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Curry-Howard correspondence

logic programming

Computable f : N �! N

⇡
...

bint ` bint

(modulo many details)

f is elementary time⇡ admits a stratification

... and only promotes on  1 premise f is polynomial time



Theorem (Girard)

if and only if it can be typed as a proof

A function {0, 1}⇤ �! {0, 1}⇤ is “polytime”
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length P

f : {0, 1}⇤ �! {0, 1}⇤ computed by a Turing machine T with polyclock P

iterate T
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Upshot: ⇡ computes f
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1 Multiplicative Exponential Linear Logic

1.1 Formulas

The formulas of second order unit-free multiplicative exponential linear logic
(meLL) are generated by the following grammar, where X, X⊥ range over a
denumerable set of propositional variables:

A, B ::= X | X⊥ | A⊗B | A

&

B | !A | ?A | ∃X.A | ∀X.A | §A.

Linear negation is defined through De Morgan laws:

(X)⊥ = X⊥ (X⊥)⊥ = X
(A⊗B)⊥ = B⊥ &

A⊥ (A

&

B)⊥ = B⊥ ⊗A⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

(∃X.A)⊥ = ∀X.A⊥ (∀X.A)⊥ = ∃X.A⊥

(§A)⊥ = §A⊥

Two connectives exchanged by negation are said to be dual. Note that the
self-dual paragraph modality is not present in the standard definition of meLL
[Girard, 1987]; we include it here for convenience. Also observe that full linear
logic has a further pair of dual binary connectives, called additive (denoted by
& and ⊕), which we shall briefly discuss in Sect. 5. They are not strictly needed
for our purposes, hence we restrict to meLL in the paper.

Linear implication is defined as A ! B = A⊥ &

B. Multisets of formulas
will be ranged over by Γ, ∆, . . .

For technical reasons, it is also useful to consider discharged formulas, which
will be denoted by ♭A, where A is a formula.

1.2 Proofs

Sequent calculus and cut-elimination. The proof theory of meLL can
be formulated using the sequent calculus of Table 1. This calculus, which
can be shown to enjoy cut-elimination, differs from the one originally given
by [Girard, 1987] because of the addition of the last three rules. All of them are
added for convenience. The paragraph rule actually makes this modality trivial,
as expressed by the following:

Proposition 1 For any A, §A is provably isomorphic to A in meLL.

Proof. It is not hard to see that there are two derivations D1, D2 of ⊢ §A⊥, A
and ⊢ A⊥, §A, from which one can obtain two derivations of ⊢ §A ! A and
⊢ A ! §A, respectively. Moreover, the derivations obtained by cutting D1 with
D2 in the two possible ways both reduce to the identity (i.e., an axiom modulo
η-expansion) after cut-elimination. "
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⊢ A⊥, A
Axiom ⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆
Cut

⊢ Γ, A ⊢ ∆, B

⊢ Γ, ∆, A⊗B
Tensor

⊢ Γ, A, B

⊢ Γ, A

&

B
Par

⊢ Γ, A
⊢ Γ, ∀X.A

For all (X not free in Γ)
⊢ Γ, A[B/X ]

⊢ Γ, ∃X.A
Exists

⊢ ?Γ, A
⊢ ?Γ, !A

Promotion
⊢ Γ, A
⊢ Γ, ?A

Dereliction

⊢ Γ
⊢ Γ, ?A

Weakening
⊢ Γ, ?A, ?A

⊢ Γ, ?A
Contraction

⊢ Γ, A
⊢ Γ, §A

Paragraph

⊢
Daimon ⊢ Γ ⊢ ∆

⊢ Γ, ∆
Mix

Table 1: The rules for meLL sequent calculus.

Nevertheless, we shall consider subsystems of meLL in which the paragraph
modality is not trivial, and this is why we find it convenient to include it right
from the start. The mix rule, and its nullary version (here called the daimon
rule), are discussed more thoroughly at the end of this section. Basically, their
presence simplifies the presentation of proof nets.

