
Exercise L7-20

In Exercise L10-3 (see below) we prove that RPn ∼= Sn/∼, where Sn/∼ is the quotient space on Sn with
the equivalence relation defined by x ∼ y (x,y ∈ Sn) if x = −y or x = y. So, to prove that RPn is a
finite CW-complex, it is equivalent to show that Sn/∼ is a CW-complex. We will do this with induction.
In fact, we will show that Sn/∼ is a CW-complex for all integers n ≥ 0.

For the base case, notice that S0/∼ must be the one-point space {∗}. This is because the underlying
set of S0 is {−1, 1}, and 1 ∼ −1 which means S0/∼ has only one element, so must be the one-point space.
Letting X0 = S0/∼ ∼= {∗}, clearly X0 is a finite set with a discrete topology. So S0/∼ is a CW-complex.

Now we show that for each n ≥ 1, we can obtain Sn/∼ from Sn−1/∼ by attaching an n-cell. Indeed,
fix some n ≥ 1 and let ρ : Sn−1 → Sn−1/∼ be the quotient map (note that ρ is continuous since it’s a
quotient map), where ∼ is as defined before. Now consider the following pushout:

Sn−1 Sn−1/∼

Dn W

ρ

ι

where W = Sn−1/∼
∐
Sn−1 Dn. We’d like to show that W ∼= Sn/∼.

To see this, we’ll first show that W ∼= Dn/∼, where Dn/∼ is the quotient space on Dn with the
equivalence relation defined by: for x,y ∈ Dn, x ∼ y if x,y ∈ Sn−1 and x ∼ y as elements of Sn−1. Note
that this definition makes sense (it defines an equivalence relation) since Sn−1 ⊆ Dn. Let ρD : Dn →
Dn/∼ be the corresponding quotient map, which must be continuous. Then, the map ρD ◦ ι : Sn−1 →
Dn/∼, which is a composition of continuous maps, must also be continuous. Moreover, by our definition
of ∼ on Dn, we have that whenever x ∼ y (as elements of Sn−1), it is also true that ι(x) ∼ ι(y), i.e.
ρD(ι(x)) = ρD(ι(y)). So, the universal property of quotient spaces tells us that there exists a unique
continuous map f : Sn−1/∼ → Dn/∼ such that f ◦ ρ = ρD ◦ ι. In other words, the following diagram
commutes:

Sn−1 Sn−1/∼

Dn Dn/∼

ρ

ι f

ρD

So, since f and ρD are continuous and the diagram commutes, the universal property of the pushout tells
us that there exists a unique continuous map t : W → Dn/∼ making the following diagram commute:

Sn−1 Sn−1/∼

Dn W

Dn/∼

ρ

ι ι1 f
ι2

ρD

t

i.e. t ◦ ι1 = f and t ◦ ι2 = ρD where ι1 and ι2 are defined in the obvious way. We claim t defines a
homeomorphism between W and Dn/∼. To prove this, we’ll find its inverse. By our definition of ∼ on
Dn, whenever x ∼ y (as elements of Dn/∼), then x,y ∈ Sn−1 and x ∼ y as elements of Sn−1. In other
words, when x ∼ y we have

ρ(x) = ρ(y) (makes sense since x,y ∈ Sn−1)

=⇒ ι1(ρ(x)) = ι1(ρ(y))

=⇒ ι2(ι(x)) = ι2(ι(x)) (since ι1 ◦ ρ = ι2 ◦ ι)
=⇒ ι2(x) = ι2(x)
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where above we abuse notation slightly so that x may refer to either the element in Sn−1 or the corre-
sponding element in Dn. Anyway, the point of that is that whenever x ∼ y (as elements of Dn), we have
ι2(x) = ι2(y). Since ι2 is continuous, we may then use the universal property of the quotient space to
see that there must be a unique continuous map g : Dn/∼ →W such that

g ◦ ρD = ι2.

