Derivatives of proofs in linear logic

Daniel Murfet

based on joint work with James Clift

Precis

BHK interpretation: intuitionistic proofs of $A \rightarrow B$ give rise to functions $\operatorname{Proofs}(A) \rightarrow \operatorname{Proofs}(B)$

- Can these functions be differentiated?
- What would such derivatives be good for?

1. Efficient (re)computation
2. Differentiable reasoning
3. Investigating logic vs physics

Precis

BHK interpretation: intuitionistic proofs of $A \rightarrow B$ give rise to functions $\operatorname{Proofs}(A) \rightarrow \operatorname{Proofs}(B)$

- Can these functions be differentiated?
- What would such derivatives be good for?

1. Efficient (re)computation
2. Differentiable reasoning
3. Investigating logic vs physics

Curry-Howard correspondence

Outline

1. History of derivatives in logic
2. Derivatives in the syntax
3. Relation to calculus via coalgebras
(based on arXiv:1701.01285)

History of derivatives in logic

- Leibniz's stepped reckoner (1670s)
- Babbage's difference engine (1830s)
- Circuits and 2nd order differential equations
- Automatic differentiation of real-valued programs
- Ehrhard-Regnier's differential lambda calculus (2003)
- Differential linear logic

History: Leibniz’s stepped reckoner

History: Leibniz’s stepped reckoner

After a full rotation of the drum, the shaft rotates by $n k$

$$
\Delta \psi=n k \frac{\Delta \theta}{2 \pi} \quad \theta=0,2 \pi, 4 \pi, \ldots
$$

History: Leibniz's stepped reckoner

After a full rotation of the drum, the shaft rotates by $n k$

$$
\Delta \psi=n k \frac{\Delta \theta}{2 \pi} \quad \Delta \theta=0,2 \pi, 4 \pi, \ldots
$$

History: Leibniz's stepped reckoner

After a full rotation of the drum, the shaft rotates by $n k$ (if we halve the rotation caused by each tooth, while doubling the number)

$$
\Delta \psi=n k \frac{\Delta \theta}{2 \pi} \quad \Delta \theta=0, \pi, 2 \pi, \ldots
$$

History: Leibniz’s stepped reckoner

In the limit of infinitely many repetitions of this group of nine teeth

$$
d \psi=n k \frac{d \theta}{2 \pi}=n k^{\prime} d \theta \quad k^{\prime}=\frac{k}{2 \pi} \quad \frac{d \psi}{d \theta}=n k^{\prime}
$$

History: Leibniz’s stepped reckoner

$$
e^{i \psi}=e^{i n \theta}=\left(e^{i \theta}\right)^{n}
$$

Upshot: The stepped reckoner gives a "physical semantics" of the Church numerals matching the denotational semantics in vector spaces

Derivatives in the syntax

- Differential linear logic adds a new deduction rule, which produces the derivative of a proof in a direction specified by a new (linear) hypothesis.

$$
\begin{aligned}
& \pi \\
& \vdots \\
& \frac{!A \vdash B}{!A, A \vdash B} \text { diff } \quad\left(a_{1}, a_{2}\right) \longrightarrow \lim _{h \rightarrow 0} \frac{\pi\left(a_{1}+h a_{2}\right)-\pi\left(a_{1}\right)}{h}
\end{aligned}
$$

- In the best formulation diff is derived from codereliction, cocontraction and coweakening.

Deduction rules for (intuitionistic, first-order) linear logic

$$
\begin{gathered}
\text { (Dereliction): } \frac{\Gamma, A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \text { der } \\
\text { (Contraction): } \frac{\Gamma,!A,!A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \mathrm{ctr} \\
\text { (Weakening): } \frac{\Gamma, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \text { weak }
\end{gathered}
$$

$$
\begin{aligned}
& \text { (Axiom): } \overline{A \vdash A} \quad \text { (Cut): } \frac{\Gamma \vdash A \quad \Delta^{\prime}, A, \Delta \vdash B}{\Delta^{\prime}, \Gamma, \Delta \vdash B} \text { cut (Promotion): } \frac{!\Gamma \vdash A}{!\Gamma \vdash!A} \text { prom } \\
& (\text { Left } \multimap): \frac{\Gamma \vdash A \quad \Delta^{\prime}, B, \Delta \vdash C}{\Delta^{\prime}, \Gamma, A \multimap B, \Delta \vdash C} \multimap L \quad(\text { Left } \otimes): \frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, A \otimes B, \Delta \vdash C} \otimes-L \\
& (\text { Right } \multimap): \frac{A, \Gamma \vdash B}{\Gamma \vdash A \multimap B} \multimap R \\
& (\text { Right } \otimes): \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes-R
\end{aligned}
$$