This last point is very important to us. In fact, the backbone of our work is
a detailed analysis, in terms of computational complexity, of the cut-elimination
procedure of meLL. In sequent calculus, this is composed of rules which are
suitable reformulations of those originally given by [Gentzen, 1934] to prove his
Hauptsatz for classical logic (the calculus LK). As a consequence, most of them
are commutations, i.e., rules permuting a cut with another inference rule; only
a few of them act on derivations in a non-trivial way. This is why we consider
proof nets, an alternative presentation of the proof theory of meLL offering,
among other things, the advantage of formulating cut-elimination without com-
mutations: only the “interesting” rules are left.
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Proof-net links

⊗ ∃ ∀

&
pax

? §!♭

ax

tensor exists for all

A B BA

A

&

B ∃X.A ∀X.AA⊗B

A[B/X ] A[Z/X ]

par

flat why not of course paragraph

♭A

♭A ♭A

?A

A A

§A!A

A

♭A

♭A . . .

A⊥ A
A⊥ A

axiom cut

cut

pax

Figure 1: Links.

Proof nets. The proof net formalism was introduced by [Girard, 1987,
Girard, 1996], and subsequently reformulated by other authors using slightly
different syntactical definitions. In this paper, we use a combination of the
presentations given by [Danos and Regnier, 1995] and [Tortora de Falco, 2003],
with a slight change in the terminology: the term “proof structure”, introduced
by [Girard, 1987] and traditionally used in the literature, is here dismissed in
favor of the term net. On the contrary, the term proof net, i.e., a net satis-
fying certain structural conditions (the correctness criterion), retains its usual
meaning.

In the following definition, and throughout the rest of the paper, unless
explicitly stated we shall make no distinction between the concepts of formula
and occurrence of formula. The same will be done for what we call links and
their occurrences.

Definition 1 (Net) A pre-net is a pair (G, B), where G is a finite graph-like
object whose nodes are occurrences of what we call links, and whose edges are
directed and labelled by formulas or discharged formulas of meLL; and B is a
set of subgraphs of G called boxes.

• Links (Fig. 1) are labelled by connectives of meLL, or by one of the labels
ax, cut, ♭, pax. Two links labelled by dual connectives are said to be dual.
Each link has an arity and co-arity, which are resp. the number of its
incoming and outgoing edges. The arity and co-arity is fixed for all links
except why not links, which have co-arity 1 and arbitrary arity. A nullary
why not link is also referred to as a weakening link. Par and for all links
are called jumping links.
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. . .

. . .

♭B1

A

♭Bn

!pax pax

!A

♭Bn♭B1

π

Figure 2: A box.

• The incoming edges of a link (and the formulas that label them) are referred
to as its premises, and are assumed to be ordered, with the exception of
cut and why not links; the outgoing edges of a link (and the formulas that
label them) are referred to as its conclusions.

• Premises and conclusions of links must respect a precise labeling (which
depends on the link itself), given in Fig. 1. In particular:

– edges labelled by discharged formulas can only be premises of pax and
why not links;

– in a for all link l, the variable Z in its premise A[Z/X ] is called the
eigenvariable of l. Each for all link is assumed to have a different
eigenvariable.

– in an exists link l, the formula B in its premise A[B/X ] is said to be
associated with l.

• Each edge must be the conclusion of exactly one link, and the premise of
at most one link. The edges that are not premises of any link (and the
formulas that label them) are deemed conclusions of the pre-net. (Note
that the presence of these “pending” edges, together with the fact that
some premises are ordered, is why pre-nets are not exactly graphs).

• A box is depicted as in Fig. 2, in which π is a pre-net, said to be contained
in the box. The links that are explicitly represented in Fig. 2 (i.e., the
pax links and the of course link) form the border of the box. The unique
of course link in the border is called the principal port of the box, while
the pax links are called auxiliary ports. We have the following conditions
concerning boxes:

a. each of course link is the principal port of exactly one box;

b. each pax link is in the border of exactly one box;

c. any two distinct boxes are either disjoint or included in one another.
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A⊥
ax

cut
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Figure 4: Axiom step.

cut

cut

B B⊥

A⊥A⊗

&

cut

A B B⊥ A⊥

A⊗B B⊥ &

A⊥

→

Figure 5: Multiplicative step.

∃ ∀

cut

∃X.A

A[B/X ]

∀X.A⊥
cut

A[B/Z]⊥A[B/X ]

A[Z/X ]⊥

→

Figure 6: Quantifier step; the substitution is performed on the whole net.

pax ! ?

