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Precis

• Can these functions be differentiated? 

• What would such derivatives be good for? 

1. Efficient (re)computation 

2. Differentiable reasoning 

3. Investigating logic vs physics

BHK interpretation: intuitionistic proofs of                     A ! B

Proofs(A) ! Proofs(B)give rise to functions

According to the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic, a proof of A -> B is a construction transforming any proof of A into a proof of B. This 
construction describes a function from the set of proofs of A to the set of proofs of B. The subject of this talk is the following question: can such functions be 
differentiated?


At first glance the answer is obviously No, or even worse, that the question itself is ill-posed. To differentiate something means to vary the input slightly and measure the 
resulting variation in the output. But the input to such a function is a proof of A, and proofs are discrete syntactic things. There is no reasonable sense in which we can 
vary a proof infinitesimally and have the result still be a proof in the usual sense. Of course, we could change the meaning of the word “proof” and admit, say, all the usual 
proofs of intuitionistic logic plus some formal things which stand for infinitesimal variations of the “real” proofs. Roughly speaking, Ehrhard and Regnier showed that one 
can proceed in this manner to enlarge the universe of intuitionistic proofs in such a way that the resulting class of has a natural notion of derivatives (at least for first-order 
logic).


Then the obvious question is: what good is it to differentiate a proof? I’m not entirely clear on the original motivations of Ehrhard and Regnier, but here are what I consider 
the three best reasons to care about proof derivatives:


(a) under the Curry-Howard correspondence this proof is a program taking inputs of type A and returning outputs of type B. Suppose the output is calculated for some 
particular input x, and that it takes a week to complete the calculation. And then, suppose we want to know the output for an input y which is “close to” x (say that y is 
a 100 digit binary word, differing in one digit from x). If we had computed the derivatives of the program ahead of time, we could imagine using a Taylor expansion to 
compute the output of the program on y, from its output on x together with its precomputed derivatives. Obviously finding the derivatives imposes some overhead 
cost, but the “Taylor method” will still be efficient for some use-cases. One form of this, for programs computing real-valued functions, is known as “incremental 
computation” and is widely used in applied computer science.
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BHK interpretation: intuitionistic proofs of                     A ! B

Proofs(A) ! Proofs(B)give rise to functions

(a) Suppose there is a phenomena in the world that I’m trying to abstract in logic. For concreteness, say I’m trying to represent a pattern I observe in nature by a 
sequence of integers. Perhaps at first my idea is in error, in the sense that the pattern I have in my head is not consistent with all the evidence. In what direction 
should I vary my “idea” in order to bring it into better agreement with the world? This kind of smooth variation of “ideas” is behind the connectionist or neural 
network approach to machine learning, and forms one widely subscribed model of human reasoning. It would be good to have a more principled way of thinking 
about this.


(b) There are many interesting speculations out there about connections between information theory, logic and physics. It’s hard to know how seriously to take some of 
them. The most well-understood lie in thermodynamics, as I’ve discussed in this seminar previously. One very naive observation is the following: physical 
instantiations of computational processes are generally described by continuous physics at some level, and so the relevant processes admit derivatives. To what 
extent are these derivatives just “operational junk” which bears no deep significance, and to what extent are they the shadow of something meaningful in logic that we 
happen to have missed? We can’t even ask this question until we have grappled with the notion of derivatives of proofs.


Let me now recontextualise these issues using the backdrop of the Curry-Howard correspondence.



logic programming math

formula type space

proof program function

cut-elimination execution —

contraction copying coalgebra

? ? calculus

Curry-Howard correspondence

The first two columns in this table are the standard Curry-Howard correspondence. Formulas in logic correspond to types in programming, and so on. What I mean by 
the third column is the following: there are many semantics of logic in which one assigns spaces to formulas, and functions between spaces to proofs.


On the previous slide I was alluding to the possibility of expanding the notion of syntactic proofs so as to have a proof-theoretic notion of derivative. That’s Step 1. But 
given that we have some semantics of logic in which the denotation of proofs are functions between spaces, Step 2 must be to make sure that these syntactic proof 
derivatives are consistent with the usual calculus derivatives of the denotations. The mechanism of conciliation between syntactic and semantic derivatives is coalgebras, 
as I will explain.
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History of derivatives in logic

• Leibniz’s stepped reckoner (1670s) 

• Babbage’s difference engine (1830s) 

• Circuits and 2nd order differential equations 

• Automatic differentiation of real-valued programs 

• Ehrhard-Regnier’s differential lambda calculus (2003) 

• Differential linear logic

I’d like to give a very brief look at the history of logic and computing devices, highlighting some of the strands that resonate with our theme of derivatives. Perhaps the 
very beginning of such a history is Leibniz and his fascination with formal languages for reasoning and with devices for carrying out calculations in them. The only device 
of this kind that he actually built, as far as I’m aware, was the stepped reckoner, which was a mechanical calculator for arithmetical operations. The physical operation of 
this machine is interesting from the point of view of modern logic and its semantics. This will be the one example in this list that I will examine in detail, so let me not say 
too much about it now.


I think most of you will be familiar with Babbage’s difference engine, which is usually given as one of the eminent ancestors of today’s computers. It was designed to 
automatically compute values of polynomial functions, for example the truncated Taylor expansion of the logarithm. It did so using Newton’s theory of divided differences, 
which is the way that derivatives are dealt with within abstract algebra.


As students in my Calculus 2 class have just learned, electrical circuits containing only capacitors, inductors and resistors are modelled by second-order ordinary 
differential equations.


The most well developed link between logic and calculus that I'm aware of is the differential lambda calculus of Ehrhard and Regnier, and the refinement of its simply-
typed variant in differential linear logic. I'll go into detail about the latter system later on in this talk. 



History: Leibniz’s stepped reckoner

The stepped reckoner was the first true four-function calculator, which formed the basis for many calculator designs for the next two hundred years. Leibniz actually built 
several of them. 


I'm going to explain the key innovation in the mechanical design of this calculator, which is the stepped drum that you see in the animation. I'll then explain how an 
idealised mathematical model of this mechanism leads us to the denotational semantics of Church numerals.



History: Leibniz’s stepped reckoner

 ✓

1

2
n

After a full rotation of the drum, the shaft rotates by nk

� = nk
�✓

2⇡
✓ = 0, 2⇡, 4⇡, . . .

Here is a top down view of the orange stepped drum, and the red gear and shaft. There are gears on the red shaft which I am not drawing here, obviously. Let theta and 
psi denote respectively the angle of rotation of the orange and red components. We assume that the integer n is fixed, that is, that we have selected the position of the 
red gears along the long axis of the stepped drum, which is the axis running out of the page, such that after a single rotation of the orange drum the red gears have 
encountered exactly n of the orange gear teeth. The effect is to cause the red shaft to undergo a total rotation of nk \Delta \theta on 2\pi, whenever \Delta \theta is a 
multiple of 2 \pi. Here k is the quantity of angle induced by a single gear tooth on the orange drum.
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After a full rotation of the drum, the shaft rotates by nk

✓  

n = 3

� = nk
�✓

2⇡
�✓ = 0, 2⇡, 4⇡, . . .

This slide shows another view of the same system. This time the long axis of the orange drum runs vertically on the page, and I'm showing the horizontal axis (the dotted 
line) along which the red gear runs when n is fixed to 3.



History: Leibniz’s stepped reckoner

After a full rotation of the drum, the shaft rotates by nk

✓  

n = 3

� = nk
�✓

2⇡

(if we halve the rotation caused by each tooth, while doubling the number)

�✓ = 0,⇡, 2⇡, . . .

At the moment this is not a very continuous model, because an infinitesimal change in the angle \theta does not induce an infinitesimal change in the angle \psi. To refine 
the model into a continuous one, we can double the number of vertical teeth on the orange drum, while halving the angle of rotation each individual tooth induces on the 
red shaft. In that case, a full rotation of \Delta \theta = 2\pi will still cause a rotation of nk on the red shaft. But a half rotation of \Delta \theta = \pi will induce a rotation of 
nk/2. That is, we have arranged by this physical change to make the formula relating \Delta \psi to \Delta \theta true for values of \Delta \theta which are multiples of \pi, 
not just multiples of 2\pi.