We claim that g and t are inverses. Indeed, since g ◦ ρD = ι2 and t ◦ ι2 = ρD we have

t ◦ g ◦ ρD = t ◦ ι2 = ρD

=⇒ (t ◦ g)(ρD(x)) = ρD(x) ∀x ∈ Dn

=⇒ (t ◦ g)(x) = x ∀x ∈ Dn/∼

since ρD, the quotient map, is surjective. Also since g ◦ ρD = ι2 and t ◦ ι2 = ρD,

g ◦ t ◦ ι2 = g ◦ ρD = ι2

=⇒ (g ◦ t)(ι2(x)) = ι2(x) ∀x ∈ Dn

At this point we just want ι2 to be surjective. But from the definition of W (as some quotient space of
(Sn−1/∼)

∐
Dn), every element of w ∈W can be written in the form w = ι2(x) for some x ∈ Dn (so that

w is in the range of ι2) or w = ι1(x) for some x ∈ Sn−1/∼. In the latter case, since ρ : Sn−1 → Sn−1/∼
is the quotient map and hence surjective, there must be some x ∈ Sn−1 such that x = ρ(x). Then, using
ι1 ◦ ρ = ι2 ◦ ι, we get w = ι1(ρ(x)) = ι2(ι(x)), which is still in the range of ι2. Thus, every w ∈ W is in
the range of ι2, so ι2 is surjective. Then

(g ◦ t)(ι2(x)) = ι2(x) ∀x ∈ Dn =⇒ (g ◦ t)(x) = ι2(x) ∀x ∈W.

So, g and t are inverses, and since both are continuous we can conclude that t is a homeomorphism. So
we have W ∼= Dn/∼.

All that remains is to show that Dn/∼ ∼= Sn/∼. To see that this is true, consider the following maps:

h : Dn → Sn given by h((x1, x2, . . . , xn)) = (x1, x2, . . . , xn,
√

1− x21 − x22 − · · · − x2n)

h̄ : Dn → Sn/∼ given by h̄((x1, x2, . . . , xn)) = ρS(h((x1, x2, . . . , xn)))

where ρS : Sn → Sn/∼ is the quotient map (which is continuous). h is well-defined, since if (x1, x2, . . . , xn) ∈
Dn then x21 +x22 + · · ·+x2n = ‖(x1, x2, . . . , xn)‖2 ≤ 1 so

√
1− x21 − x22 − · · · − x2n is indeed a real number,

and it is easily verified that ‖(x1, x2, . . . , xn,
√

1− x21 − x22 − · · · − x2n)‖ = 1. Also, h is continuous: to see
this, first consider the corresponding function h2 : Dn → Rn+1 defined by h2(x) = h(x). Each component
of h2 is continuous as they only involve squares and square roots, so then by the universal property of
product spaces (on Rn+1), h2 is continuous. It is clear then that h must also be continuous. Then,
h̄ = ρS ◦ h is a composition of continuous functions so is also continuous. Also, for all x,y ∈ Dn we have

x ∼ y =⇒ x,y ∈ Sn−1 and x = ±y

=⇒ h(x) = (x, 0) = ±(y, 0) = ±h(y)

=⇒ h̄(x) = h̄(y)

where above we abuse notation slightly so as to keep things neater to read: by (x, 0) we mean (x1, x2, . . . , xn, 0),
where x = (x1, x2, . . . , xn), and note also that h(x) = (x, 0) in the second line is a consequence of x ∈ Sn−1
(which implies that ‖x‖ = 1). Anyway, the point is that whenever x ∼ y (as elements of Dn) we also
have h̄(x) = h̄(y), so since h̄ is continuous, by the universal property of the quotient space there must
be a unique continuous map H : Dn/∼ → Sn/∼ such that

ρS ◦ h = h̄ = H ◦ ρD.
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We’ll now prove that H is actually a homeomorphism between Dn/∼ and Sn/∼.
Firstly, H surjective since we can write any element in Sn/∼ as ρS((x1, x2, . . . , xn+1) for some

(x1, x2, . . . , xn+1) ∈ Sn, such that xn+1 ≥ 0 (we can assume this by the nature of ∼ since if xn+1 < 0
then we can multiply the entire element by −1 and leave the equivalence class unchanged), and then we
have

H(ρD((x1, x2, . . . , xn))) = ρS((x1, x2, . . . , xn,
√

1− x21 − x22 − · · · − x2n)) = ρS((x1, x2, . . . , xn, xn+1))

since ‖(x1, x2, . . . , xn, xn+1)‖ = 1 and xn+1 ≥ 0.
Secondly, H is injective since for all x,y ∈ Dn, if H(ρD(x)) = H(ρD(y)) then

ρS((x,
√

1− ‖x‖2)) = ρS((y,
√

1− ‖y‖2))

(slight abuse of notation again, but it should be clear what it means) then we have one of the following
scenarios:

• if
√

1− ‖x‖2 = 0 we must also have
√

1− ‖y‖2 = 0 and then x = ±y by the definition of ∼ for
Sn. This all implies ‖x‖, ‖y‖ = 1 and so x,y ∈ Sn−1. All of this together implies ρD(x) = ρD(y).