♭ ♭

♭A⊥ ♭A⊥

A⊥ A⊥

...
...

. . .

. . .

cut
...

A

!A

?

♭Γ

?A⊥

→

?Γ

...

. . .

♭Γ ♭Γ

?

...
...

...

π0 π0

1 n

1 n

♭Γ

?Γ

A⊥A

cut

A⊥A

cut

π0

. . .

Figure 7: Exponential step; ♭Γ is a multiset of discharged formulas, so one pax
link, why not link, or wire in the picture may in some case stand for several
(including zero) pax links, why not links, or wires.
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§

A

§

cut
§A⊥§A

A⊥

→

A A⊥

cut

Figure 8: Paragraph step.

Definition 6 (Lift, residue) Whenever π → π′, by simple inspection of the
cut-elimination rules it is clear that any link l′ of π′ different from a cut comes
from a unique (“the same”) link l of π; we say that l is the lift of l′, and that
l′ is a residue of l. We define the lift and residues of a box in the same way.

Untyped proof nets. We shall also use an untyped version of proof nets:

Definition 7 (Untyped proof net) An untyped pre-net is a directed graph
with boxes built using the links of Fig. 1 as in Definition 1, but without any
labels on edges, or any constraint induced by such labels. An untyped net is an
untyped pre-net such that:

• the conclusion of a flat link must be the premise of a pax or why not link;

• the premise of a pax link must be the conclusion of a flat or pax link, and
the conclusion of pax link must be the premise of a pax or why not link;

• the premises of a why not link must be conclusions of flat or auxiliary port
links.

The notion of switching can be applied to untyped pre-nets with virtually no
change (for all links are no more jumping links), and hence the notion of cor-
rectness. We then define an untyped proof net as a correct untyped net.

Cut-elimination can be defined also for untyped nets. In fact, of all cut-
elimination steps, only the quantifier step (Fig. 6) actually uses formulas; how-
ever, even in this case the modifications made to the underlying untyped net
do not depend on formulas. Hence, in the untyped case, the quantifier step
and the paragraph step (Fig. 8) behave identically. Obviously, in the untyped
case there may be “clashes”, i.e., cut links connecting the conclusions of two
non-dual links. In that case, the cut link is said to be irreducible; otherwise, we
call it reducible. Hence, untyped proof nets may admit normal forms which are
not cut-free.

Remarks on mix and daimon. We mentioned above that admitting the
mix and daimon rules makes the definition of proof nets simpler. In fact,
at present, all known solutions excluding them are quite cumbersome and
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∃ ∀

&

⊗

? §!

ax

♭ pax

i i ii

i i
i i

i i

i

i i

i

i i

i + 1 i + 1

i

i + 1i + 1i

i

i

i

. . .

cut

Figure 11: Constraints for indexing meLL proof nets. Next to each edge we
represent the integer assigned by the indexing; formulas are omitted, because
irrelevant to the indexing.

the constraints of Fig. 11 but not meeting the requirement on conclusions is said
to be a weak indexing.

Note that indexings do not use formulas in any way, so the notion can be applied
to untyped nets without any change.

Not all meLL nets admit an indexing. An example is the proof net in Fig. 12,
which is the cut-free proof of the dereliction principle !A ! A (a key principle
excluded in ELL and LLL). An analogous example is given by the two proof
nets corresponding to the derivations mentioned in the proof of Proposition 1,
i.e., the ones asserting the isomorphism between A and §A, although these do
admit a weak indexing, contrarily to the proof net of Fig. 12.

Observe that weak indexings are transparent to connection: if π1, π2 are
two nets admitting weak indexings I1, I2, respectively, then the net obtained by
juxtaposing π1 and π2 admits as weak indexing the “disjoint union” of I1 and
I2, which we denote by I1$I2. Likewise, if π is net whose connected components
are π1, . . . , πn, every (weak) indexing of π can be written as

⊎
Ik, where Ik is a

(weak) indexing for πk, for all 1 ≤ k ≤ n. We use this fact to state the following:

Proposition 4 (Rigidity) Let π be a meLL net whose connected components
are π1, . . . , πn, and let I =

⊎
Ik be a (weak) indexing for π. Then, for all

p1, . . . , pn ∈ Z,
⊎

Ik + pk is also a (weak) indexing for π. Conversely, given
another (weak) indexing I ′ for π, there exist p1, . . . , pn ∈ Z such that I ′ =⊎

Ik + pk.