Deduction rules for (intuitionistic, first-order) linear logic

(Dereliction): $\frac{\Gamma, A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B}$ der

$$
\underline{001}: \boldsymbol{\operatorname { b i n t }}_{A}=!(A \multimap A) \multimap(!(A \multimap A) \multimap(A \multimap A))
$$

(Contraction): $\frac{\Gamma,!A,!A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B}$ ctr
(Axiom): $\overline{A \vdash A} \quad$ (Cut): $\frac{\Gamma \vdash A \quad \Delta^{\prime}, A, \Delta \vdash B}{\Delta^{\prime}, \Gamma, \Delta \vdash B}$ cut (Promotion): $\frac{!\Gamma \vdash A}{!\Gamma \vdash!A}$ prom

$$
\begin{array}{ll}
(\text { Left } \multimap): \frac{\Gamma \vdash A \quad \Delta^{\prime}, B, \Delta \vdash C}{\Delta^{\prime}, \Gamma, A \multimap B, \Delta \vdash C} \multimap L & (\text { Left } \otimes): \frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, A \otimes B, \Delta \vdash C} \otimes-L \\
(\text { Right } \multimap): \frac{A, \Gamma \vdash B}{\Gamma \vdash A \multimap B} \multimap R & (\text { Right } \otimes): \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes-R
\end{array}
$$

Deduction rules for differential linear logic

(Dereliction): $\frac{\Gamma, A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B}$ der
(Codereliction): $\frac{\Gamma,!A, \Delta \vdash B}{\Gamma, A, \Delta \vdash B}$ coder
(Contraction): $\frac{\Gamma,!A,!A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B}$ ctr
(Cocontraction): $\frac{\Gamma,!A, \Delta \vdash B}{\Gamma,!A,!A, \Delta \vdash B}$ coctr
(Weakening): $\frac{\Gamma, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B}$ weak \quad (Coweakening): $\frac{\Gamma,!A, \Delta \vdash B}{\Gamma, \Delta \vdash B}$ coweak

$$
\begin{aligned}
& \text { (Axiom): } \overline{A \vdash A} \quad \text { (Cut): } \frac{\Gamma \vdash A \quad \Delta^{\prime}, A, \Delta \vdash B}{\Delta^{\prime}, \Gamma, \Delta \vdash B} \text { cut (Promotion): } \frac{!\Gamma \vdash A}{!\Gamma \vdash!A} \text { prom } \\
& (\text { Left } \multimap): \frac{\Gamma \vdash A \quad \Delta^{\prime}, B, \Delta \vdash C}{\Delta^{\prime}, \Gamma, A \multimap B, \Delta \vdash C} \multimap L \quad(\text { Left } \otimes): \frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, A \otimes B, \Delta \vdash C} \otimes-L \\
& (\text { Right } \multimap): \frac{A, \Gamma \vdash B}{\Gamma \vdash A \multimap B} \multimap R \\
& (\text { Right } \otimes): \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes-R
\end{aligned}
$$

Deduction rules for differential linear logic

(Dereliction): $\frac{\Gamma, A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B}$ der
(Codereliction): $\frac{\Gamma,!A, \Delta \vdash B}{\Gamma, A, \Delta \vdash B}$ coder
(Contraction): $\frac{\Gamma,!A,!A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \operatorname{ctr}$
(Cocontraction): $\frac{\Gamma,!A, \Delta \vdash B}{\Gamma,!A,!A, \Delta \vdash B} \mathrm{coctr}$
(Weakening): $\frac{\Gamma, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B}$ weak
(Coweakening): $\frac{\Gamma,!A, \Delta \vdash B}{\Gamma, \Delta \vdash B}$ coweak

$$
\begin{array}{cc}
\pi & \pi \\
\vdots & \vdots \\
\frac{!A \vdash B}{!A, A \vdash B} \text { diff } & \text { is defined to be } \\
\frac{!A \vdash B}{!A,!A \vdash B} \text { coctr } \\
!A, A \vdash B \\
\text { coder }
\end{array}
$$

Product rule as cut-elimination rule
$\operatorname{bint}_{A}=!(A \multimap A) \multimap(!(A \multimap A) \multimap(A \multimap A))$.

$$
E=A \multimap A
$$

repeat $:!$ bint $_{A} \multimap \operatorname{bint}_{A}$

$$
\mathrm{comp}_{A}^{2}
$$

repeat

!bint $_{A} \vdash \operatorname{bint}_{A}$
$\overline{!\operatorname{bint}_{A}, \boldsymbol{b i n t}_{A} \vdash \operatorname{bint}_{A}}$
$(\underline{S}, \underline{T}) \longmapsto \underline{S T}+\underline{T S}$
$(S+\varepsilon T)(S+\varepsilon T)=S S+\varepsilon(S T+T S)+\varepsilon^{2} T T$

