13 marks total
Notation and conventions

The set \mathbb{N} is the set of positive integers $\{1, 2, 3, \ldots \}$.

The set \mathbb{N}_0 is the set of nonnegative integers $\{0, 1, 2, \ldots \}$.

The transpose of a matrix X is denoted X'.
Question 1

Lemma L2-2. The pair \((S^1, d_a)\) is a metric space.

Exercise L2-3. Give a direct proof of Lemma L2-2 by dividing into cases as follows: Given \(x, y, z \in S^1\), set \(\theta := \Phi^{-1}(x), \theta' := \Phi^{-1}(y), \) and \(\theta'' := \Phi^{-1}(z)\). Consider the following three statements:

\[
\begin{align*}
P_1 & : |\theta - \theta'| \leq \pi \\
P_2 & : |\theta' - \theta''| \leq \pi \\
P_3 & : |\theta - \theta''| \leq \pi
\end{align*}
\]

Each is either true or false for a particular triple \((x, y, z)\), and this means there are \(2^3 = 8\) cases (e.g. \(P_1, P_2\) true but \(P_3\) false). Prove each case individually, and in this way prove the lemma.

Recall that \(d_a : S^1 \times S^1 \to \mathbb{R}_{\geq 0}\) is defined as

\[
d_a(\Phi(\omega), \Phi(\omega')) = \min\{|\omega - \omega'|, 2\pi - |\omega - \omega'|\} = \begin{cases}
|\omega - \omega'|, & |\omega - \omega'| \leq \pi, \\
2\pi - |\omega - \omega'|, & |\omega - \omega'| > \pi.
\end{cases}
\]

for every \(\omega, \omega' \in [0, 2\pi)\). We note that

(i) \(d_a\) is nonnegative: If \(\omega, \omega' \in [0, 2\pi)\) then \(0 \leq |\omega - \omega'| < 2\pi\) so that \(|\omega - \omega'|\) and \(2\pi - |\omega - \omega'|\) are both nonnegative;

(ii) \(d_a\) is symmetric: If \(\omega, \omega' \in [0, 2\pi)\) then \(|\omega - \omega'| = |\omega' - \omega|\);

(iii) \(d_a\) separates distinct elements: If \(\omega, \omega' \in [0, 2\pi)\) and \(d_a(\Phi(\omega), \Phi(\omega')) = 0\) then \(|\omega - \omega'| = 0\) (since \(2\pi - |\omega - \omega'| > 0\)) and \(\omega = \omega'\). Conversely if \(\omega \in [0, 2\pi)\) then \(d_a(\Phi(\omega), \Phi(\omega)) = \min\{0, 2\pi\} = 0\).

To prove that \((S^1, d_a)\) is a metric space, it remains to establish that \(d_a\) satisfies the triangle equality: For our given \(x, y, z \in S^1\) we need to prove that

\[d_a(x, y) + d_a(y, z) \geq d_a(x, z)\]

We proceed by considering cases in the following order:

(a) \(P_1, P_2,\) and \(P_3\) are all false.

(b) \(P_1\) is true, while \(P_2\) and \(P_3\) are both false.

(c) \(P_2\) is true, while \(P_1\) and \(P_3\) are both false.

(d) \(P_1\) and \(P_2\) are true, while \(P_3\) is false.

(e) \(P_3\) is true, while \(P_1\) and \(P_2\) are both false.

(f) \(P_1\) and \(P_3\) are true, while \(P_2\) is false.

(g) \(P_2\) and \(P_3\) are true, while \(P_1\) is false.

(h) \(P_1, P_2,\) and \(P_3\) are all true.

For \(a, b \in \mathbb{R}\), we will use \(T(a, b)\) to denote the triangle inequality for \(|\cdot|\) in \(\mathbb{R}\), i.e. that \(|a| + |b| \geq |a + b|\).

1. \(\text{All false} \)
1(a) This case is not actually possible: Writing \([0, 2\pi]\) as the disjoint union \([0, \pi) \cup [\pi, 2\pi]\), the pigeonhole principle tells us that either \([0, \pi)\) or \([\pi, 2\pi]\) contains two of \(\theta, \theta', \text{ and } \theta''\). The difference of those two must therefore be strictly less than \(\pi\), so that \(P_1, P_2,\) and \(P_3\) cannot simultaneously all be false.