• otherwise
√

1− ‖x‖2 > 0, which would then imply
√

1− ‖y‖2 =
√

1− ‖x‖2 > 0 from which we
also conclude x = y, so ρD(x) = ρD(y) is also true.

So, whenever H(x) = H(y) for some x, y ∈ Dn/∼ we must also have x = y. Hence H is injective.
So now we know that H is a continuous bijection. Also, Dn/∼ is compact by Corollary L10-4, and

we can also show Sn/∼ is Hausdorff: for any x, y ∈ Sn/∼ such that x 6= y, we can pick x,y ∈ Sn such
that x 6= y, x 6= −y and x = ρS(x) and y = ρS(y). Now, letting ε = 1

2 min{‖x− y‖, ‖x + y‖, 1}, which
is strictly positive since x 6= y and x 6= −y, we’ll define the following open sets in Sn:

U1 = Bε(x) ∩ Sn, V1 = Bε(y) ∩ Sn, U2 = Bε(−x) ∩ Sn, V2 = Bε(−y) ∩ Sn

(where Bε(x), Bε(y), Bε(−x), Bε(−y) are open balls in Rn+1, so the above are indeed open in the subspace
topology Sn). From our choice of ε it is clear that the four sets are pairwise disjoint, so also U1 ∪U2 and
V1 ∪ V2 are disjoint. Now let U = ρS(U1) and V = ρS(V1), then clearly

ρ−1S (U) = U1 ∪ U2, ρ−1S (V ) = V1 ∪ V2

and then we see that U, V must be open by the definition of the quotient topology (since U1 ∪ U2 and
V1∪V2 are unions of open sets so are open), and moreover must be disjoint as their preimages are disjoint.
It is also clear that x = ρS(x) ∈ U and y = ρS(y) ∈ V , thus Sn/∼ is Hausdorff as claimed.

Anyway, the point is that H : Dn/∼ → Sn/∼ is a continuous bijection from a compact space to a
Hausdorff space, so by Lemma L11-6 H is a homeomorphism and so Dn/∼ ∼= Sn/∼.

We are now done, but just to summarise everything: we proved S0/∼ is a CW-complex, then we
showed that Dn/∼ can be obtained from Sn−1/∼ by attaching a single n-cell. Then, we showed Sn/∼ ∼=
Dn/∼, so actually it is possible to obtain Sn/∼ from Sn−1/∼ by attaching a single n-cell. By induction,
it then follows that each Sn/∼, n ≥ 0, is a finite CW-complex. Finally, since RPn ∼= Sn/∼ (as proved in
the next question), RPn must also be a finite CW-complex.

Exercise L10-3

Recall that for n ≥ 1, the real projective space is defined to be the quotient space RPn = (Rn+1\{0})/ ∼
where (a0, a1, . . . , an) ∼ (b0, b1, . . . , bn) if there exists λ ∈ R\{0} with λai = bi for all 0 ≤ i ≤ n. Call the
corresponding quotient map ρ1 : Rn+1\{0} → RPn.

Consider the quotient space Sn/∼ where x ∼ y (x,y ∈ Sn) if x = −y or x = y (clearly ∼ is reflexive,
symmetric and transitive). Call the corresponding quotient map ρ2 : Sn → Sn/∼.
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We claim that Sn/∼ ∼= RPn. Indeed, consider the following functions:

f : Sn → Rn+1\{0} given by f(x) = x

f̄ : Sn → RPn given by f̄(x) = ρ1(f(x))

i.e. f is the inclusion Sn → Rn+1\{0}, and f̄ is the composition ρ1 ◦ f . Note that f is well-defined since
Sn ⊆ Rn+1 and ‖x‖ = 1 6= 0 for all x ∈ Sn so we do have Sn ⊆ Rn+1\{0}. Now, since f is an inclusion
map it must be continuous (by the definition of subspace topology). Then, since ρ1 is also continuous (by
the definition of quotient space), f̄ = ρ1 ◦f must also be continuous as it is the composition of continuous
functions. Moreover, for all x,y ∈ Sn we have

x ∼ y =⇒ x = y or x = −y =⇒ ∃λ ∈ R s.t. x = λy

(i.e. either λ = 1 or λ = −1 will do). Then if x ∼ y (as elements in Sn), there exists λ such that
f(x) = x = λy = λf(y), which implies f(x) ∼ f(y) (as elements in Rn+1), so that f̄(x) = ρ1(f(x)) =
ρ1(f(y)) = f̄(y) whenever x ∼ y. Then (recalling that f̄ is continuous), from the universal property of
quotient spaces, there must exist a unique continuous map F : S/∼ → RPn such that

f̄ = F ◦ ρ2.