Proof. The first implication is trivial, so let us concentrate on the second. Let

22

Indexing of proof-nets

?

&

?A⊥

A⊥
ax

♭

?A⊥

&

A

♭A⊥ A

Figure 12: A meLL proof net admitting no (weak) indexing.

I, I ′ be two (weak) indexings for π, and set, for each edge e of π, ∆(e) = I(e)−
I ′(e). Now, observing Fig. 11, we see that differences in indexing propagate
across any path in π; more precisely, whenever e1, e2 are both conclusions, both
premises, or one conclusion and one premise of a link of π, then ∆(e1) = ∆(e2).
Hence, for any two edges e, e′ in the same connected component of π, we have
∆(e) = ∆(e′), which is enough to prove the result. !

The following is a simple corollary of the first part of Proposition 4:

Proposition 5 (Composition) Let π, π′ be two proof nets of resp. conclusions
Γ, A and ∆, A⊥, and let π′′ be the proof net obtained by adding a cut link whose
premises are the conclusions of π and π′ labelled resp. by A and A⊥. Then, if
π and π′ both admit an indexing, so does π′′.

As a simple case-by-case inspection shows, indexings also have the funda-
mental property of being preserved under cut-elimination:

Proposition 6 (Stability) Let π be a meLL proof net such that π → π′.
Then, if there exists an indexing for π, there exists an indexing for π′ as well.
More precisely, if I is an indexing for π, there exists an indexing I ′ of π′ such
that, if e, e′ are conclusions of two links l, l′ of resp. π, π′ such that l′ is a residue
of l, then I ′(e′) = I(e). In other words, I ′ is “the same” indexing as I, modulo
the erasures/duplications possibly induced by the cut-elimination step.

We can therefore give the following definition:

Definition 13 (Multiplicative linear logic by levels) Multiplicative lin-
ear logic by levels (mL3) is the logical system defined by taking all meLL proof
nets admitting an indexing.

The fact that an mL3 proof net has several (in fact, an infinity of) indexings
may seem inconvenient; however, Proposition 4 settles this problem, by giving
us a way to choose a canonical indexing :
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Characterizing complexity classes. We say that a logical system charac-
terizes a complexity class C when f ∈ C iff f is representable in the logical
system itself. The forward implication is usually called the completeness of the
system, while the backward implication is its soundness.

Proving the completeness of mELL and mLLL with respect to FE and
FP, respectively, is a sort of (quite difficult) programming exercise, which
is carried on with varying degrees of detail in [Girard, 1998], [Roversi, 1999],
[Danos and Joinet, 2003], and [Mairson and Terui, 2003]; we shall not discuss
this here.

On the other hand, the soundness of these two systems is a consequence of
the results mentioned above, plus the following crucial remark: all proof nets
of type S have constant depth 1, and size linear in the length of the string they
represent. Thanks to this, we see that if ϕ is a proof net of mLLL of size s
and depth d representing the function f , and if ξ represents the string x, then
computing the representation of f(x) can be done by applying the round-by-
round cut-elimination procedure to the proof net ϕ(ξ), whose size is c1|x|+c2+s
(where c1 and c2 are suitable constants), and whose depth is max(d, 1), which
does not depend on x, but solely on ϕ, and thus, ultimately, on f . Hence,
f(x) can be computed on a Turing machine in time O(P (|x|)), where P is a
polynomial whose degree depends on f . We therefore have f ∈ FP. Similarly,
one can prove that if f is representable in mELL, then f ∈ EF.

2 Linear Logic by Levels

2.1 Indexings

In meLL proof nets there is an asymmetry between the behavior of the two
kinds of exponential links (of course and why not) with respect to the depth.
More precisely, let us say that a link l is “above” an of course link o if one of the
conclusions of l is the premise of o, and, similarly, let us say that l is “above”
a why not link w if one of its conclusions is the premise of a flat link whose
exponential branch (Definition 8) ends in w. Then, we see that if a link l is
above an of course link o, we have d(l) = d(o) + 1; on the contrary, if l is above
a why not link w, all we can say is that d(l) ≥ d(w).