History: Leibniz’s stepped reckoner

In the limit of infinitely many repetitions of this group of nine teeth

✓  

d = nk
d✓

2⇡
= nk0d✓ k0 =

k

2⇡

n = 3

d 

d✓
= nk0

Obviously we can continue this, adding more teeth and reducing the induced angle, so as to make the formula true for, in the limit, arbitrary values of \Delta \theta. In the 
limit, we get an idealised form of the stepped reckoner where d \psi is equal to n/k d\theta on 2\pi. We may rewrite this as d \psi equals nk' d\theta, where k' is k/2\pi. 
That is, the rate of change of \psi with respect to \theta, is nk'. 


One way to physically implement this is to have an orange drum of variable radius. 



History: Leibniz’s stepped reckoner
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(�)n = JnK

Upshot: The stepped reckoner gives a 
"physical semantics" of the Church 
numerals matching the denotational 

semantics in vector spaces

 

I'm not sure how seriously to take this example. It might be, for instance, that many other mechanical aspects of the stepped reckoner, as well as more complex systems 
like the difference engine, are just physical instantiations of algorithms involving Church numerals. It would be interesting to see if, for example, there is a relationship 
between the way arithmetic operations on Church numerals are encoded into simply-typed lambda calculus, or linear logic, and the physical mechanisms which 
implement arithmetic in these mechanical devices. If that is the case, this example should be taken seriously.


But in the context of this talk, I want it to serve only to illustrate the following point: algorithms in logic are discrete, syntactic objects, but they are represented in the 
world as manipulations of _continuous, even differentiable_ systems. In the case we've just discussed the algorithm is the numeral n, and we discussed two of its 
representations: the physical one in the stepped reckoner, and mathematical one in the denotational semantics of linear logic in vector spaces. The continuous quantities 
in the former case are angles, and in the latter case they are linear operators, and these are related by the fact that rotation by a given angle is a linear operator on 
vectors in the plane.


If you buy that, then the claim that algorithms have meaningful derivatives doesn't seem as outrageous. It is simply the claim that the derivatives of the _representation_ 
of the algorithm (as a manipulation of continuous objects) are so completely determined by the algorithm itself that they are themselves representations of something that 
properly belongs at the level of logic.


With that in mind, we now move on to describe what these "somethings" are, in the logic.



Derivatives in the syntax

• Differential linear logic adds a new deduction rule, 
which produces the derivative of a proof in a 
direction specified by a new (linear) hypothesis.

�, !A,� ` B
(Cocontraction): coctr

�, !A, !A,� ` B

�, !A,� ` B
(Coeakening): coweak

�,� ` B

together with new cut-elimination rules [6, §1.4.3].
Definition 2.10.Given a proof ⇡ of !A ` B in linear logic, the derivative @⇡ is the proof

⇡
...

!A ` B
coctr

!A, !A ` B
coder

!A,A ` B

(12)

whose denotation is, by our earlier remark, the composite

!JAK ⌦ JAK D // !JAK J⇡K
// JBK . (13)

Remark 2.11.Given ⇡ as above we have the function [26, Definition 5.10]

J⇡K
nl

: JAK �! JBK , P 7�! J⇡K|;i
P

, (14)

and for P, ⌫ 2 JAK we interpret the vector

J⇡KD(|;i
P

⌦ ⌫) = J⇡K|⌫i
P

2 JBK (15)

as the derivative of J⇡K
nl

at the point P in the direction of ⌫. Here we implicitly identify
JAK with the tangent space T

P

JAK and JBK with the tangent space TJ⇡Knl(P )

JBK. This
interpretation is justified by the following elaboration of the remarks in the Introduction.

Let prom(⇡) denote the proof which is the promotion of ⇡, which has for its denotation
the unique morphism of coalgebras Jprom(⇡)K : !JAK �! !JBK with d � Jprom(⇡)K = J⇡K.
Let  : (k["]/"2)⇤ �! !JAK be the morphism of coalgebras as in (27) corresponding to the
tangent vector ⌫ at a point P 2 JAK. Then the morphism of coalgebras

Jprom(⇡)K � : (k["]/"2)⇤ �! !JBK (16)

has the following values, writing Q = J⇡K
nl

(P ), we have by [25, Theorem 2.22]

Jprom(⇡)K (1) = Jprom(⇡)K|;i
P

= |;i
Q

,

Jprom(⇡)K ("⇤) = Jprom(⇡)K|⌫i
P

=
�

�

�

J⇡K|⌫i
P

E

Q

.

Under the bijection of Section A.1 the morphism of coalgebras (16) therefore corresponds
to the tangent vector J⇡K|⌫i

P

2 JBK at Q.
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diff
(a1, a2) �! lim

h!0

⇡(a1 + ha2)� ⇡(a1)

h

• In the best formulation diff is derived from 
codereliction, cocontraction and coweakening.

(this is meaningless)

The idea of extending linear logic with differential operators goes back right to the genesis of linear logic, in Girard’s exploration of the quantitative semantics of the 
lambda calculus, and his paper on normal functors, power series and the lambda calculus in 1988. These ideas were further developed in semantics papers by Ehrhard in 
the early 2000s, and reached a kind of fruition in a paper by Ehrhard and Regnier in which they developed a variant of the untyped lambda calculus with derivatives, in 
2003. This was followed by the development of differential linear logic by the same authors, with important work on the categorical semantics being done by Blute, 
Cockett and Seely.




More precisely, let us define a pre-proof to be a rooted tree whose edges are labelled
with sequents. In order to follow the logical ordering, the tree is presented with its root
vertex (the sequent to be proven) at the bottom of the page, and we orient edges towards
the root (so downwards). The labels on incoming edges at a vertex are called hypotheses
and on the outgoing edge the conclusion. For example consider the following tree, and its
equivalent presentation in sequent calculus notation:

� ` A � ` B

�,� ` A⌦ B

� ` A � ` B

�,� ` A⌦ B

Leaves are presented in the sequent calculus notation with an empty numerator.

Definition 4.1.A proof is a pre-proof together with a compatible labelling of vertices by
deduction rules. The list of deduction rules is given in the first column of (4.2) – (4.14).
A labelling is compatible if at each vertex, the sequents labelling the incident edges match
the format displayed in the deduction rule.

In all deduction rules, the sets � and�may be empty and, in particular, the promotion
rule may be used with an empty premise. In the promotion rule, !� stands for a list of
formulas each of which is preceeded by an exponential modality, for example !A1, . . . , !An

.
The diagrams on the right are string diagrams and should be ignored until Section 5. In
particular they are not the trees associated to proofs.

(Axiom):
A ` A

A

A

(4.2)

�, A,B,� ` C

(Exchange):
�, B,A,� ` C

� AB �

C

(4.3)
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� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)
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� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)
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Deduction rules for (intuitionistic, first-order) linear logic

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

�,� ` B

(Weakening): weak
�, !A,� ` B

B

� �!A

(4.12)

�,� ` A

(Left 1): 1-L
�, 1,� ` A

B

� �1

(4.13)

(Right 1): 1-R
` 1

1

1
(4.14)

Example 4.2.For any formula A let 2
A

denote the proof (2.4) from Section 2, which we
repeat here for the reader’s convenience:

A ` A

A ` A A ` A ( L

A,A ( A ` A

( L

A,A ( A,A ( A ` A

( R

A ( A,A ( A ` A ( A

der
!(A ( A), A ( A ` A ( A

der
!(A ( A), !(A ( A) ` A (

ctr
!(A ( A) ` A ( A

( R

` int
A

(4.15)

We also write 2
A

for the proof of !(A ( A) ` A ( A obtained by reading the above proof
up to the penultimate line. For each integer n � 0 there is a proof n

A

of int
A

constructed
along similar lines, see [22, §5.3.2] and [15, §3.1].

In what sense is this proof an avatar of the number 2? In the context of the �-calculus
we appreciated the relationship between the term T and the number 2 only after we saw
how T interacted with other terms M by forming the function application (T M) and
then finding a normal form with respect to �-equivalence.

The analogue of function application in linear logic is the cut rule. The analogue of
�-equivalence is an equivalence relation on the set of proofs of any sequent, which we write
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C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)
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� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)
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Deduction rules for (intuitionistic, first-order) linear logic

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

�,� ` B

(Weakening): weak
�, !A,� ` B

B

� �!A

(4.12)

�,� ` A

(Left 1): 1-L
�, 1,� ` A

B

� �1

(4.13)

(Right 1): 1-R
` 1

1

1
(4.14)

Example 4.2.For any formula A let 2
A

denote the proof (2.4) from Section 2, which we
repeat here for the reader’s convenience:

A ` A

A ` A A ` A ( L

A,A ( A ` A

( L

A,A ( A,A ( A ` A

( R

A ( A,A ( A ` A ( A

der
!(A ( A), A ( A ` A ( A

der
!(A ( A), !(A ( A) ` A (

ctr
!(A ( A) ` A ( A

( R

` int
A

(4.15)

We also write 2
A

for the proof of !(A ( A) ` A ( A obtained by reading the above proof
up to the penultimate line. For each integer n � 0 there is a proof n

A

of int
A

constructed
along similar lines, see [22, §5.3.2] and [15, §3.1].