(b) \(P_1: P_2, P_3\) false

In this case we have
\[
d_a(x, y) + d_a(y, z) = |\theta - \theta'| + (2\pi - |\theta' - \theta''|),
\]
\[
d_a(x, z) = 2\pi - |\theta - \theta'|.
\]

Observe:
\[
d_a(x, y) + d_a(y, z) \geq d_a(x, z) \iff |\theta - \theta'| + (2\pi - |\theta' - \theta''|) \geq 2\pi - |\theta - \theta'|
\]
\[
\iff |\theta - \theta'| + |\theta - \theta''| \geq |\theta' - \theta''|
\]

The final inequality is precisely \(T(\theta' - \theta, \theta - \theta'')\), so we have shown that the triangle inequality holds for \(d_a\) when only \(P_1\) is true.

(c) \(P_2: P_1, P_3\) false

In this case we have
\[
d_a(x, y) + d_a(y, z) = (2\pi - |\theta - \theta'|) + |\theta' - \theta''|,
\]
\[
d_a(x, z) = 2\pi - |\theta - \theta''|.
\]

Observe:
\[
d_a(x, y) + d_a(y, z) \geq d_a(x, z) \iff (2\pi - |\theta - \theta'|) + |\theta' - \theta''| \geq 2\pi - |\theta - \theta'|\]
\[
\iff |\theta' - \theta''| + |\theta - \theta'| \geq |\theta' - \theta'|
\]

The final inequality is precisely \(T(\theta' - \theta'', \theta' - \theta)\), so we have shown that the triangle inequality holds for \(d_a\) when only \(P_2\) is true.

(d) \(P_1, P_2\) true; \(P_3\) false

In this case we have \(d_a(x, y) + d_a(y, z) = |\theta - \theta'| + |\theta' - \theta''|\). By \(T(\theta - \theta', \theta' - \theta'')\), this means that \(d_a(x, y) + d_a(y, z) \geq |\theta - \theta'|\). By definition, \(d_a(x, z) \leq |\theta - \theta''|\), so we have shown that the triangle inequality holds for \(d_a\) when \(P_1\) and \(P_2\) are true. (Note that we did not actually use the fact that \(P_3\) is false.)

(e) \(P_3\) true; \(P_1, P_2\) false

In this case we have
\[
d_a(x, y) + d_a(y, z) = (2\pi - |\theta - \theta'|) + (2\pi - |\theta' - \theta''|) = 4\pi - (|\theta - \theta'| + |\theta' - \theta''|),
\]
\[
d_a(x, z) = |\theta - \theta''|.
\]

Observe:
\[
d_a(x, y) + d_a(y, z) \geq d_a(x, z) \iff 4\pi - (|\theta - \theta'| + |\theta' - \theta''|) \geq |\theta - \theta''|
\]
\[
\iff |\theta - \theta'| + |\theta' - \theta''| + |\theta - \theta''| \leq 4\pi.
\]
Now, as a function of \((\theta, \theta', \theta'')\), the left-hand side of the last inequality is invariant under permutations, so without loss of generality we may assume that \(0 \leq \theta \leq \theta' \leq \theta'' < 2\pi\). The left-hand side then becomes

\[(\theta' - \theta) + (\theta'' - \theta') + (\theta'' - \theta) = 2(\theta'' - \theta) < 4\pi,\]

where the last inequality is because \(\theta'' - \theta < 2\pi\). Thus we have shown that the triangle inequality holds for \(d_a\) when only \(P_3\) is true.

\[(f) \quad P_1, P_3 \text{ true; } P_2 \text{ false}\]

In this case we have

\[d_a(x, y) + d_a(y, z) = |\theta - \theta'| + (2\pi - |\theta' - \theta''|),\]
\[d_a(x, z) = |\theta - \theta''|.