The situation changes in mELL. In fact, the depth-stratification condition
guarantees that the behavior is perfectly symmetric: if a link l is above a why not
link w, we have d(l) = d(w) + 1. This is true also in mLLL, and for paragraph
links as well, because of §-boxes (remember that, in mLLL, the depth takes
into account these boxes too).

The idea is then to take a meLL proof net and to try assigning to its links an
index which behaves as the depth would behave in elementary and light linear
logic:

Definition 12 (Indexing) Let π be a meLL net. An indexing for π is a
function I from the edges of π to Z satisfying the constraints given in Fig. 11 and
such that, for all conclusions e, e′ of π, I(e) = I(e′). An assignment satisfying

21 [BM] Prop 5, 6



the case only if an exponential branch of π0 ending in w0 crosses the border of
B (the box involved in the reduction leading from π0 to π1). But if it is so, then
there is a flat link above w0 which is inside B, which implies that B0 ≼ B. By
Definition 21, we have c0 < c, contradicting the minimality of c. Therefore, the
maximum arity of all cuts of π1 at level i cannot exceed the maximum arity of
all cuts of π0 at level i.

Let now π = π0 → · · · → πn = π′ be the reduction sequence generated
by the round-by-round procedure. If A1, . . . , An are the arities of the cut links
reduced at each step, we have, for all k,

|π′|k ≤ |π|k

n∏

j=1

Aj .

But, by the above claim, each Aj cannot be greater than the greatest arity of
why not links present in π. This is of course bounded by |π|i+1 (a contraction
of arity A at level i needs the presence of A flat links at level i + 1), so we can
conclude that

|π′|k ≤ |π|k|π|
n
i+1 ≤ |π|k|π|

|π|i
i+1,

where we have used Lemma 14, which tells us that n ≤ |π|i. Now, if put
l = ℓ(π′) = ℓ(π), we have

|π′| =
l∑

k=0

|π′|k ≤
l∑

k=0

|π|k|π|
|π|i
i+1 = |π||π||π|ii+1 ≤ |π||π|+1 ≤ 22|π|

,

as stated in our thesis. !

Theorem 16 (Elementary bound for mL3) Let π be an mL3 proof net of
size s and level l. Then, the round-by-round procedure reaches a normal form
in at most (l + 1)2s

2l steps.

Proof. We can decompose the reduction from π to its normal form πl as
follows: π = π−1 →∗ π0 · · ·→∗ πl, where each πi is i-normal. By Lemma 14, if
we call the length of the whole reduction sequence L, we have

L ≤
l∑

i=0

|πi−1|i ≤
l∑

i=0

|πi−1|.

The reductions leading from πi to πi+1 can be further decomposed as πi →∗

π′
i →

∗ πi+1, where π′
i is the first i-contractive proof net obtained in the reduc-

tion sequence. Observe now that the size of proof nets does not grow under
non-contractive steps; therefore, for all i, |π′

i| ≤ |πi|. From this, if we apply

Lemma 15, we have that, for all i, |πi+1| ≤ 2|πi|
2 .

It can now be proved by a straightforward induction that, for all i ≥ 0, we
have |πi−1| ≤ 2s

2i. Hence, we obtain

L ≤
l∑

i=0

|πi−1| ≤
l∑

i=0

2s
2i ≤ (l + 1)2s

2l,
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Theorem to be proven

Definition 14 (Canonical indexing) Let π be an mL3 proof net, and let I
be an indexing for π. We say that I is canonical if each connected component
of π has an edge e0 such that I(e0) = 0, and I(e) ≥ 0 for all edges e of π.

Proposition 7 Every mL3 proof net admits a unique canonical indexing.