In what sense is this proof an avatar of the number 2? In the context of the �-calculus
we appreciated the relationship between the term T and the number 2 only after we saw
how T interacted with other terms M by forming the function application (T M) and
then finding a normal form with respect to �-equivalence.

The analogue of function application in linear logic is the cut rule. The analogue of
�-equivalence is an equivalence relation on the set of proofs of any sequent, which we write

11

We match each copy of !(A ⊸ A) on the left with the corresponding position in S, and
using a series of contractions we identify all copies corresponding to a position in which
0 appears in S, and likewise all copies corresponding to positions with a 1. After these
contractions, there will be two copies of !(A ⊸ A) on the left (the first being by convention
the remnant of all the 0-associated copies) unless S contains only 0’s or only 1’s. In this
case we use further a weakening rule to introduce the “missing” !(A ⊸ A), giving finally
the desired proof SA:

compl
A

...
(A ⊸ A)l ⊢ A ⊸ A

n× der

!(A ⊸ A)l ⊢ A ⊸ A
ctr and possibly weak

!(A ⊸ A), !(A ⊸ A) ⊢ A ⊸ A
2× ⊸ R

⊢ bintA

In the final right ⊸ R introduction rules, the second copy of !(A ⊸ A) (associated with
the 1’s in S) is moved across the turnstile first. If S is the empty sequence, then l = 0
and the proof is a pair of weakenings on the left followed by the ⊸ R introduction rules.

For the rest of this section A is fixed and we write S for SA.

Example 3.10.The proof 001 is

A ⊢ A

A ⊢ A
A ⊢ A A ⊢ A ⊸ L
A,A ⊸ A ⊢ A

⊸ L
A,A ⊸ A,A ⊸ A ⊢ A

⊸ L
A,A ⊸ A,A ⊸ A,A ⊸ A ⊢ A

⊸ R
A ⊸ A,A ⊸ A,A ⊸ A ⊢ A ⊸ A

3× der
!(A ⊸ A), !(A ⊸ A), !(A ⊸ A) ⊢ A ⊸ A

ctr
!(A ⊸ A), !(A ⊸ A) ⊢ A ⊸ A

2× ⊸ R
⊢ bintA

where the colouring indicates which copies of !(A ⊸ A) are contracted. Using (18),

!001"
!
|∅〉γ ⊗ |∅〉δ

"
= !comp3

A
"
!
|∅〉γ ⊗ |∅〉γ ⊗ |∅〉δ

"
= δ ◦ γ ◦ γ . (21)

Generalising the calculation of Section 3.1 we now describe the derivatives of binary
integers. The general formula computes, for S ∈ {0, 1}∗, the linear operator

!S"
!
|α1, . . . ,αr〉γ ⊗ |β1, . . . , βs〉δ

"
∈ Endk(V ) .

Informally, this operator is described by inserting γ for 0 and δ for 1 in (the reversal of)
S, and then summing over all ways of replacing r of the γ’s in this composite with αi’s,
and t of the δ’s with βj’s. Let Inj(P,Q) denote the set of injective functions P −→ Q,
and write [s] = {1, . . . , s}.
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001 : bintA = !(A ( A) ( (!(A ( A) ( (A ( A))



More precisely, let us define a pre-proof to be a rooted tree whose edges are labelled
with sequents. In order to follow the logical ordering, the tree is presented with its root
vertex (the sequent to be proven) at the bottom of the page, and we orient edges towards
the root (so downwards). The labels on incoming edges at a vertex are called hypotheses
and on the outgoing edge the conclusion. For example consider the following tree, and its
equivalent presentation in sequent calculus notation:

� ` A � ` B

�,� ` A⌦ B

� ` A � ` B

�,� ` A⌦ B

Leaves are presented in the sequent calculus notation with an empty numerator.

Definition 4.1.A proof is a pre-proof together with a compatible labelling of vertices by
deduction rules. The list of deduction rules is given in the first column of (4.2) – (4.14).
A labelling is compatible if at each vertex, the sequents labelling the incident edges match
the format displayed in the deduction rule.

In all deduction rules, the sets � and�may be empty and, in particular, the promotion
rule may be used with an empty premise. In the promotion rule, !� stands for a list of
formulas each of which is preceeded by an exponential modality, for example !A1, . . . , !An

.
The diagrams on the right are string diagrams and should be ignored until Section 5. In
particular they are not the trees associated to proofs.

(Axiom):
A ` A

A

A

(4.2)

�, A,B,� ` C

(Exchange):
�, B,A,� ` C

� AB �

C

(4.3)

8

� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)
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Deduction rules for differential linear logic

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

�,� ` B

(Weakening): weak
�, !A,� ` B

B

� �!A

(4.12)

�,� ` A

(Left 1): 1-L
�, 1,� ` A

B

� �1

(4.13)

(Right 1): 1-R
` 1

1

1
(4.14)

Example 4.2.For any formula A let 2
A

denote the proof (2.4) from Section 2, which we
repeat here for the reader’s convenience:

A ` A

A ` A A ` A ( L

A,A ( A ` A

( L

A,A ( A,A ( A ` A

( R

A ( A,A ( A ` A ( A

der
!(A ( A), A ( A ` A ( A

der
!(A ( A), !(A ( A) ` A (

ctr
!(A ( A) ` A ( A

( R

` int
A

(4.15)

We also write 2
A

for the proof of !(A ( A) ` A ( A obtained by reading the above proof
up to the penultimate line. For each integer n � 0 there is a proof n

A

of int
A

constructed
along similar lines, see [22, §5.3.2] and [15, §3.1].

In what sense is this proof an avatar of the number 2? In the context of the �-calculus
we appreciated the relationship between the term T and the number 2 only after we saw
how T interacted with other terms M by forming the function application (T M) and
then finding a normal form with respect to �-equivalence.

The analogue of function application in linear logic is the cut rule. The analogue of
�-equivalence is an equivalence relation on the set of proofs of any sequent, which we write
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2.1 Codereliction, cocontraction, coweakening

An alternative formulation of the differential structure in differential linear logic is in

terms of codereliction, cocontraction and coweakening maps; see [10] and [1, §5.1]. This

has the advantage of providing an appealing symmetry to the formulation of the syntax.

In this section we briefly sketch the definition of these maps in the Sweedler semantics.

Throughout linear logic means intuitionistic linear logic with the connectives !,⊗,⊸.

First we recall the canonical commutative Hopf structure on !V of [31, §6.4]. Given

vector spaces V1, V2 then (see [31, Remark 2.19]) there is an isomorphism of coalgebras

Ψ : !V1 ⊗ !V2 −→ !(V1 ⊕ V2) ,

|ν1, . . . , νs〉P ⊗ |ω1, . . . ,ωt〉Q &−→ |ν1, . . . , νs,ω1, . . . ,ωt〉(P,Q) .

Using this and the definitions in [31], it is easy to check that the product ∇ is

∇ : !V ⊗ !V −→ !V ,

|ν1, . . . , νs〉P ⊗ |ω1, . . . ,ωt〉Q &−→ |ν1, . . . , νs,ω1, . . . ,ωt〉P+Q ,

while the antipode S is

S : !V −→ !V ,

|ν1, . . . , νs〉P &−→ |−ν1, . . . ,−νs〉−P

and the unit u : k −→ !V is u(1) = |∅〉0. By [31, Theorem 6.4.8] these maps make !V into

a commutative (and cocommutative) Hopf algebra. In the terminology of [6] the map ∇
is the cocontraction map and u is the coweakening map (the antipode seems not to have

a formal role in differential linear logic). Finally,

Definition 2.9.The codereliction d̄ is the composite

V ∼= V ⊗ k
1⊗u

!! V ⊗ !V D !! !V

which is given by ν &→ |ν〉0.