We claim that F is a homeomorphism S/∼ → RPn. We already know F is continuous, so now it suffices
to show F has a continuous inverse. To go about constructing this inverse, we’ll consider the following
functions:

g : Rn+1\{0} → Sn given by g(x) =
x

‖x‖
ḡ : Rn+1\{0} → Sn/∼ given by ḡ(x) = ρ2(g(x)).

Clearly g is well-defined since for all x ∈ Rn+1\{0} we have
∥∥∥ x
‖x‖

∥∥∥ = ‖x‖
‖x‖ = 1. Moreover, since ‖−‖ is

continuous and non-zero in Rn+1\{0}, we see that g must also be continuous. Then, since ρ2 is continuous
(by the definition of quotient space), ḡ = ρ2 ◦ g must also be continuous as it is the composition of
continuous functions. Also, for all x,y ∈ Rn+1\{0} we have

x ∼ y =⇒ ∃λ ∈ R s.t. x = λy

=⇒ g(x) =
x

‖x‖
=

λy

‖λy‖

and either λy
‖λy‖ = y

‖y‖ = g(y) or λy
‖λy‖ = − y

‖y‖ = −g(y). So if x ∼ y (as elements in Rn+1\{0}) we have

g(x) = g(y) or g(x) = −g(y). Either way, we will have g(x) ∼ g(y) (as elements in Sn), so that

ḡ(x) = ρ2(g(x)) = ρ2(g(y)) = ḡ(y)

whenever x ∼ y. Thus (recalling that ḡ is continuous), from the universal property of quotient spaces
there must exist a unique continuous map G : (Rn+1\{0})/∼ → Sn/∼ such that

ḡ = G ◦ ρ1.

Now we will show that this G is the inverse of F . Indeed, for all x ∈ Rn+1\{0} we have

(F ◦G)(ρ1(x)) = (F ◦G ◦ ρ1)(x)

= (F ◦ ρ2 ◦ g)(x) (since G ◦ ρ1 = ḡ = ρ2 ◦ g)

= (ρ1 ◦ f ◦ g)(x) (since F ◦ ρ2 = f̄ = ρ1 ◦ f)

= ρ1(f(g(x)))

= ρ1

(
x

‖x‖

)
(using the definition of f and g)

= ρ1(x)
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since it is clear that x ∼ x
‖x‖ (as elements of x ∈ Rn+1\{0}, you’d just take λ = 1

‖x‖ in the given

definition of ∼), so since ρ1 is the quotient map and hence surjective, we have that (F ◦ G)(x) = x for
all x ∈ (Rn+1\{0})/∼. Similarly, for all y ∈ Sn we have

(G ◦ F )(ρ2(y)) = (G ◦ F ◦ ρ2)(y)

= (G ◦ ρ1 ◦ f)(y) (since F ◦ ρ2 = f̄ = ρ1 ◦ f)

= (ρ2 ◦ g ◦ f)(y) (since G ◦ ρ1 = ḡ = ρ2 ◦ g)

= ρ2(g(f(y)))

= ρ2

(
y

‖y‖

)
(using the definition of f and g)

= ρ2(y) (since y ∈ Sn implies ‖y‖ = 1).

Then, since ρ2 is the quotient map and hence surjective, the above actually shows that (G ◦ F )(y) = y
for all y ∈ Sn/∼.

Therefore, F and G are indeed inverses, and since both are continuous we now see that Sn/∼ ∼=
(Rn+1\{0})/∼ = RPn as we had initially claimed.

Now, Corollary L10-4 tells us Sn is compact, then Lemma L10-1 tells us Sn/∼ must also be compact.
Finally, since Sn/∼ and RPn are homeomorphic (as we just proved), Exercise L10-1 tells us that since
Sn/∼ is compact, RPn must also be compact. Or, if I can’t quote the exercise, we can instead use
Proposition L9-3 on F to conclude that F (Sn/∼) = RPn is compact. (Note that the image of F is indeed
RPn since F has an inverse, G, so F is a bijection, which must be surjective).

Exercise L12-2

Let f : X1 → Y1 and g : X2 → Y2 be continuous maps. We would like to show that the map

f × g : X1 ×X2 → Y1 × Y2, given by (x1, x2) 7→ (f(x1), g(x2))

is continuous.
From the definition of product spaces, the set B = {U × V | U ⊆ Y1 open in Y1, V ⊆ Y2 open in Y2}

is a basis for the topology associated with Y1 × Y2. So, from Exercise L7-1 part (ii) (see Assignment 1),
to show that f × g is continuous, it suffices to show that (f × g)−1(B) is open in X1 ×X2 for all B ∈ B.

