ° (f_Y, f_Z), π_Z ° (f_Y, f_Z)) | (f_Y, f_Z) ∈ S(K, U_Y) × S(K, U_Z) }
= { (f_Y, f_Z) | f_Y ∈ S(K, U_Y) and f_Z ∈ S(K, U_Z) }
= S(K, U_Y) × S(K, U_Z)

which is open in the compact-open topology on $Cts(X, Y) \times Cts(X, Z)$.

Hence the canonical bijection Φ is also open and continuous and therefore a homeomorphism.