Relation to calculus via coalgebras

- Following Ehrhard-Regnier we have defined derivatives in the syntax, via new deduction rules and cut-elimination rules.
- Do these syntactic derivatives capture the logical content lying behind the semantic derivatives?
- In particular, are they consistent with the role of Church numerals in Leibniz's stepped reckoner?
- Yes: because coalgebras

Algebras over a field k

multiplication $m: A \otimes A \longrightarrow A \quad u: k \longrightarrow A$ unit

$$
\begin{aligned}
& A \otimes A \otimes A \xrightarrow{m \otimes 1} A \otimes A \\
& \begin{aligned}
& 1 \otimes m \\
& \downarrow \\
& A \otimes A \xrightarrow{\text { associativity }} \\
& \\
& \downarrow
\end{aligned}
\end{aligned}
$$

Coalgebras over a field k

comultiplication $\Delta: A \longrightarrow A \otimes A \quad c: A \longrightarrow k$ counit

Examples

polynomial algebra

$$
k\left[x_{1}, \ldots, x_{n}\right]
$$

ring of dual numbers

$$
\begin{gathered}
k[\varepsilon] /\left(\varepsilon^{2}\right)=k \cdot 1 \oplus k \cdot \varepsilon \\
\varepsilon^{2}=0
\end{gathered}
$$

polynomial coalgebra

$$
k\left[x_{1}, \ldots, x_{n}\right]
$$

dual of the ring of dual numbers

$$
\left(k[\varepsilon] /\left(\varepsilon^{2}\right)\right)^{*}=k \cdot 1^{*} \oplus k \cdot \varepsilon^{*}
$$

$$
\Delta\left(x^{n}\right)=\sum_{i=0}^{n} x^{i} \otimes x^{n-i}
$$

$$
\Delta(1)=1 \otimes 1
$$

$$
\Delta\left(\varepsilon^{*}\right)=1 \otimes \varepsilon^{*}+\varepsilon^{*} \otimes 1
$$

Consider a morphism of k-algebras

$$
\begin{gathered}
k\left[x_{1}, \ldots, x_{n}\right] \xrightarrow{\varphi} k[\varepsilon] /\left(\varepsilon^{2}\right)=k \cdot 1 \oplus k \cdot \varepsilon \\
\varphi\left(x_{i}\right)=\lambda_{i}+\mu_{i} \varepsilon
\end{gathered}
$$

it is straightforward to see that, for any polynomial f ,

$$
\varphi(f)=f\left(\lambda_{1}, \ldots, \lambda_{n}\right)+\left.\sum_{i} \mu_{i} \frac{\partial f}{\partial x_{i}}\right|_{x=\vec{\lambda}} \cdot \varepsilon
$$

this gives rise to a bijection of k-algebra morphisms with pairs
$\operatorname{Hom}_{k-\operatorname{Alg}}\left(k\left[x_{1}, \ldots, x_{n}\right], k[\varepsilon] /\left(\varepsilon^{2}\right)\right) \stackrel{1: 1}{\longleftrightarrow} k^{n} \times k^{n}$
$\varphi \longleftrightarrow(\vec{\lambda}, \vec{\mu}) \quad$ (point, tangent vector)

Universal coalgebra

The cofree coalgebra $\operatorname{Cof}(V)$ over a vector space V is a coalgebra together with a linear map $d: \operatorname{Cof}(V) \rightarrow V$ which is universal, in the sense that for any coalgebra C and linear $\phi: C \rightarrow V$ there unique morphism of coalgebras Φ such that

$$
d \circ \Phi=\phi
$$

Theorem: $\operatorname{Cof}(V)$ is the space of distributions with finite support on V, i.e. all derivatives of Dirac distributions

Sweedler semantics $\llbracket-\rrbracket:$ LL \longrightarrow Vect

$$
\begin{gathered}
\llbracket A \multimap B \rrbracket=\operatorname{Hom}_{k}(\llbracket A \rrbracket, \llbracket B \rrbracket) \\
\llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \otimes \llbracket B \rrbracket \\
\llbracket!A \rrbracket=\operatorname{Cof}(\llbracket A \rrbracket)
\end{gathered}
$$

dereliction $=$ universal linear map $\llbracket!A \rrbracket \longrightarrow \llbracket A \rrbracket$
contraction $=$ comultiplication $\llbracket!A \rrbracket \longrightarrow \llbracket!A \rrbracket \otimes \llbracket!A \rrbracket$
weakening = counit $\llbracket!A \rrbracket \longrightarrow k$
promotion $=$ lifting of $\llbracket!A \rrbracket \longrightarrow \llbracket B \rrbracket$ to $\llbracket!A \rrbracket \longrightarrow \llbracket!B \rrbracket$