Let B ∈ B, then B can be written as U × V for some U ⊆ Y1, V ⊆ Y2 open. Then

(f × g)−1(B) = (f × g)−1(U × V )

= {(x1, x2) ∈ X1 ×X2 | (f × g)(x1, x2) ∈ U × V }
= {(x1, x2) ∈ X1 ×X2 | (f(x1), g(x2)) ∈ U × V }
= {(x1, x2) ∈ X1 ×X2 | f(x1) ∈ U, g(x2) ∈ V }
= {(x1, x2) ∈ X1 ×X2 | x1 ∈ f−1(U), x2 ∈ g−1(V )}
= f−1(U)× g−1(V ).

Now, since U ⊆ Y1 is open and f : X1 → Y1 is continuous, f−1(U) must be open in X1. Similarly, since
V ⊆ Y2 is open and g : X2 → Y2 is continuous, g−1(V ) must be open in X2. Then, by the definition of
the topology of a product space, f−1(U)× g−1(V ) must be open in X1 ×X2. Thus we have shown that
(f × g)−1(B) = f−1(U)× g−1(V ) is open, and since this holds for any B ∈ B, f × g must be continuous
(as explained earlier).

Exercise L12-5

Call the map given in the question Ψ, i.e. let Ψ: Cts(X,Y )→
∏
x∈X Y be the map given by

Ψ(f) = (f(x))x∈X .
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We want to prove that Ψ is a homeomorphism. Let’s first prove that it is a bijection:

Ψ is injective: Suppose f, g ∈ Cts(X,Y ) are such that Ψ(f) = Ψ(g). We have:

Ψ(f) = Ψ(g) =⇒ (f(x))x∈X = (g(x))x∈X =⇒ f(x) = g(x) ∀x ∈ X =⇒ f = g

Hence Ψ is injective.

Ψ is surjective: Consider any (ax)x∈X ∈
∏
x∈X . Consider the function f : X → Y defined by

f(x) = ax ∀x ∈ X.

Since X is discrete (i.e. every subset of X is open), it immediately follows that f−1(A) is open for every
open set A ⊆

∏
x∈X Y . Hence f is continuous, so since f ∈ Cts(X,Y ) and Ψ(f) = (f(x))x∈X = (ax)x∈X ,

we see that Ψ is surjective.
So, since Ψ is injective and surjective, it must be a bijection. We now need to prove that Ψ and Ψ−1

are both continuous. To do this, we’ll make use of the following result:

“Ψ identifies S(x, U) with π−1x (U)”: More precisely, we will show that for any open subset U ⊆ Y
and x ∈ X, that Ψ(S(x, U)) = π−1x (U) and Ψ−1(π−1x (U)) = S(x, U) (where πx :

∏
x∈X Y → Y is the

projection and by S(x, U) we mean S({x}, U)). So, given any x ∈ X and open U ⊆ Y , we have

Ψ(S(x, U)) = Ψ({f ∈ Cts(X,Y ) | f(x) ∈ U})

= {(az)z∈X ∈
∏
z∈X

Y | ax ∈ U}

= {(az)z∈X ∈
∏
z∈X

Y | πx((az)z∈X) ∈ U}

= π−1x (U)

and

Ψ−1(π−1x (U)) = {f ∈ Cts(X,Y ) | (f(z))z∈X ∈ π−1x (U)}
= {f ∈ Cts(X,Y ) | πx((f(z))z∈X) ∈ U}
= {f ∈ Cts(X,Y ) | f(x) ∈ U}
= S(x, U)

as required.
Now we’ll get onto proving Ψ and Ψ−1 are continuous.

Ψ is continuous: By the definition of the product space, a basis B for
∏
x∈X Y is given by sets of the

form ∏
x∈X

Ux

where each Ux ⊆ Y is open. (Note that usually there is the condition that Ux 6= Y for finitely many
x ∈ X, but since X is finite this is true for any of the products of the above form). Now, from Exercise
L7-1 (ii) (see proof in Assignment 1), to prove that f is continuous it suffices to prove that Ψ−1(B) is
open for each B ∈ B. Each set B ∈ B can be written in the form

∏
x∈X Ux (where Ux ⊆ Y is open for
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each x ∈ X), so we have

Ψ−1

(∏
x∈X

Ux

)
= {f ∈ Cts(X,Y ) | (f(x))x∈X ∈

∏
x∈X

Ux}

= {f ∈ Cts(X,Y ) | f(x) ∈ Ux ∀x ∈ X}

=
⋂
x∈X
{f ∈ Cts(X,Y ) | f(x) ∈ Ux}

=
⋂
x∈X
{f ∈ Cts(X,Y ) | (f(z))z∈X ∈ π−1x (Ux)}

=
⋂
x∈X

Ψ−1
(
π−1x (Ux)

)
.