Note that we can recover D as

!V ⊗ V
1⊗d̄

!! !V ⊗ !V ∇ !! !V

|ν1, . . . , νs〉P ⊗ ν &→ |ν1, . . . , νs〉P ⊗ |ν〉0 &→ |ν, ν1, . . . , νs〉P .

It seems more convenient to model differentiation syntactically using the codereliction,

cocontraction and coweakening maps, rather than the deriving transformation D itself.

We briefly sketch how this works, following [6]. In the sequent calculus for linear logic one

introduces three new deduction rules “dual” to dereliction, contraction and weakening:

Γ, !A,∆ ⊢ B
(Codereliction): coder

Γ, A,∆ ⊢ B
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Γ, !A,∆ ⊢ B
(Cocontraction): coctr

Γ, !A, !A,∆ ⊢ B

Γ, !A,∆ ⊢ B
(Coweakening): coweak

Γ,∆ ⊢ B

together with new cut-elimination rules [6, §1.4.3].

Definition 2.10.Given a proof π of !A ⊢ B in linear logic, the derivative ∂π is the proof

π
...

!A ⊢ B
coctr

!A, !A ⊢ B
coder

!A,A ⊢ B

(12)

whose denotation is, by our earlier remark, the composite

!!A" ⊗ !A" D !! !!A" !π"
!! !B" . (13)

Remark 2.11.Given π as above we have the function [26, Definition 5.10]

!π"nl : !A" −→ !B" , P %−→ !π"|∅〉P , (14)

and for P, ν ∈ !A" we interpret the vector

!π"D(|∅〉P ⊗ ν) = !π"|ν〉P ∈ !B" (15)

as the derivative of !π"nl at the point P in the direction of ν. Here we implicitly identify

!A" with the tangent space TP !A" and !B" with the tangent space T!π"nl(P )!B". This

interpretation is justified by the following elaboration of the remarks in the Introduction.

Let prom(π) denote the proof which is the promotion of π, which has for its denotation

the unique morphism of coalgebras !prom(π)" : !!A" −→ !!B" with d ◦ !prom(π)" = !π".
Let Ψ : (k[ε]/ε2)∗ −→ !!A" be the morphism of coalgebras as in (27) corresponding to the

tangent vector ν at a point P ∈ !A". Then the morphism of coalgebras

!prom(π)" ◦Ψ : (k[ε]/ε2)∗ −→ !!B" (16)

has the following values, writing Q = !π"nl(P ), we have by [25, Theorem 2.22]

!prom(π)"Ψ(1) = !prom(π)"|∅〉P = |∅〉Q ,

!prom(π)"Ψ(ε∗) = !prom(π)"|ν〉P =

!!! !π"|ν〉P
"

Q
.

Under the bijection of Section A.1 the morphism of coalgebras (16) therefore corresponds

to the tangent vector !π"|ν〉P ∈ !B" at Q.
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Γ, !A,∆ ⊢ B
(Cocontraction): coctr

Γ, !A, !A,∆ ⊢ B

Γ, !A,∆ ⊢ B
(Coweakening): coweak

Γ,∆ ⊢ B

together with new cut-elimination rules [6, §1.4.3].

Definition 2.10.Given a proof π of !A ⊢ B in linear logic, the derivative ∂π is the proof

π
...

!A ⊢ B
coctr

!A, !A ⊢ B
coder

!A,A ⊢ B

(12)

whose denotation is, by our earlier remark, the composite

!!A" ⊗ !A" D !! !!A" !π"
!! !B" . (13)

Remark 2.11.Given π as above we have the function [26, Definition 5.10]

!π"nl : !A" −→ !B" , P %−→ !π"|∅〉P , (14)

and for P, ν ∈ !A" we interpret the vector

!π"D(|∅〉P ⊗ ν) = !π"|ν〉P ∈ !B" (15)

as the derivative of !π"nl at the point P in the direction of ν. Here we implicitly identify

!A" with the tangent space TP !A" and !B" with the tangent space T!π"nl(P )!B". This

interpretation is justified by the following elaboration of the remarks in the Introduction.

Let prom(π) denote the proof which is the promotion of π, which has for its denotation

the unique morphism of coalgebras !prom(π)" : !!A" −→ !!B" with d ◦ !prom(π)" = !π".
Let Ψ : (k[ε]/ε2)∗ −→ !!A" be the morphism of coalgebras as in (27) corresponding to the

tangent vector ν at a point P ∈ !A". Then the morphism of coalgebras

!prom(π)" ◦Ψ : (k[ε]/ε2)∗ −→ !!B" (16)

has the following values, writing Q = !π"nl(P ), we have by [25, Theorem 2.22]

!prom(π)"Ψ(1) = !prom(π)"|∅〉P = |∅〉Q ,

!prom(π)"Ψ(ε∗) = !prom(π)"|ν〉P =

!!! !π"|ν〉P
"

Q
.

Under the bijection of Section A.1 the morphism of coalgebras (16) therefore corresponds

to the tangent vector !π"|ν〉P ∈ !B" at Q.
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Deduction rules for differential linear logic

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0
, B,� ` C

(Left (): ( L

�0
,�, A ( B,� ` C

C

��0 � A ( B

B

A (4.8)

!� ` A(Promotion): prom
!� `!A

!A

!�

A

(4.9)

�, A,� ` B

(Dereliction): der
�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B

(Contraction): ctr
�, !A,� ` B

B

� �!A

(4.11)

10

�,� ` B

(Weakening): weak
�, !A,� ` B

B

� �!A

(4.12)

�,� ` A

(Left 1): 1-L
�, 1,� ` A

B

� �1

(4.13)

(Right 1): 1-R
` 1

1

1
(4.14)

Example 4.2.For any formula A let 2
A

denote the proof (2.4) from Section 2, which we
repeat here for the reader’s convenience:

A ` A

A ` A A ` A ( L

A,A ( A ` A

( L

A,A ( A,A ( A ` A

( R

A ( A,A ( A ` A ( A

der
!(A ( A), A ( A ` A ( A

der
!(A ( A), !(A ( A) ` A (

ctr
!(A ( A) ` A ( A

( R

` int
A

(4.15)

We also write 2
A

for the proof of !(A ( A) ` A ( A obtained by reading the above proof
up to the penultimate line. For each integer n � 0 there is a proof n

A

of int
A

constructed
along similar lines, see [22, §5.3.2] and [15, §3.1].

In what sense is this proof an avatar of the number 2? In the context of the �-calculus
we appreciated the relationship between the term T and the number 2 only after we saw
how T interacted with other terms M by forming the function application (T M) and
then finding a normal form with respect to �-equivalence.

The analogue of function application in linear logic is the cut rule. The analogue of
�-equivalence is an equivalence relation on the set of proofs of any sequent, which we write

11

2.1 Codereliction, cocontraction, coweakening

An alternative formulation of the differential structure in differential linear logic is in

terms of codereliction, cocontraction and coweakening maps; see [10] and [1, §5.1]. This

has the advantage of providing an appealing symmetry to the formulation of the syntax.

In this section we briefly sketch the definition of these maps in the Sweedler semantics.

Throughout linear logic means intuitionistic linear logic with the connectives !,⊗,⊸.

First we recall the canonical commutative Hopf structure on !V of [31, §6.4]. Given

vector spaces V1, V2 then (see [31, Remark 2.19]) there is an isomorphism of coalgebras

Ψ : !V1 ⊗ !V2 −→ !(V1 ⊕ V2) ,

|ν1, . . . , νs〉P ⊗ |ω1, . . . ,ωt〉Q &−→ |ν1, . . . , νs,ω1, . . . ,ωt〉(P,Q) .

Using this and the definitions in [31], it is easy to check that the product ∇ is

∇ : !V ⊗ !V −→ !V ,

|ν1, . . . , νs〉P ⊗ |ω1, . . . ,ωt〉Q &−→ |ν1, . . . , νs,ω1, . . . ,ωt〉P+Q ,

while the antipode S is

S : !V −→ !V ,

|ν1, . . . , νs〉P &−→ |−ν1, . . . ,−νs〉−P

and the unit u : k −→ !V is u(1) = |∅〉0. By [31, Theorem 6.4.8] these maps make !V into

a commutative (and cocommutative) Hopf algebra. In the terminology of [6] the map ∇
is the cocontraction map and u is the coweakening map (the antipode seems not to have

a formal role in differential linear logic). Finally,

Definition 2.9.The codereliction d̄ is the composite

V ∼= V ⊗ k
1⊗u

!! V ⊗ !V D !! !V

which is given by ν &→ |ν〉0.