Proof. Let π be an mL3 proof net, let π1, . . . , πn be the connected com-
ponents of π, and let k range over {1, . . . , n}. By definition, there exists an
indexing

⊎
Ik for π, where Ik is an indexing for πk. Let mk = mine Ik(e), where

e ranges over the edges of πk. Then, by Proposition 4,
⊎

Ik −mk is still an in-
dexing for π, which is clearly canonical. Suppose now there exist two canonical
indexes I =

⊎
Ik and I ′ =

⊎
I ′k for π. By the fact that I and I ′ are canonical,

we know that for all k there exist ek, e′k in πk such that I(ek) = I ′(e′k) = 0. By
Proposition 4, we also know that there exists pk ∈ Z such that I ′k = Ik + pk.
Suppose pk > 0; then, we would have I(e′k) < 0. On the other hand, if pk < 0,
we would have I ′(ek) < 0. In both cases, we would be in contradiction with the
fact that I and I ′ are canonical, hence we must have pk = 0, and I = I ′. !

Definition 15 (Level) Let π be an mL3 proof net, and let I0 be its canonical
indexing. The level of π, denoted by ℓ(π), is the maximum integer assigned by I0

to the edges of π. If l is a link of π of conclusion e (or of conclusions e1, e2 in the
case of an axiom link), and if B is a box of π whose principal port has conclusion
e′, we say that the level of l, denoted by ℓ(l), is I0(e) (or I0(e1) = I0(e2) in the
case of an axiom), and that the level of B, denoted by ℓ(B), is I0(e′).

From now on, when we speak of an mL3 proof net π, we shall always refer
to its canonical indexing. The reader may wonder why we did not use N instead
of Z as the range of our indexes in the first place; we simply believe Z to be a
more natural choice, as the set of indexes need not be well-founded. Moreover,
using N would be awkward in the sequent calculus formulation of mL3 (cf.
Table 3 below): it would force to impose a restriction on exponential rules,
an unnecessary complication. Remark also that Proposition 4 shows that the
set of (weak) indexings of a proof net with n connected components forms
an affine space over the module Zn (in the case of indexings, all components
having a conclusion must be considered as one connected component); indeed,
the canonical indexing is just a way of fixing an “origin” for such affine space.
This nice algebraic structure, which we shall not investigate more in this work,
is a further motivation to the use of relative integers instead of natural integers.

Recall that levels are conceived to behave like depths in mELL; then, it is
not surprising that mELL is exactly the (proper) subsystem of mL3 in which
levels and depths coincide:

Proposition 8 Let π be a meLL proof net. Then, π is in mELL iff π is in
mL3 and, for every link l of π whose conclusion is not a discharged formula,
we have ℓ(l) = d(l).
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A net is a pre-net such that in its conclusions there is no discharged formula,
nor any formula containing an eigenvariable.

Definition 2 (Depth, size) Let σ be a pre-net.

• A link (or edge) of σ is said to have depth d if it is contained in d (nec-
essarily nested) boxes. The depth of a box of σ is the depth of the links
forming its border. The depth of a link l, edge e, or box B are denoted resp.
by d(l), d(e) and d(B). The depth of σ, denoted by d(σ), is the maximum
depth of its links.

• The size of σ, denoted by |σ|, is the number of links contained in σ, ex-
cluding auxiliary ports.

Definition 3 (Switching) Let σ be a pre-net. For each jumping link l of σ,
we define the set of jumps of l, denoted by J(l), as follows:

par: J(l) is the set containing the links whose conclusions are the premises of l.

for all: if Z is the eigenvariable of l, J(l) is the set containing:

• the link whose conclusion is the premise of l;

• any link whose conclusion is labelled by a formula containing Z;

• any exists link whose associated formula contains Z.

A switching of σ is an undirected graph built as follows:

• the conclusions of σ are erased, and its edges considered as undirected;

• for each jumping link l, the premises of l (if any) are erased, exactly one
node m ∈ J(l) is chosen and a new edge between m and l is added.

• the boxes at depth zero of σ are collapsed into single nodes, i.e., if B is a
box at depth zero of σ, it is erased together with all the edges connecting
its links to the rest of the graph, and replaced with a new node l; then, for
any link m of depth zero which was connected to a link of B, a new edge
between m and l is added.

Definition 4 (Proof net) A pre-net (G, B) is correct iff:

• all of its switchings are acyclic;

• for all B ∈ B, the pre-net contained in B is correct.

A proof net is a correct net.
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Figure 14: An mL3 proof-net corresponding to t101.