But from what we previously proved, we know that Ψ−1
(
π−1x (Ux)

)
= S(x, Ux) which is open (by the

definition of the compact-open space, since {x} is one element and hence compact, while Ux was said to
be open earlier), so since Ψ−1

(∏
x∈X Ux

)
is a finite intersection (since X is finite) of these open sets, it

follows that Ψ−1
(∏

x∈X Ux
)

is open. Thus Ψ is continuous.

Ψ−1 is continuous: To prove this, we’ll make use of part of the result from Exercise L12-3 (iii),
i.e. if f : A → B is a function and S is a sub-basis for the topology on B, then f is continuous if
f−1(U) is open for every U ∈ S. Now, from the definition of the compact-open subspace, the set
{S(K,U) | K ⊆ X compact, U ⊆ Y open} is a sub-basis for Cts(X,Y ), so since Ψ is the inverse of Ψ−1

we just need to show that Ψ(S(K,U)) is open whenever K ⊆ X is compact and U ⊆ Y is open. But,
since X is finite, we can write K = {x1, x2, . . . , xn} so that

Ψ(S(K,U)) = Ψ({f ∈ Cts(X,Y ) | f(x) ∈ U ∀x ∈ K})

= {(ax)x∈X ∈
∏
x∈X

Y | ax ∈ U ∀x ∈ K}

= {(ax)x∈X ∈
∏
x∈X

Y | axi ∈ U, 1 ≤ i ≤ n}

=
⋂

1≤i≤n

{(ax)x∈X ∈
∏
x∈X

Y | axi
∈ U}

=
⋂

1≤i≤n

Ψ({f ∈ Cts(X,Y ) | f(xi) ∈ U})

=
⋂

1≤i≤n

Ψ(S(xi, U))

But from what we’ve previously proved, we know that that Ψ(S(xi, U)) = π−1xi
(U), which is open as it

is the preimage of an open set U under a continuous function πx. So, since Ψ(S(K,U)) is the finite
intersection of sets of this form, it follows that Ψ(S(K,U)) is open. Thus Ψ−1 is continuous as we
discussed.

To conclude, Ψ is a continuous bijection with a continuous inverse, hence it is a homeomorphism.

Lemma for the next two questions

The next two questions both involve proving that some function Ψ: A→ B, where A andB are topological
spaces, is a homeomorphism onto its image. Suppose Q is a sub-basis for the topology on A. Here we
will show that proving the following is enough to to prove Ψ is a homeomorphism onto its image:

• Ψ is continuous, and
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• Ψ is injective, and

• For all open sets U in Q, Ψ(U) is open in Im Ψ (which is given the subspace topology, Im Ψ ⊆ B).

Indeed, suppose all three of the above conditions are satisfied. We want to show that the function
Ψ′ : A→ Im Ψ given by Ψ′(x) = Ψ(x) for all x ∈ A is a homeomorphism. Now, by the definition of Im Ψ
and Ψ′, it is clear that Ψ′ must be surjective. Moreover, since Ψ is injective, we have, for x, y ∈ A,

Ψ′(x) = Ψ′(y) =⇒ Ψ(x) = Ψ(y) =⇒ x = y

so Ψ′ is injective. Hence Ψ′ is a bijection. It remains to show that both Ψ′ and its inverse are continuous.
To show that Ψ′ is continuous, let U be any open set of Im Ψ. Then U = V ∩ Im Ψ for some open

V ⊆ B, by the definition of the subspace topology. Then

Ψ′−1(U) = Ψ−1(U) = Ψ−1(V ∩ Im Ψ) = Ψ−1(V ) ∩Ψ−1(Im Ψ) = Ψ−1(V ) ∩A = Ψ−1(V )

which must be open in A since Ψ is continuous and V is open in B. Hence Ψ′ is continuous.
Finally, to show that the inverse of Ψ′ is continuous, it suffices to show that the images under Ψ′ of

all open sets in some sub-basis of A are open in Im Ψ. But this is immediate from the third dot point
above (noting that Ψ′(U) = Ψ(U) for all subsets U ⊆ A). Hence the inverse of Ψ′ is continuous.