Observe:

\[d_a(x, y) + d_a(y, z) \geq d_a(x, z) \iff |\theta - \theta'| + (2\pi - |\theta' - \theta''|) \geq |\theta - \theta''| \]
\[\iff |\theta - \theta''| + |\theta' - \theta''| - |\theta - \theta'| \leq 2\pi \]
\[\iff |\theta - \theta''| + |\theta' - \theta''| - |\theta - \theta'| \leq 2|\theta - \theta''| \quad \text{since } |\theta - \theta''| \leq \pi \]
\[\iff |\theta' - \theta''| - |\theta - \theta'| \leq |\theta - \theta''| \]
\[\iff |\theta - \theta'| + |\theta - \theta''| \geq |\theta' - \theta''| \]
\[\iff |\theta' - \theta'| + |\theta - \theta''| \geq |\theta' - \theta''|.

The final inequality is precisely \(T(\theta' - \theta, \theta - \theta'')\), so we have shown that the triangle inequality holds for \(d_a\) when \(P_1\) and \(P_3\) are true but \(P_2\) is false.

\[(g) \quad P_2, P_3 \text{ true; } P_1 \text{ false}\]

In this case we have

\[d_a(x, y) + d_a(y, z) = (2\pi - |\theta - \theta'|) + |\theta' - \theta''|,\]
\[d_a(x, z) = |\theta - \theta''|.

Observe:

\[d_a(x, y) + d_a(y, z) \geq d_a(x, z) \iff (2\pi - |\theta - \theta'|) + |\theta' - \theta''| \geq |\theta - \theta''| \]
\[\iff |\theta - \theta''| + |\theta' - \theta''| - |\theta - \theta'| \leq 2\pi \]
\[\iff |\theta - \theta''| + |\theta' - \theta''| - |\theta - \theta'| \leq 2|\theta - \theta''| \quad \text{since } |\theta - \theta''| \leq \pi \]
\[\iff |\theta - \theta'| - |\theta' - \theta''| \leq |\theta - \theta''| \]
\[\iff |\theta - \theta'| - |\theta' - \theta''| \leq |\theta - \theta''| \]
\[\iff |\theta - \theta'| + |\theta' - \theta''| \geq |\theta - \theta'| \]
\[\iff |\theta - \theta'| + |\theta' - \theta''| \geq |\theta - \theta'|.

The final inequality is precisely \(T(\theta - \theta'', \theta' - \theta)\), so we have shown that the triangle inequality holds for \(d_a\) when \(P_2\) and \(P_3\) are true but \(P_1\) is false.

\[(h) \quad \text{All true}\]

Please refer to the case where only \(P_1\) and \(P_2\) are true.
Question 2 \((3 \text{ marks}) \)

Exercise L3-3. Prove that any element of \(\text{Isom}(S^1, d_a)\) of the form

\[
F = g_1g_2\ldots g_r, \quad r \geq 0,
\]

where each \(g_i\) is either \(R_\theta\) for some \(\theta \in \mathbb{R}\) or \(T\), may be proven equal to \(R_\psi T^n\) for some \(\psi \in [0, 2\pi)\) and \(n \in \{0, 1\}\), using relations (R1), (R2), and (R3).

Recall that the relations were (R1) \(R_\theta R_\phi = R_{\theta + \phi}\), (R2) \(R_\theta T = TR_{-\theta}\), and (R3) \(T^2 = \text{id}\).

We proceed by induction. For each \(m \in \mathbb{N}_0\), let \(P(m)\) be the following proposition: For every \(m\)-tuple \((g_1, g_2, \ldots, g_m)\) where each \(g_i\) is either \(R_\theta\) or \(T\), there exist \(\psi \in [0, 2\pi)\) and \(n \in \{0, 1\}\) such that \(g_1g_2\ldots g_m = R_\psi T^n\).

Note that \(P(0)\) is simply the proposition that \(\text{id} \in \text{Isom}(S^1, d_a)\) may be written as \(R_\psi T^n\) for some \(\psi \in [0, 2\pi)\) and \(n \in \{0, 1\}\). Taking \(\psi := 0\) and \(n := 0\), we see that \(P(0)\) holds.