Note that we can recover D as

!V ⊗ V
1⊗d̄

!! !V ⊗ !V ∇ !! !V

|ν1, . . . , νs〉P ⊗ ν &→ |ν1, . . . , νs〉P ⊗ |ν〉0 &→ |ν, ν1, . . . , νs〉P .

It seems more convenient to model differentiation syntactically using the codereliction,

cocontraction and coweakening maps, rather than the deriving transformation D itself.

We briefly sketch how this works, following [6]. In the sequent calculus for linear logic one

introduces three new deduction rules “dual” to dereliction, contraction and weakening:

Γ, !A,∆ ⊢ B
(Codereliction): coder

Γ, A,∆ ⊢ B

8

Γ, !A,∆ ⊢ B
(Cocontraction): coctr

Γ, !A, !A,∆ ⊢ B

Γ, !A,∆ ⊢ B
(Coweakening): coweak

Γ,∆ ⊢ B

together with new cut-elimination rules [6, §1.4.3].

Definition 2.10.Given a proof π of !A ⊢ B in linear logic, the derivative ∂π is the proof

π
...

!A ⊢ B
coctr

!A, !A ⊢ B
coder

!A,A ⊢ B

(12)

whose denotation is, by our earlier remark, the composite

!!A" ⊗ !A" D !! !!A" !π"
!! !B" . (13)

Remark 2.11.Given π as above we have the function [26, Definition 5.10]

!π"nl : !A" −→ !B" , P %−→ !π"|∅〉P , (14)

and for P, ν ∈ !A" we interpret the vector

!π"D(|∅〉P ⊗ ν) = !π"|ν〉P ∈ !B" (15)

as the derivative of !π"nl at the point P in the direction of ν. Here we implicitly identify

!A" with the tangent space TP !A" and !B" with the tangent space T!π"nl(P )!B". This

interpretation is justified by the following elaboration of the remarks in the Introduction.

Let prom(π) denote the proof which is the promotion of π, which has for its denotation

the unique morphism of coalgebras !prom(π)" : !!A" −→ !!B" with d ◦ !prom(π)" = !π".
Let Ψ : (k[ε]/ε2)∗ −→ !!A" be the morphism of coalgebras as in (27) corresponding to the

tangent vector ν at a point P ∈ !A". Then the morphism of coalgebras

!prom(π)" ◦Ψ : (k[ε]/ε2)∗ −→ !!B" (16)

has the following values, writing Q = !π"nl(P ), we have by [25, Theorem 2.22]

!prom(π)"Ψ(1) = !prom(π)"|∅〉P = |∅〉Q ,

!prom(π)"Ψ(ε∗) = !prom(π)"|ν〉P =

!!! !π"|ν〉P
"

Q
.

Under the bijection of Section A.1 the morphism of coalgebras (16) therefore corresponds

to the tangent vector !π"|ν〉P ∈ !B" at Q.
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�, !A,� ` B
(Cocontraction): coctr

�, !A, !A,� ` B

�, !A,� ` B
(Coeakening): coweak

�,� ` B

together with new cut-elimination rules [6, §1.4.3].
Definition 2.10.Given a proof ⇡ of !A ` B in linear logic, the derivative @⇡ is the proof

⇡
...

!A ` B
coctr

!A, !A ` B
coder

!A,A ` B

(12)

whose denotation is, by our earlier remark, the composite

!JAK ⌦ JAK D // !JAK J⇡K
// JBK . (13)

Remark 2.11.Given ⇡ as above we have the function [26, Definition 5.10]

J⇡K
nl

: JAK �! JBK , P 7�! J⇡K|;i
P

, (14)

and for P, ⌫ 2 JAK we interpret the vector

J⇡KD(|;i
P

⌦ ⌫) = J⇡K|⌫i
P

2 JBK (15)

as the derivative of J⇡K
nl

at the point P in the direction of ⌫. Here we implicitly identify
JAK with the tangent space T

P

JAK and JBK with the tangent space TJ⇡Knl(P )

JBK. This
interpretation is justified by the following elaboration of the remarks in the Introduction.

Let prom(⇡) denote the proof which is the promotion of ⇡, which has for its denotation
the unique morphism of coalgebras Jprom(⇡)K : !JAK �! !JBK with d � Jprom(⇡)K = J⇡K.
Let  : (k["]/"2)⇤ �! !JAK be the morphism of coalgebras as in (27) corresponding to the
tangent vector ⌫ at a point P 2 JAK. Then the morphism of coalgebras

Jprom(⇡)K � : (k["]/"2)⇤ �! !JBK (16)

has the following values, writing Q = J⇡K
nl

(P ), we have by [25, Theorem 2.22]

Jprom(⇡)K (1) = Jprom(⇡)K|;i
P

= |;i
Q

,

Jprom(⇡)K ("⇤) = Jprom(⇡)K|⌫i
P

=
�

�

�

J⇡K|⌫i
P

E

Q

.

Under the bijection of Section A.1 the morphism of coalgebras (16) therefore corresponds
to the tangent vector J⇡K|⌫i

P

2 JBK at Q.
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�, !A,� ` B
(Cocontraction): coctr

�, !A, !A,� ` B

�, !A,� ` B
(Coeakening): coweak

�,� ` B

together with new cut-elimination rules [6, §1.4.3].
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...
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whose denotation is, by our earlier remark, the composite
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, (14)

and for P, ⌫ 2 JAK we interpret the vector

J⇡KD(|;i
P

⌦ ⌫) = J⇡K|⌫i
P

2 JBK (15)

as the derivative of J⇡K
nl

at the point P in the direction of ⌫. Here we implicitly identify
JAK with the tangent space T

P

JAK and JBK with the tangent space TJ⇡Knl(P )

JBK. This
interpretation is justified by the following elaboration of the remarks in the Introduction.

Let prom(⇡) denote the proof which is the promotion of ⇡, which has for its denotation
the unique morphism of coalgebras Jprom(⇡)K : !JAK �! !JBK with d � Jprom(⇡)K = J⇡K.
Let  : (k["]/"2)⇤ �! !JAK be the morphism of coalgebras as in (27) corresponding to the
tangent vector ⌫ at a point P 2 JAK. Then the morphism of coalgebras

Jprom(⇡)K � : (k["]/"2)⇤ �! !JBK (16)

has the following values, writing Q = J⇡K
nl

(P ), we have by [25, Theorem 2.22]

Jprom(⇡)K (1) = Jprom(⇡)K|;i
P

= |;i
Q

,

Jprom(⇡)K ("⇤) = Jprom(⇡)K|⌫i
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=
�

�

�

J⇡K|⌫i
P

E

Q

.

Under the bijection of Section A.1 the morphism of coalgebras (16) therefore corresponds
to the tangent vector J⇡K|⌫i

P

2 JBK at Q.
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�, !A,� ` B
(Cocontraction): coctr

�, !A, !A,� ` B

�, !A,� ` B
(Coeakening): coweak

�,� ` B

together with new cut-elimination rules [6, §1.4.3].
Definition 2.10.Given a proof ⇡ of !A ` B in linear logic, the derivative @⇡ is the proof

⇡
...

!A ` B
coctr

!A, !A ` B
coder

!A,A ` B

(12)

whose denotation is, by our earlier remark, the composite

!JAK ⌦ JAK D // !JAK J⇡K
// JBK . (13)

Remark 2.11.Given ⇡ as above we have the function [26, Definition 5.10]

J⇡K
nl

: JAK �! JBK , P 7�! J⇡K|;i
P

, (14)

and for P, ⌫ 2 JAK we interpret the vector

J⇡KD(|;i
P

⌦ ⌫) = J⇡K|⌫i
P

2 JBK (15)

as the derivative of J⇡K
nl

at the point P in the direction of ⌫. Here we implicitly identify
JAK with the tangent space T

P

JAK and JBK with the tangent space TJ⇡Knl(P )

JBK. This
interpretation is justified by the following elaboration of the remarks in the Introduction.