Hence, Ψ′ is a continuous bijection with a continuous inverse, so is a homeomorphism. So, Ψ is a
homeomorphism onto its image, as we wanted to show.

Exercise L12-11

Let X, Y1, Y2 and ι be as given in the problem statement. Let Ψ: Cts(X,Y1)→ Cts(X,Y2) be the map
given by

Ψ(f) = ι ◦ f.

Then, we are required to prove that Ψ is a homeomorphism onto its image. By the lemma in the previous
section, it suffices to show that Ψ is continuous, injective, and sends all open sets in some sub-basis of
Cts(X,Y1) to open sets in the image of Ψ.

First, notice that since ι : Y1 → Y2 is continuous and X is locally compact Hausdorff, by Lemma 12.1
(iii) Ψ must be continuous. Also, Ψ is injective since if Ψ(f) = Ψ(g) for some f, g ∈ Cts(X,Y1) then

Ψ(f) = Ψ(g) =⇒ ι ◦ f = ι ◦ f =⇒ ι(f(x)) = ι(g(x)) ∀x ∈ X =⇒ f(x) = g(x) ∀x ∈ X =⇒ f = g

where the second last implication follows from ι being injective (ι is injective since it is an inclusion map).
Finally, note that the set {S(K,U) | K ⊆ X compact, U ⊆ Y1 open} is a sub-basis for the topology

on Cts(X,Y1), so we just need to show that Ψ(S(K,U)) is open whenever K ⊆ X is compact and U ⊆ Y1
is open. So, let K ⊆ X be compact and U ⊆ Y1 be open, then U = V ∩ Y1 for some open set V ⊆ Y2.
We have

Ψ(S(K,U))

= Ψ({f ∈ Cts(X,Y1) | f(K) ⊆ U})
= {g ∈ Cts(X,Y2) | g(K) ⊆ U and g ∈ Im Ψ}
= {g ∈ Cts(X,Y2) | g(K) ⊆ V ∩ Y1 and g(X) ⊆ Y1} (since U = V ∩ Y1)

= {g ∈ Cts(X,Y2) | g(K) ⊆ V and g(K) ⊆ Y1 and g(X) ⊆ Y1}
= {g ∈ Cts(X,Y2) | g(K) ⊆ V and g(X) ⊆ Y1} (g(K) ⊆ Y1 redundant since g(X) ⊆ Y1)

= {g ∈ Cts(X,Y2) | g(K) ⊆ V } ∩ {g ∈ Cts(X,Y2) | g(X) ⊆ Y1}
= S(K,V ) ∩ Im Ψ
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and since K ⊆ Y1 ⊆ Y 2 is compact and V ⊆ Y2 is open, S(K,V ) is open by the definition of compact-
open topology on Cts(X,Y2). So, S(K,V )∩ Im Ψ is open in the subspace topology on Im Ψ, which means
that Ψ(S(K,U)) is open.

So, Ψ satisfies all three dot points of our lemma from the previous section, so Ψ is a homeomorphism
onto its image.

Exercise L13-2

(i)

Let Y , X, ∼ and ρ be as given in the question. Let Ψ: Cts(X/∼, Y )→ Cts(X,Y ) be the map given by

Ψ(f) = f ◦ ρ.

Then we are required to prove that Ψ is a homeomorphism onto its image. By the lemma we proved
before the previous question, it suffices to show that that Ψ is continuous, injective and maps all open
sets in some sub-basis of Cts(X/∼, Y ) to open sets of Im Ψ (with the subspace topology).

So now, the question statement already mentions why Ψ is continuous. And to see that Ψ is injective,
suppose f, g ∈ Cts(X/∼, Y ) are such that Ψ(f) = Ψ(g). Then

Ψ(f) = Ψ(g) =⇒ f ◦ ρ = g ◦ ρ =⇒ f(ρ(x)) = g(ρ(x)) ∀x ∈ X =⇒ f = g

where above we are using the fact that ρ is surjective (it is a quotient map), so that any element of X/∼
can be written in the form ρ(x) for some x ∈ X. Anyway, this proves that Ψ is injective.