Suppose \(k \in \mathbb{N}_0\) is such that \(P(k)\) holds. We will show that \(P(k + 1)\) holds. For a given \((g_1, g_2, \ldots, g_{k+1})\), we wish to show that there exist \(\psi \in [0, 2\pi)\) and \(n \in \{0, 1\}\) such that \(g_1g_2\ldots g_{k+1} = R_\psi T^n\). Since \(P(k)\) holds, there exist \(\omega \in [0, 2\pi)\) and \(p \in \{0, 1\}\) such that \(g_1g_2\ldots g_k = R_\omega T^p\). Hence it is sufficient to show that there exist \(\psi \in [0, 2\pi)\) and \(n \in \{0, 1\}\) such that \(R_\omega T^p g_{k+1} = R_\psi T^n\).

If \(g_{k+1}\) is \(R_\theta\) for some \(\theta \in \mathbb{R}\) then, using (R2) \(p\) times, we have

\[
T^p g_{k+1} = T^p R_\theta = \begin{cases} R_\theta, & p = 0, \\
R_{-\theta}T, & p = 1, \end{cases}
\]

which we may write as \(R_{(-1)^p \theta} T^p\). Hence \(R_\omega T^p g_{k+1} = R_\omega R_{(-1)^p \theta} T^p\). Using (R1), we have \(R_\omega T^p g_{k+1} = R_{\omega + (-1)^p \theta} T^p\). Finally, taking \(\psi \) to be \((\omega + (-1)^p \theta) \mod 2\pi\) and \(n := p\), we have

\[
g_1g_2\ldots g_k g_{k+1} = R_{\omega + (-1)^p \theta} T^p = R_\psi T^n.
\]

If \(g_{k+1}\) is \(T\) then using (R3)

\[
T^p g_{k+1} = T^p T = \begin{cases} T, & p = 0, \\
\text{id}, & p = 1, \end{cases}
\]

which we may write as \(T^{1-p}\). Hence \(R_\omega T^p g_{k+1} = R_\omega T^{1-p}\). Taking \(\psi := \omega\) and \(n := 1 - p\), we have

\[
g_1g_2\ldots g_k g_{k+1} = R_\omega T^{1-p} = R_\psi T^n.
\]

In both cases we have produced \(\psi \in [0, 2\pi)\) and \(n \in \{0, 1\}\) such that \(R_\omega T^p g_{k+1} = R_\psi T^n\). Thus, we have shown that \(P(k + 1)\) holds if \(P(k)\) holds. By the principle of mathematical induction, we therefore have that \(P(m)\) holds for every \(m \in \mathbb{N}_0\).
Let \(\ell \) denote the line passing through the origin and \((\cos(\theta/2), \sin(\theta/2))\).

Since \(R_\theta \), \(T \), and reflection in \(\ell \) are all linear transformations, it suffices to show that the image of \((1,0)\) and \((0,1)\) under \(R_\theta T \) are their respective images under reflection in \(\ell \).

Let us first determine these images: The (directed and counterclockwise) angles subtended at the origin are

- from \((1,0)\) to \((\cos(\theta/2), \sin(\theta/2))\): \(\theta/2\), and
- from \((0,1)\) to \((\cos(\theta/2), \sin(\theta/2))\): \(-\pi - \theta)/2\).

Thus, the image of \((1,0)\) should be a counterclockwise rotation of \((\cos(\theta/2), \sin(\theta/2))\) around the origin by \(\theta/2\), while the image of \((1,0)\) should be a counterclockwise rotation of \((\cos(\theta/2), \sin(\theta/2))\) around the origin by \(-\pi - \theta)/2\). That is, \((1,0)\) is sent to \((\cos \theta, \sin \theta)\), and \((0,1)\) is sent to

\[
(\cos(\theta/2 - \pi - \theta/2), \sin(\theta/2 - \pi - \theta/2)) = (\cos(\theta - \pi), \sin(\theta - \pi/2)) = (\sin \theta, -\cos \theta).
\]

The images of \((1,0)\) and \((0,1)\) under \(R_\theta T \) are given by

\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\text{ and }
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\begin{bmatrix}
\sin \theta \\
-\cos \theta
\end{bmatrix}
\]

respectively. These agree with their images under reflection in \(\ell \). Hence the linear transformations \(R_\theta T \) and reflection through the line passing through the origin and \((\cos(\theta/2), \sin(\theta/2))\) are the same transformations.
Question 4 \((5 \text{ marks}) \)

Exercise L3-5. Let \(F : V \to V \) be an invertible linear operator on a finite-dimensional vector space.