Let prom(⇡) denote the proof which is the promotion of ⇡, which has for its denotation
the unique morphism of coalgebras Jprom(⇡)K : !JAK �! !JBK with d � Jprom(⇡)K = J⇡K.
Let  : (k["]/"2)⇤ �! !JAK be the morphism of coalgebras as in (27) corresponding to the
tangent vector ⌫ at a point P 2 JAK. Then the morphism of coalgebras

Jprom(⇡)K � : (k["]/"2)⇤ �! !JBK (16)

has the following values, writing Q = J⇡K
nl

(P ), we have by [25, Theorem 2.22]

Jprom(⇡)K (1) = Jprom(⇡)K|;i
P

= |;i
Q

,

Jprom(⇡)K ("⇤) = Jprom(⇡)K|⌫i
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=
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Under the bijection of Section A.1 the morphism of coalgebras (16) therefore corresponds
to the tangent vector J⇡K|⌫i
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2 JBK at Q.
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diff is defined to be



Product rule as cut-elimination rule
ax

! At !A
DA diff

! A. At !A

DA IT

.

:

:
.

%
! A At !A !A

,
!AtB

Da :
- - cut

.

- !A
, !A,AtB

-

!A
,
!AtB

ctr
.

ctr ! A. ATB
! A. At !A !AtB

cut
my +

! A ,AtB
DA IT

.

:

:
.

! A At !A !A
,!AtB- cut

!A
, !A,AtB

ctr

! A. ATB

ax

! At !A
DA diff

! A. At !A

DA IT

.

:

:
.

%
! A At !A !A

,
!AtB

Da :
- - cut

.

- !A
, !A,AtB

-

!A
,
!AtB

ctr
.

ctr ! A. ATB
! A. At !A !AtB

cut
my +

! A ,AtB
DA IT

.

:

:
.

! A At !A !A
,!AtB- cut

!A
, !A,AtB

ctr

! A. ATB

Proofs in differential linear logic are 
formal linear sums of proof trees



!E ` !E
!E ` !E

!E ` !E
!E ` !E

comp2

A

...
E, E ` E

( L

!E, !E ( E,E ` E
( L

!E, !E,bint
A

, E ` E
( L

!E, !E, !E,bint
A

, !E ( E ` E
( L

!E, !E, !E, !E,bint
A

,bint
A

` E
ctr

!E, !E, !E,bint
A

,bint
A

` E
ctr

!E, !E,bint
A

,bint
A

` E
2⇥ ( R

bint

A

,bint
A

` bint

A

2⇥ der

!bint
A

, !bint
A

` bint

A

ctr

!bint
A

` bint

A

which repeats a binary sequence in the sense that the cutting it against the promotion of
S is equivalent under cut-elimination to SS. In particular, JrepeatK|;iJSK = JSSK.

Given S, T 2 {0, 1}⇤ the derivative of repeat at S in the direction of T is

JrepeatK|JT KiJSK 2 Jbint
A

K = Hom
k

(! End
k

(V )⌦ ! End
k

(V ),End
k

(V )) , (23)

and as promised in the Introduction:

Lemma 3.14. JrepeatK|JT KiJSK = JST K + JTSK.

Proof. The value of the left-hand side on a tensor |↵
1

, . . . ,↵
s

i
�

⌦ |�
1

, . . . , �
r

i
�

is computed
by reading the proof-tree for repeat from bottom to top:

|JT KiJSK
ctr7����! |JT KiJSK ⌦ |;iJSK + |;iJSK ⌦ |JT KiJSK

2⇥ der7����! JT K ⌦ JSK + JSK ⌦ JT K
2⇥R (7����! |↵

1

, . . . ,↵
s

i
�

⌦ |�
1

, . . . , �
r

i
�

⌦ �

JT K ⌦ JSK + JSK ⌦ JT K
�

2⇥ ctr7����!
X

I,J

|↵
I

i
�

⌦ |�
J

i
�

⌦ |↵
I

ci
�

⌦ |�
J

ci
�

⌦ �

JT K ⌦ JSK + JSK ⌦ JT K
�

7����!
X

I,J

JSK
�|↵

I

i
�

⌦ |�
J

i
�

� � JT K
�|↵

I

ci
�

⌦ |�
J

ci
�

�

+
X

I,J

JT K
�|↵

I

i
�

⌦ |�
J

i
�

� � JSK
�|↵

I

ci
�

⌦ |�
J

ci
�

�

which agrees with JST K + JTSK on |↵
1

, . . . ,↵
s

i
�

⌦ |�
1

, . . . , �
r

i
�

by Lemma 3.11.

15

From now on A is fixed and we write n for n
A

. Let V = JAK so JA ( AK = End
k

(V ).
In the notation of Remark 2.11, there is a function

JnK
nl

: End
k

(V ) �! End
k

(V ) . (19)

Lemma 3.6. For n � 0 and ↵ 2 End
k

(V ), we have JnK|;i
↵

= ↵n

so JnK
nl

(↵) = ↵n

.

Proof. This is an easy exercise, see [26] for the case n = 2.

The derivative @ n of Definition 2.10 is a proof of !(A ( A), A ( A ` A ( A and
for ↵, ⌫ 2 End

k

(V ) the value of its denotation J@ nK = JnK � D on |;i
↵

⌦ ⌫, that is, the
derivative of n at ↵ in the direction of ⌫, is JnK|⌫i

↵

.

Lemma 3.7. JnK|⌫i
↵

=
P

n

i=1

↵i�1⌫↵n�i

.

Proof. This may be computed using the formulas of [26, p.19]. For example, in the case
n = 2 the image of |⌫i

↵

under JnK is given by

|⌫i
↵

ctr7����! |⌫i
↵

⌦ |;i
↵

+ |;i
↵

⌦ |⌫i
↵

2⇥ der7����! ⌫ ⌦ ↵ + ↵⌦ ⌫
� � �7����! ↵ � ⌫ + ⌫ � ↵ ,

as claimed.

Remark 3.8.When k = C, V is r-dimensional and ' = JnK
nl

, the vector JnK|⌫i
↵

agrees
with the image of ⌫ under the usual tangent map of the smooth map '

M
r

(C) ⇠= T
↵

End
k

(V )
T↵' // T

↵

n End
k

(V ) ⇠= M
r

(C) .

This justifies in this case the interpretation of JnK|⌫i
↵

as the derivative.

3.2 Binary integers

Definition 3.9.The type of binary integers on A [15, §2.5.3] is:
bint

A

= !(A ( A) ( (!(A ( A) ( (A ( A)).

Given a sequence S 2 {0, 1}⇤ we define a proof S
A

of bint
A

as follows. Let l � 0 be the
length of S. The proof tree for S

A

matches that of the Church numeral l up to the step
where we perform contractions, that is,

compl

A

...
(A ( A)l ` A ( A

n⇥ der

!(A ( A)l ` A ( A

(20)

12

E = A ( A

repeat : !bintA ( bintA



The denotation is a linear map J!bint
A

K �! Jbint
A

K sending |;iJSK to JSSK. The deriva-
tive of repeat according to the theory of di↵erential linear logic is another a proof

@ repeat

...

!bint
A

,bint
A

` bint

A

which can be derived from repeat by new deduction rules called codereliction, cocontrac-
tion and coweakening (see Section 2.1). We prove in Section 3.2 that the denotation of
this derivative in the Sweedler semantics is the linear map

J@ repeatK : J!bint
A

K ⌦ Jbint
A

K �! Jbint
A

K ,
|;iJSK ⌦ JT K 7�! JST K + JTSK

whose value on the tensor |;iJSK⌦JT K we interpret as the derivative of the repeat program
at the sequence S in the direction of the sequence T . This can be justified informally by
the following calculation using an infinitesimal "

(S + "T )(S + "T ) = SS + "(ST + TS) + "2TT,

which says that varying the sequence infinitesimally from S in the direction of T causes
a variation of the repetition in the direction of ST + TS.

The Sweedler semantics is far from the first semantics of di↵erential linear logic: basic
examples include the categories of sets and relations [2, §2.5.1] and suplattices [2, §2.5.2].
The motivating examples using topological spaces and di↵erentiable functions are the
Köthe and finiteness space semantics of Ehrhard [4, 5] and the semantics of Blute-Ehrhard-
Tasson [1] based on the theory of convenient vector spaces [12]. These papers explain that
the geometric “avatar” of the exponential connective of linear logic is the functor sending
a space X to the space of distributions on X (for a precise statement, see Remark A.2).
This remarkable analogy between logic and geometry deserves further study. One obstacle
is that it seems di�cult to compute examples of denotations and their derivatives in the
convenient vector space setting of [1]. For example the coproduct [1, p.12] is defined by
extension to a Mackey closure, and is rather implicit.