Sweedler semantics $\llbracket-\rrbracket:$ LL \longrightarrow Vect

$$
\begin{gathered}
\llbracket A \multimap B \rrbracket=\operatorname{Hom}_{k}(\llbracket A \rrbracket, \llbracket B \rrbracket) \\
\llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \otimes \llbracket B \rrbracket \\
\llbracket!A \rrbracket=\operatorname{Cof}(\llbracket A \rrbracket)
\end{gathered}
$$

The Sweedler semantics is also a semantics of differential linear logic, as follows:

$$
\begin{aligned}
& \llbracket!A \rrbracket \otimes \llbracket A \rrbracket \longrightarrow \longrightarrow!A \rrbracket \xrightarrow{\llbracket \pi \rrbracket} \llbracket B \rrbracket \\
& \|\quad\| \\
& \frac{!A \vdash B}{!A, A \vdash B} \text { diff } \\
& \operatorname{Cof}(\llbracket A \rrbracket) \otimes \llbracket A \rrbracket \longrightarrow \operatorname{Cof}(\llbracket A \rrbracket) \\
& D \otimes \nu \longmapsto \partial_{\nu} D
\end{aligned}
$$

(point, tangent vector) $\quad V \times V \quad(\lambda, \mu) \quad V=k^{n}$

$$
\downarrow \cong
$$

$$
\operatorname{Hom}_{k-\operatorname{Alg}}\left(k\left[x_{1}, \ldots, x_{n}\right], k[\varepsilon] /\left(\varepsilon^{2}\right)\right)
$$

$$
\downarrow \cong
$$

$\operatorname{Hom}_{k}\left(\operatorname{Sym}\left(V^{*}\right), k[\varepsilon] /\left(\varepsilon^{2}\right)\right)$

$$
\downarrow \cong
$$

$$
\operatorname{Hom}_{k}\left(V^{*}, k[\varepsilon] /\left(\varepsilon^{2}\right)\right)
$$

$$
\downarrow \cong
$$

$\operatorname{Hom}_{k}\left(\left(k[\varepsilon] /\left(\varepsilon^{2}\right)\right)^{*}, V\right)$

$$
\downarrow \cong
$$

$$
1^{*} \mapsto \operatorname{Dirac}_{\lambda}
$$

$\operatorname{Hom}_{k-\operatorname{Coalg}}\left(\left(k[\varepsilon] /\left(\varepsilon^{2}\right)\right)^{*}, \operatorname{Cof}(V)\right) \quad \varepsilon^{*} \mapsto \partial_{\mu} \operatorname{Dirac}_{\lambda}$

How to differentiate a proof denotation

Given $\pi:!A \multimap B, \alpha, \beta: A$ so that $\llbracket \alpha \rrbracket, \llbracket \beta \rrbracket \in \llbracket A \rrbracket$

$$
\begin{aligned}
& \operatorname{Cof}(\llbracket A \rrbracket)=\llbracket!A \rrbracket \longrightarrow \llbracket \pi \rrbracket \longrightarrow B \rrbracket \\
& (\llbracket \alpha \rrbracket, \llbracket \beta \rrbracket) \longrightarrow \uparrow \uparrow \\
& \begin{array}{c}
\left(k[\varepsilon] /\left(\varepsilon^{2}\right)\right)^{*}-\cdots-\cdots \llbracket!B \rrbracket=\operatorname{Cof}(\llbracket B \rrbracket) \\
(\llbracket \pi(\alpha) \rrbracket,-) \\
\uparrow
\end{array}
\end{aligned}
$$

The directional derivative of π at α in the direction of β

Conciliation: syntax vs semantics

- The semantics of (intuitionistic, first-order) linear logic in vector spaces uses cofree coalgebras to model contraction, weakening and dereliction.
- Since the cofree coalgebra is made up of Dirac distributions and their derivatives, this semantics is naturally a model of differential linear logic.
- Linear logic secretly wants to be differentiated!

Conclusion/Questions

- Derivatives are natural in (linear) logic.
- Examples like the stepped reckoner suggest the use of calculus in logic is justified. Are there more convincing mechanical examples of this kind?
- The Sweedler semantics is a step in the direction of more interesting algebra and geometry. What is the logical content of distributions with more general support?
- Differential linear logic forms the basis for one approach to integrating symbolic reasoning with neural networks (work in progress with $\mathrm{H} . \mathrm{Hu}$).