(a) Prove that precisely one of the following two possibilities is realised:

(I) \(\forall B \ (F(B) \sim B) \)

(II) \(\forall B \ (F(B) \not\sim B) \)

where \(B \) ranges over all ordered bases and \(F(B) \) denotes \((F(b_1), \ldots, F(b_n)) \) if \(B = (b_1, \ldots, b_n) \). In the first case we say \(F \) is orientation preserving, and in the latter case we say \(F \) is orientation reversing.

(b) Prove that \(F \) is orientation preserving iff \(\det(F) > 0 \) and orientation reversing iff \(\det(F) < 0 \).

(c) Define

\[
O(n) := \{ X \in M_n(\mathbb{R}) \mid X \text{ is orthogonal, i.e. } X'X = I_n \} \\
SO(n) := \{ X \in O(n) \mid \det(X) = 1 \}.
\]

Prove that \(X \in O(n) \) if and only if for all \(v, w \in \mathbb{R}^n \)

\[
(Xv) \cdot (Xw) = v \cdot w.
\]

By part (b), \(SO(n) \) are precisely the matrices in \(O(n) \) that give rise to orientation preserving linear transformations \(\mathbb{R}^n \to \mathbb{R}^n \).

(d) Prove that \(O(n) \) is a group under multiplication, and \(SO(n) \) is a subgroup. Produce an element \(T \in O(n) \) such that \(T^2 = \text{id} \) and every element of \(O(n) \) not in \(SO(n) \) may be written as \(XT \) for some \(X \in SO(n) \). Thus prove \(SO(n) \subseteq O(n) \) is a normal subgroup and that there is a group isomorphism

\[
O(n)/SO(n) \cong \mathbb{Z}/2\mathbb{Z}.
\]

(a) Fix an ordered basis \(C \) of \(V \). Since \(F \) is a linear operator on a finite-dimensional vector space, for some matrix \(A \in M_n(\mathbb{R}) \) (where \(n = \dim V \)) we have \(F(C) = AC \). Note that because \(F \) is invertible, \(A \) must be an invertible matrix. That is, \(\det A \neq 0 \).

Now, our definition of \(A \) above means that \(A = [\text{id}]^C_{F(C)} \), where \([\text{id}]^C_{F(C)} \in M_n(\mathbb{R}) \) is the matrix which changes \(F(C) \)-coordinates to \(C \)-coordinates. For our basis \(C \) we have by definition (from Tutorial 1)

\[
F(C) \sim C \quad \iff \quad \det A > 0.
\]

By negating (and noting that \(\det A \neq 0 \) as mentioned above) we also have for our basis \(C \) that

\[
F(C) \not\sim C \quad \iff \quad \det A < 0.
\]

Next, consider another arbitrary ordered basis \(B \) of \(V \). Then \([\text{id}]^B_{F(B)} \) is the matrix which changes \(F(B) \)-coordinates to \(B \)-coordinates. We can see that this matrix is the same as \([F]_B^B \), the matrix corresponding to applying \(F \) under \(B \)-coordinates. We now carry out a change of basis to relate \([F]_B^B \) and \([F]_C^C = [\text{id}]_C^{F(C)}A[\text{id}]_B^{F(B)} \):

We write

\[
[F]_B^B = [\text{id}]_B^C [F]_B^C [\text{id}]_B^B = [\text{id}]_C^C A [\text{id}]_B^B.
\]