Now, {S(K,U) | K ⊆ X/∼ compact, U ⊆ Y open} a sub-basis for Cts(X/∼, Y ) by the definition of
compact-open topology, so we just need to show that Ψ(S(K,U)) is open in Ψ(X/∼) whenever K ⊆ X/∼
is compact and U ⊆ Y is open. We have

Ψ(S(K,U)) = Ψ({f ∈ Cts(X/∼, Y ) | f([x]) ∈ U whenever [x] ∈ K})
= {g ∈ Cts(X,Y ) | (g(x) ∈ U whenever ρ(x) ∈ K) and g ∈ Im Ψ}
= {g ∈ Cts(X,Y ) | g(x) ∈ U whenever x ∈ ρ−1(K)} ∩ Im Ψ

= S(ρ−1(K), U) ∩ Im Ψ

Now, since X/∼ was said to be Hausdorff and K ⊆ X/∼ is compact, then by Lemma L11-5 we have that
K must be closed. Then,

ρ−1(K) = {x ∈ X | ρ(x) ∈ K}
= X\{x ∈ X | ρ(x) 6∈ K}
= X\{x ∈ X | ρ(x) ∈ Y \K}
= X\(ρ−1(Y \K))

= (ρ−1(Kc))c

and since K is closed, Kc must be open, which means ρ−1(Kc) must be open (since ρ is continuous)
which means (ρ−1(Kc))c must be closed. So, ρ−1(K) = (ρ−1(Kc))c is closed and it is a subset of X
which is a compact space. By Exercise L9-5, every closed subspace of a compact space is compact, so
ρ−1(K) must be compact. Then, recalling that U ⊆ Y was open, we have that S(ρ−1(K), Y ) must be
open by the definition of compact-open space on Cts(X,Y ). Thus, S(ρ−1(K), U)∩ Im Ψ is open in Im Ψ,
which shows that Ψ(S(K,U)) is open in Im Ψ.

So, Ψ satisfies all three conditions of our lemma, hence it is a homeomorphism onto its image.
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(ii)

Let X,Y be topological spaces with X 6= ∅, and let Ψ: Y → Cts(X,Y ) be the map given by

Ψ(y) = cy

where cy ∈ Cts(X,Y ) is defined by cy(x) = y for all x ∈ X. We will show that Ψ is a homeomorphism
onto its image by showing that Ψ satisfies the three conditions (continuous, injective, maps open sets in
some sub-basis of Y to open sets of Im Ψ) of the lemma we used for the previous two problem.

Ψ is continuous: The sets of the form S(K,U) (where K ⊆ X compact and U ⊆ Y open) form a
sub-basis for Cts(X,Y ), so to show Ψ is continuous it suffices to show that Ψ−1(S(K,U)) is open in
Y whenever K ⊆ X is compact and U ⊆ Y is open (Exercise L12-3). Indeed, let K ⊆ X be compact
and U ⊆ Y be open. If K = ∅ then it is clear that S(K,U) = Cts(X,Y ) so that Ψ−1(S(K,U)) =
Ψ−1(Cts(X,Y )) = Y , which is open. Otherwise if K 6= ∅ and we have

y ∈ Ψ−1(S(K,U)) ⇐⇒ Ψ(y) ∈ S(K,U)

⇐⇒ cy ∈ S(K,U)

⇐⇒ cy(K) ⊆ U
⇐⇒ y ∈ U

so that Ψ−1(S(K,U)) = U , and hence it is open. This proves that Ψ is continuous.

Ψ is injective: Suppose y1, y2 ∈ Y such that Ψ(y1) = Ψ(y2). Since X 6= ∅, pick and fix some x0 ∈ X.
Then

Ψ(y1) = Ψ(y2) =⇒ cy1 = cy2 =⇒ cy1(x0) = cy2(x0) =⇒ y1 = y2

and hence Ψ is injective.

Ψ maps open sets of Y to open sets of Im Ψ: (Firstly, we’ll just remark that Y is a sub-basis for
itself, so if we prove that Ψ(U) is open in Im Ψ for all open U ⊆ Y , the third dot point of our lemma will
indeed be satisfied.) So now, let U ⊆ Y be open, and fix some x0 ∈ X (which we can do since X 6= ∅),
then we have

Ψ(U) = {Ψ(y) | y ∈ U} = {cy | y ∈ U} = Im Ψ ∩ S({x0}, U).

Notice that {x0} is compact (one point space is compact), and we said earlier that U was open, hence
S({x0}, U) is open by the definition of compact-open space for Cts(X,Y ). Then, Im Ψ ∩ S({x0}, U) is
open in Im Ψ by the definition of subspace topology for Im Ψ ⊆ Cts(X,Y ). Hence Ψ(U) is open, as
required.

Summary: We can now apply our lemma to conclude that Ψ is a homeomorphism onto its image. So
we have proved that the map given in the question is continuous and a homeomorphism onto its image
(even if X is not locally compact Hausdorff).
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