Conceptually the Sweedler semantics is similar to these examples in that the exponen-
tial is modelled by a space of distributions (with finite support) but it is purely algebraic
and there are simple explicit formulas for all the structure maps. Moreover in the alge-
braic approach the di↵erential structure emerges naturally from the exponential structure,
rather than being “baked in”. The downside is that the smoothness of proof denotations
in our semantics is obscured; in particular, in the case k = C some extra work is required
to see the relation between our di↵erential structure and the derivatives in the usual sense.

3

to the data of a linear map
(C["]/"2)⇤ // JAK (1)

where C["]/"2 is the ring of dual numbers (this bijection is reviewed in Appendix A.1).
If J!AK is the universal cocommutative counital coalgebra mapping to JAK then there is a
unique lifting of this linear map to a morphism of coalgebras

(C["]/"2)⇤ // J!AK . (2)

Similarly the linear map J⇡K : J!AK �! JBK lifts to a morphism of coalgebras J!AK �! J!BK
which may be composed with (2) to give a morphism of coalgebras

(C["]/"2)⇤ // J!AK // J!BK (3)

which, in turn, defines a tangent vector at the point J⇡K|;i
P

2 JBK, where |;i
P

is the
point of J!AK corresponding to P . The tangent vector (3) gives the infinitesimal variation
of the output of ⇡ on the input P , when the input is varied in the direction of ⌫.

The formal statement is that for any algebraically closed field k of characteristic zero
the semantics of intuitionistic linear logic in k-vector spaces defined using cofree coalge-
bras is model of di↵erential linear logic (Theorem 2.3). We refer to this as the Sweedler

semantics, since the explicit description of this universal coalgebra is due to him [31, 26].
The proof is elementary and we make no claim here to technical novelty; the link between
the symmetric coalgebra and di↵erential calculus is well-known. Perhaps our main con-
tribution is to give several detailed examples showing how to compute these derivatives.
We do this with the aim of reinforcing the fact that di↵erentiating programs, even higher-
order ones, is a natural thing to do.

We conclude this introduction with a sketch of one such example and a comparison of
our work to other semantics of di↵erential linear logic. To elaborate a little more on the
notation: for any type A of linear logic (which for us has only connectives ⌦,(, !) there is
a vector space JAK, and for any proof ⇡ of A ` B there is a linear map J⇡K : JAK �! JBK.
In particular every proof ⇠ of type A has a denotation J⇠K 2 JAK, and the promotion of ⇠
has for its denotation a vector |;iJ⇠K 2 J!AK, see [26, §5.3].

For any binary sequence S 2 {0, 1}⇤ there is an encoding of S as a proof S of type

bint

A

= !(A ( A) (
�

!(A ( A) ( (A ( A)
�

.

Repetition of sequences can be encoded as a proof

repeat

...

!bint
A

` bint

A

.

2

The denotation is a linear map !!bintA" −→ !bintA" sending |∅〉!S" to !SS". The deriva-
tive of repeat according to the theory of differential linear logic is another a proof

∂ repeat

...

!bintA,bintA ⊢ bintA

which can be derived from repeat by new deduction rules called codereliction, cocontrac-

tion and coweakening (see Section 2.1). We prove in Section 3.2 that the denotation of

this derivative in the Sweedler semantics is the linear map

!∂ repeat" : !!bintA" ⊗ !bintA" −→ !bintA" ,
|∅〉!S" ⊗ !T " '−→ !ST " + !TS"

whose value on the tensor |∅〉!S"⊗!T " we interpret as the derivative of the repeat program
at the sequence S in the direction of the sequence T . This can be justified informally by

the following calculation using an infinitesimal ε

(S + εT )(S + εT ) = SS + ε(ST + TS) + ε2TT,

which says that varying the sequence infinitesimally from S in the direction of T causes

a variation of the repetition in the direction of ST + TS.

The Sweedler semantics is far from the first semantics of differential linear logic: basic
examples include the categories of sets and relations [2, §2.5.1] and suplattices [2, §2.5.2].
The motivating examples using topological spaces and differentiable functions are the

Köthe and finiteness space semantics of Ehrhard [4, 5] and the semantics of Blute-Ehrhard-

Tasson [1] based on the theory of convenient vector spaces [12]. These papers explain that

the geometric “avatar” of the exponential connective of linear logic is the functor sending

a space X to the space of distributions on X (for a precise statement, see Remark A.2).

This remarkable analogy between logic and geometry deserves further study. One obstacle

is that it seems difficult to compute examples of denotations and their derivatives in the

convenient vector space setting of [1]. For example the coproduct [1, p.12] is defined by

extension to a Mackey closure, and is rather implicit.

Conceptually the Sweedler semantics is similar to these examples in that the exponen-

tial is modelled by a space of distributions (with finite support) but it is purely algebraic

and there are simple explicit formulas for all the structure maps. Moreover in the alge-

braic approach the differential structure emerges naturally from the exponential structure,

rather than being “baked in”. The downside is that the smoothness of proof denotations

in our semantics is obscured; in particular, in the case k = C some extra work is required

to see the relation between our differential structure and the derivatives in the usual sense.

3
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(S, T ) 7�! ST + TS



Relation to calculus via coalgebras

• Following Ehrhard-Regnier we have defined 
derivatives in the syntax, via new deduction rules 
and cut-elimination rules. 

• Do these syntactic derivatives capture the logical 
content lying behind the semantic derivatives? 

• In particular, are they consistent with the role of 
Church numerals in Leibniz’s stepped reckoner? 

• Yes: because coalgebras

So far I have sketched how to add new deduction rules and cut-elimination rules to intuitionistic first-order linear logic, in such a way that you can differentiate proofs. 
And I've shown that in at least one example the derivative you get has some reasonable interpretation.


But the question remains: do these syntactic derivatives capture the logical content lying behind the derivatives of the representations of these algorithms? For example, 
does the derivative of the Church numeral according to these rules match up with the derivatives of the map which sends a matrix to its nth power? If this were the case, 
at least in this example, the syntactic derivatives really would capture what is going on with the calculus involved in the stepped reckoner.


The answer to both this particular case, and the broader questions, is Yes. To cut a long story short, the reason is that the nonlinearities in linear logic are built on the ! 
connective, which gets interpreted as a cofree coalgebra. Derivatives of polynomial functions can be computed using morphisms out of the coalgebra which is the dual 
of the dual numbers. So some standard mathematics about coalgebras and their relation to calculus, plus the fact that coalgebras are built into the foundations of linear 
logic, reconciles the syntactic and semantic derivatives.



Algebras over a field

m : A⌦A �! A

A⌦A⌦A
m⌦1 //

1⌦m

✏✏

A⌦A

m

✏✏
A⌦A m

// A

A

1A

✏✏

⇠=
// k ⌦A

u⌦1

✏✏

A A⌦Am
oo

associativity

left unit

A

1A

✏✏

⇠=
// A⌦ k

1⌦u

✏✏

A A⌦Am
oo

right unit

u : k �! A

k

multiplication unit

Before I can explain the role of coalgebras in differential linear logic, I have to give a brief introduction to coalgebras and define the cofree coalgebra.



Coalgebras over a field

coassociativity

left counit right counit

k

� : A �! A⌦A c : A �! kcomultiplication counit

A⌦A⌦A A⌦A
�⌦1oo

A⌦A

1⌦�

OO

A

�

OO

�
oo

A A⌦ k
⇠=oo

A

1A

OO

�
// A⌦A

1⌦c

OOA k ⌦A
⇠=oo

A

1A

OO

�
// A⌦A

c⌦1

OO



Examples

k[x1, . . . , xn]

polynomial algebra ring of dual numbers

k["]/("2) = k · 1� k · "
"2 = 0

�(xn) =
nX

i=0

x

i ⌦ x

n�i

k[x1, . . . , xn]

polynomial coalgebra dual of the ring of dual numbers

(k["]/("2))⇤ = k · 1⇤ � k · "⇤

�(1) = 1⌦ 1

�("⇤) = 1⌦ "⇤ + "⇤ ⌦ 1

For us the two most important examples of coalgebras are the cofree coalgebra on a vector space, which I’ll introduce in a moment, and the coalgebra dual to the ring of 
dual numbers. The ring of dual numbers encodes algebraically the idea of an “infinitesimal” and it is standard in algebraic geometry to think of tangent vectors at a point 
of a space in terms of functions to the space from the space with “one point and an infinitesimal tangent vector”, which is the spectrum of the ring of dual numbers.