From this we can see that

\[
F(B) \sim B \quad \iff \quad \det([\text{id}]_B^B) > 0 \quad \iff \quad \det([\text{id}]_C^C A [\text{id}]_B^B) > 0.
\]
We simplify the last condition by writing
\[\det([id]_B^B A [id]_B^B) = \det([id]_B^B)(\det A) \det([id]_B^C), \]
\[= (\det A) \det([id]_B^B) \det([id]_B^C), \]
\[= \det A \text{ since } [id]_C^B [id]_B^C = [id]_B^B = I_n. \]

This allows us to conclude that
\[F(B) \sim B \iff \det(A) > 0. \]

Since \(B \) was an arbitrary ordered basis of \(V \), we have in fact established that
\[F(B) \sim B \quad \forall \text{ bases } B \text{ of } V \iff \det A > 0, \]
as well as
\[F(B) \not\sim B \quad \forall \text{ bases } B \text{ of } V \iff \det A < 0. \]

by negating. Precisely one of \(\det A > 0 \) and \(\det A < 0 \) is true, so we may conclude that either (I) \(F(B) \sim B \)
for every basis \(B \) of \(V \), or (II) \(F(B) \not\sim B \) for every basis \(B \) of \(V \).

(b) In the previous part we proved that it makes sense to classify the invertible linear operator \(F \) itself as being orientation-preserving or orientation-reversing, since applying \(F \) either preserves the orientation of all bases or preserves the orientation of no bases at all. As demonstrated above, since \(\det F \neq 0 \), \(F \) is orientation-preserving if and only if \(\det F > 0 \), while \(F \) is orientation-reversing if and only if \(\det F < 0 \).

(c) First observe that for every \(X \in M_n(\mathbb{R}) \) and for every \(v, w \in \mathbb{R}^n \) we have
\[(Xv) \cdot (Xw) = (Xv)'(Xw) = v'X'Xw. \]

(\(\Rightarrow \)) Suppose \(X \in O(n) \). Then \(X'X = I_n \), so for every \(v, w \in \mathbb{R}^n \) we have
\[(Xv) \cdot (Xw) = v'I_n w = v \cdot w. \]

(\(\Leftarrow \)) Suppose that \((Xv) \cdot (Xw) = v \cdot w \) for every \(v, w \in \mathbb{R}^n \). For every \(i, j \in \{1, 2, \ldots, n\} \), let \(e_i \in \mathbb{R}^n \) denote the column vector consisting of 1 as the \(i \)th coordinate and 0 in every other coordinate. Then for every \(i, j \in \{1, 2, \ldots, n\} \) we have
\[(Xe_i) \cdot (Xe_j) = e_i'X'Xe_j = (X'X)_{i,j}, \]
where \((X'X)_{i,j} \) is the \((i, j) \)th entry of \(X'X \). By hypothesis, this must be equal to \(e_i \cdot e_j = 1(i = j) \). That is, the \((i, j) \)th entry of \(X'X \) must be 1 if \(i = j \) and 0 if \(i \neq j \). Thus \(X'X = I_n \) and \(X \in O(n) \).

(d) We begin by showing that \(O(n) \) is a group under multiplication. The identity element is \(I_n \) (which is orthogonal).

We claim that the inverse of \(X \in O(n) \) is \(X' \in O(n) \). Recall that \(X \) and \(X' \) are inverses in the group \(GL(n) \) if \(X \) is orthogonal (i.e. \(X'X = XX' = I_n \)), so it remains to show that \(X' \in O(n) \). Observe that \(X''X' = (X'X)' = (XX^{-1})' = I_n \), so indeed \(X' \in O(n) \).

Next, if \(X, Y \in O(n) \) then
\[(XY)'(XY) = Y'(X'X)Y = Y'Y = I_n, \]
so that \(XY \in O(n) \). This shows that \(O(n) \) is a group under matrix multiplication.

To show that \(SO(n) \) is a subgroup of \(O(n) \), we need to show that (i) \(SO(n) \) contains the identity \(I_n \); (ii) \(SO(n) \) is closed under inversion; and (iii) \(SO(n) \) is closed under matrix multiplication.
Since \(\det I_n = 1 \), we know that \(I_n \in SO(n) \), so \(SO(n) \) contains the identity. Next, if \(X \in O(n) \) and \(\det X = 1 \) then \(X' \in O(n) \) and \(\det(X') = \det(X^{-1}) = (\det X)^{-1} = 1 \), so \(X' \in SO(n) \). Hence \(SO(n) \) is closed under inversion. Finally, if \(X, Y \in O(n) \) and \(\det X = \det Y = 1 \), then \(XY \in O(n) \) and \(\det(XY) = (\det X)(\det Y) = 1 \), so \(XY \in SO(n) \). Thus, \(SO(n) \) is a subgroup of \(O(n) \).

We claim that a suitable choice of \(T \in O(n) \) is

\[
\begin{pmatrix}
-1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{pmatrix}
\]

the \(n \times n \) diagonal matrix with \(-1\) in the upper left entry and \(1\) everywhere else along the diagonal. We verify that \(T \) is orthogonal: Note that \(T' = T \) and \(T^2 = I_n \), so that \(T'T = T^2 = I_n \) and \(T \in O(n) \). In our discussion below we will use the fact that \(\det T = -1 \).

Next, consider \(Y \in O(n) \). Both \(Y \) and \(YT \) are elements in \(O(n) \). Since \(Y'Y = I_n \), we know that \((\det Y)^2 = 1\), so that \(\det Y = 1 \) or \(\det Y = -1 \). If \(Y \notin SO(n) \), we necessarily have that \(\det Y = -1 \), so that \(\det(YT) = (\det Y)(\det T) = 1 \) and \(YT \in SO(n) \). With the choice of \(X := YT \), we have \(X \in SO(n) \) and \(XT = YT^2 = Y \). Thus our \(T \) satisfies the required criteria.

Before showing that \(SO(n) \) is a normal subgroup of \(O(n) \), we will first show that \(T \) in fact satisfies a further similar property. In particular, we will show that if \(Y \in O(n) \setminus SO(n) \), then \(Y = TZ \) for some \(Z \in SO(n) \): We simply take \(Z := TY \in O(n) \) and note that \(\det Y = -1 \) since \(Y \in O(n) \setminus SO(n) \), so that \(\det Z = (\det T)(\det Y) = 1 \) and \(Z \in SO(n) \). Then we verify that \(TZ = T^2Y = Y \).

The above results show that the right cosets of \(O(n) \) with respect to \(SO(n) \) is the set \(\{ SO(n), SO(n)T \} \), while the left cosets of \(O(n) \) with respect to \(SO(n) \) is the set \(\{ SO(n), T SO(n) \} \). Since each is a bipartition of \(SO(n) \), we have that \(SO(n)T = T SO(n) \).

We are now ready to show normality of \(SO(n) \) as a subgroup of \(O(n) \): If \(Y \in SO(n) \) then \(Y SO(n) = SO(n) = SO(n)Y \). If \(Y \in O(n) \setminus SO(n) \) then for some \(X \in SO(n) \) and \(Z \in SO(n) \) we have \(Y = XT = TZ \) and

\[
Y SO(n) = TZ SO(n) = T SO(n) = SO(n)T = SO(n)XT = SO(n)Y.
\]

This shows that \(SO(n) \) is a normal subgroup of \(O(n) \). Since there are only two cosets, the quotient group \(O(n)/SO(n) \) is a group of order 2, so \(O(n)/SO(n) \cong \mathbb{Z}/2\mathbb{Z} \).
Question 5

Exercise L4-0. Prove that

\[
d_1(x, y) = \sum_{i=1}^{n} |x_i - y_i| \\
d_\infty(x, y) = \max\{|x_i - y_i|\}_{i=1}^{n}
\]

define metrics on \(\mathbb{R}^n\).

Since \(|\cdot|\) is nonnegative, and the sum and the maximum of nonnegative numbers are nonnegative, both \(d_1\) and \(d_\infty\) are nonnegative. Furthermore, since \(|a - b| = |b - a|\) for all \(a, b\) we have \(d_1(x, y) = d_1(y, x)\) and \(d_\infty(x, y) = d_\infty(y, x)\) for all \(x, y \in \mathbb{R}^n\). That is, both \(d_1\) and \(d_\infty\) are symmetric.