Without getting too far into that, I’d like to sketch why algebra morphisms into the ring of dual numbers are synonymous with tangent vectors, since this will be crucial to 
explaining how to think about derivatives using just coalgebras and morphisms of coalgebras.



k[x1, . . . , xn] k["]/("2) = k · 1� k · "
'

Homk�Alg(k[x1, . . . , xn], k["]/("
2))

1 : 1
kn ⇥ kn

' (~�, ~µ)

'(f) = f(�1, . . . ,�n

) +
X

i

µ

i

@f

@x

i

���
x=~

�

· "

'(xi) = �i + µi"

Consider a morphism of k-algebras

it is straightforward to see that, for any polynomial f,

this gives rise to a bijection of k-algebra morphisms with pairs

(point, tangent vector)



Universal coalgebra

The cofree coalgebra              over a vector space     is a coalgebra 
together with a linear map                           which is universal, in 
the sense that for any coalgebra      and linear                   there 

unique morphism of coalgebras      such that 

Cof(V )

// V

C

77OO

Cof(V )

V
d : Cof(V ) ! V

C � : C ! V

�

d

�

�

d � � = �

Theorem:              is the space of distributions with 
finite support on V, i.e. all derivatives of Dirac distributions

Cof(V )



Sweedler semantics

JA ( BK = Homk(JAK, JBK)

JA⌦BK = JAK ⌦ JBK

J!AK = Cof(JAK)

dereliction = universal linear map J!AK �! JAK

J!AK �! J!AK ⌦ J!AK

J!AK �! k

J!AK �! JBK J!AK �! J!BK

contraction = comultiplication

weakening = counit

promotion = lifting of to

J�K : LL �! Vect



Sweedler semantics

JA ( BK = Homk(JAK, JBK)

JA⌦BK = JAK ⌦ JBK

J!AK = Cof(JAK)

J�K : LL �! Vect

�, !A,� ` B
(Cocontraction): coctr

�, !A, !A,� ` B

�, !A,� ` B
(Coeakening): coweak

�,� ` B

together with new cut-elimination rules [6, §1.4.3].
Definition 2.10.Given a proof ⇡ of !A ` B in linear logic, the derivative @⇡ is the proof

⇡
...

!A ` B
coctr

!A, !A ` B
coder

!A,A ` B

(12)

whose denotation is, by our earlier remark, the composite

!JAK ⌦ JAK D // !JAK J⇡K
// JBK . (13)

Remark 2.11.Given ⇡ as above we have the function [26, Definition 5.10]

J⇡K
nl

: JAK �! JBK , P 7�! J⇡K|;i
P

, (14)

and for P, ⌫ 2 JAK we interpret the vector

J⇡KD(|;i
P

⌦ ⌫) = J⇡K|⌫i
P

2 JBK (15)

as the derivative of J⇡K
nl

at the point P in the direction of ⌫. Here we implicitly identify
JAK with the tangent space T

P

JAK and JBK with the tangent space TJ⇡Knl(P )

JBK. This
interpretation is justified by the following elaboration of the remarks in the Introduction.

Let prom(⇡) denote the proof which is the promotion of ⇡, which has for its denotation
the unique morphism of coalgebras Jprom(⇡)K : !JAK �! !JBK with d � Jprom(⇡)K = J⇡K.
Let  : (k["]/"2)⇤ �! !JAK be the morphism of coalgebras as in (27) corresponding to the
tangent vector ⌫ at a point P 2 JAK. Then the morphism of coalgebras

Jprom(⇡)K � : (k["]/"2)⇤ �! !JBK (16)

has the following values, writing Q = J⇡K
nl

(P ), we have by [25, Theorem 2.22]

Jprom(⇡)K (1) = Jprom(⇡)K|;i
P

= |;i
Q

,

Jprom(⇡)K ("⇤) = Jprom(⇡)K|⌫i
P

=
�

�

�

J⇡K|⌫i
P

E

Q

.

Under the bijection of Section A.1 the morphism of coalgebras (16) therefore corresponds
to the tangent vector J⇡K|⌫i

P

2 JBK at Q.
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�, !A,� ` B
(Cocontraction): coctr

�, !A, !A,� ` B

�, !A,� ` B
(Coeakening): coweak

�,� ` B

together with new cut-elimination rules [6, §1.4.3].
Definition 2.10.Given a proof ⇡ of !A ` B in linear logic, the derivative @⇡ is the proof

⇡
...

!A ` B
coctr

!A, !A ` B
coder

!A,A ` B

(12)

whose denotation is, by our earlier remark, the composite

!JAK ⌦ JAK D // !JAK J⇡K
// JBK . (13)

Remark 2.11.Given ⇡ as above we have the function [26, Definition 5.10]

J⇡K
nl

: JAK �! JBK , P 7�! J⇡K|;i
P

, (14)

and for P, ⌫ 2 JAK we interpret the vector

J⇡KD(|;i
P

⌦ ⌫) = J⇡K|⌫i
P

2 JBK (15)

as the derivative of J⇡K
nl

at the point P in the direction of ⌫. Here we implicitly identify
JAK with the tangent space T

P

JAK and JBK with the tangent space TJ⇡Knl(P )

JBK. This
interpretation is justified by the following elaboration of the remarks in the Introduction.

Let prom(⇡) denote the proof which is the promotion of ⇡, which has for its denotation
the unique morphism of coalgebras Jprom(⇡)K : !JAK �! !JBK with d � Jprom(⇡)K = J⇡K.
Let  : (k["]/"2)⇤ �! !JAK be the morphism of coalgebras as in (27) corresponding to the
tangent vector ⌫ at a point P 2 JAK. Then the morphism of coalgebras

Jprom(⇡)K � : (k["]/"2)⇤ �! !JBK (16)

has the following values, writing Q = J⇡K
nl

(P ), we have by [25, Theorem 2.22]

Jprom(⇡)K (1) = Jprom(⇡)K|;i
P

= |;i
Q

,

Jprom(⇡)K ("⇤) = Jprom(⇡)K|⌫i
P

=
�

�

�

J⇡K|⌫i
P

E

Q

.

Under the bijection of Section A.1 the morphism of coalgebras (16) therefore corresponds
to the tangent vector J⇡K|⌫i

P

2 JBK at Q.
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The Sweedler semantics is also a semantics of 
differential linear logic, as follows:

J!AK JBKJ!AK ⌦ JAK

=

Cof(JAK)⌦ JAK

=

Cof(JAK)

J⇡K

D ⌦ ⌫ 7�! @⌫D

The important intuition here is that in the Sweedler semantics, to feed an input x to an algorithm \pi, what you actually do is feed the Dirac distribution at the point x into 
the denotation of \pi. To differentiate \pi in some direction at x you feed into [[\pi]] the derivative of the Dirac distribution in that direction.



Homk�Alg(k[x1, . . . , xn], k["]/("
2))

V = kn

Homk�Coalg

((k["]/("2))⇤,Cof(V ))

Homk((k["]/("
2))⇤, V )

Homk(V
⇤, k["]/("2))

Homk(Sym(V ⇤), k["]/("2))

V ⇥ V
⇠=

⇠=

⇠=

⇠=

⇠=

(point, tangent vector) (�, µ)

1⇤ 7! Dirac�
"⇤ 7! @µ Dirac�



How to differentiate a proof denotation

J!AK

J!BK

JBK

(k["]/("2))⇤

Cof(JAK) =

=
Cof(JBK)

(J↵K, J�K)

(J⇡(↵)K,�)

J⇡K

J↵K, J�K 2 JAK⇡ : !A ( B ↵,� : AGiven , so that

The directional derivative of ⇡ at ↵ in the direction of �



Conciliation: syntax vs semantics

• The semantics of (intuitionistic, first-order) linear 
logic in vector spaces uses cofree coalgebras to 
model contraction, weakening and dereliction. 

• Since the cofree coalgebra is made up of Dirac 
distributions and their derivatives, this semantics is 
naturally a model of differential linear logic. 

• Linear logic secretly wants to be differentiated!



Conclusion/Questions

• Derivatives are natural in (linear) logic. 

• Examples like the stepped reckoner suggest the use of 
calculus in logic is justified. Are there more convincing 
mechanical examples of this kind? 

• The Sweedler semantics is a step in the direction of more 
interesting algebra and geometry. What is the logical 
content of distributions with more general support? 

• Differential linear logic forms the basis for one approach to 
integrating symbolic reasoning with neural networks (work 
in progress with H. Hu).