It remains to show that \(d_1\) and \(d_\infty\) both separate distinct points and both satisfy the triangle inequality.

Let us proceed first for \(d_1\). Suppose \(d_1(x, y) = 0\). Since each \(|x_i - y_i|\) is nonnegative, the only way for the sum \(\sum_{i=1}^{n} |x_i - y_i|\) to be 0 is to have \(|x_i - y_i|\) be exactly 0 for every \(i\). That is, we must have \(x_i = y_i\) for every \(i\), so that \(x = y\). Hence \(d_1\) separates distinct points. For the triangle inequality, fix \(x, y, z \in \mathbb{R}^n\). Then

\[
d_1(x, y) + d_1(y, z) = \sum_{i=1}^{n} |x_i - y_i| + \sum_{i=1}^{n} |y_i - z_i| = \sum_{i=1}^{n} (|x_i - y_i| + |y_i - z_i|) \geq \sum_{i=1}^{n} |x_i - z_i|,
\]

where the inequality comes from the triangle inequality for \(|\cdot|\) on \(\mathbb{R}\). The last term is precisely \(d_1(x, z)\), so we have established that \(d_1(x, y) + d_1(y, z) \geq d_1(x, z)\). Therefore \(d_1\) satisfies the triangle inequality, meaning that \(d_1\) meets all the conditions of being a metric on \(\mathbb{R}^n\).

We now turn to \(d_\infty\). Suppose \(d_\infty(x, y) = 0\). Then for every \(i\) we must have \(|x_i - y_i| \leq 0\), so that \(x_i = y_i\). Hence \(x = y\) if \(d_\infty(x, y) = 0\), and \(d_\infty\) separates distinct points. For the triangle inequality, fix \(x, y, z \in \mathbb{R}^n\). Observe that for every \(i\) we necessarily have

\[
d_\infty(x, y) + d_\infty(y, z) \geq |x_i - y_i| + |y_i - z_i| \geq |x_i - z_i|,
\]

where the first inequality comes from the definition of \(d_\infty\) and the second inequality comes from the triangle inequality for \(|\cdot|\) on \(\mathbb{R}\). As this holds for every \(i\), we may conclude that

\[
d_\infty(x, y) + d_\infty(y, z) \geq \max\{|x_i - z_i|\}_{i=1}^{n} = d_\infty(x, z).
\]

Hence \(d_\infty\) satisfies the triangle inequality, and \(d_\infty\) too meets all the conditions of being a metric on \(\mathbb{R}^n\).
Question 6

Exercise L4-4. Prove that if $P_1 = Q^{-1}P_2Q$ for some orthogonal matrix Q then multiplication by Q gives an isometry (assume P_1, P_2 positive-definite)

$$(\mathbb{R}^n, d_{P_1}) \longrightarrow (\mathbb{R}^n, d_{P_2})$$

That is, the metric we get on \mathbb{R}^n from P_1 is essentially the same as the one we get from P_2.

Since Q is orthogonal, Q is invertible, and multiplication by Q is a bijection from \mathbb{R}^n to \mathbb{R}^n (in particular, it is surjective). It remains to show that multiplication preserves distance. Fix $x, y \in \mathbb{R}^n$ (treated as column vectors). We wish to show that $d_{P_2}(Qx, Qy) = d_{P_1}(x, y)$. We write

$$d_{P_2}(Qx, Qy) = (Qx)'P_2(Qy) = x'(Q'P_2Q)y.$$

Since Q is orthogonal, we have $Q' = Q^{-1}$, so that $Q'P_2Q = Q^{-1}P_2Q = P_1$, and

$$d_{P_2}(Qx, Qy) = x'P_1y = d_{P_1}(x, y).$$

This shows that multiplication by Q is distance-preserving. As mentioned, multiplication by Q is also surjective, so altogether multiplication by Q is an isometry from (\mathbb{R}^n, d_{P_1}) to (\mathbb{R}^n, d_{P_2}).