Definition 16 (Multiplicative light linear logic by levels) Multiplicative
light linear logic by levels (mL4) is the logical system composed of all mL3

proof nets π satisfying the following conditions:

(Weak) Depth-stratification: Each exponential branch (Definition 8) of π
crosses at most one auxiliary port.

Lightness: Each box of π has at most one auxiliary port.

It is not hard to see that mL4 is stable under cut-elimination, i.e., that a
suitable version of Proposition 6 holds. Indeed, the depth-stratification condi-
tion is needed precisely for that purpose: in its absence, one can find an mL3

proof net satisfying the lightness condition which reduces to a proof net no
longer satisfying it.

As expected, mL4 is related to mLLL. To see how, we consider the forget-
ful embedding of mLLL into meLL which simply removes paragraph boxes,
retaining only the corresponding paragraph links (recall that our definition of
meLL includes the paragraph modality). Observe that this embedding is com-
patible with cut-elimination: if π1 → π2, then π+

1 → π+
2 (see [Mazza, 2006]

for the details on cut-elimination with §-boxes). We can then see mLLL as a
subsystem of mL4, in the following sense:

Proposition 9 Let π be a mLLL proof net, and let π+ be its forgetful image
in meLL. Then, π+ is in mL4 and, for every link l+ of π+ whose conclusion
is not a discharged formula and which corresponds to a link l of π, we have
ℓ(l+) = d(l) (we remind that in mLLL proof nets the depth also takes into
account paragraph boxes, see Definition 10).

As already observed above, §A is not isomorphic to A in mL3 (or mL4).
However, it is not hard to check that in both systems the paragraph modality
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First encoding of 101 in mL3
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Figure 15: An example of nested boxes of identical level (much smaller examples
exist; we gave this one because we shall re-use it later on for different purposes).

We know that F1 is true in general in meLL, and hence in mL3 too; it is not
hard to see that F2 and F3 instead fail altogether in mL3 and mL4. Never-
theless, in the light of Propositions 8 and 9, we may expect those facts to hold
in our systems provided we replace the word “depth” with “level”. Indeed, this
works for F2:

Lemma 10 Let π be an mL3 proof net such that π → π′. Then, ℓ(π′) ≤ ℓ(π).

On the contrary, the “level-wise” versions of F1 and F3 fail for mL3 and
mL4, because a box of level i may contain links of any level, in particular i
itself. Fig. 15 gives an example of this: reducing a cut at level i (i = 0 in
this case) may duplicate cuts at the same level. Therefore, a straightforward
adaptation of Girard’s “round-by-round” procedure, which trades depths for
levels, will not work. There is a workaround though: in fact, there are cuts
for which the level-wise version of F3 holds, and for which the failure of F1 is
harmless; our solution will consist in showing that these can be reduced first.

3.1 Termination

First of all, we prove that reduction of mL3 proof nets always terminates, even
in the untyped version of the system. From this moment on, that is, for the rest
of Sect. 3, by “meLL proof net” we shall mean “untyped meLL proof net”,
and by “mL3 (resp. mL4) proof net” we shall mean “untyped meLL proof net
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Round by round procedure for reduction
admitting an indexing (resp. admitting an indexing and satisfying the structural
conditions of Definition 16)”.

Definition 17 (Isolevel tree) Let π be a meLL proof net, and let e be an
edge of π which is the conclusion of a link l different from flat or pax. The
isolevel tree of e is defined by induction as follows:

• if l is an axiom, why not, of course, or paragraph link, then the isolevel
tree of e consists of the link l alone;

• otherwise, let e1, . . . , ek (with k ∈ {1, 2}) be the premises of l; then, the
isolevel tree of e is the tree whose root is l and whose immediate subtrees
are the isolevel trees of e1, . . . , ek.

Definition 18 (Complexity of reducible cuts) Let π be a meLL proof net,
and let c be a reducible cut link of π, whose premises are e1, e2. The complexity
of c, denoted by ♯c, is the sum of the number of nodes contained in the isolevel
trees of e1 and e2. (Note that the isolevel trees of e1, e2 are always defined
because the premises of a cut can never be conclusions of flat or pax links).

Definition 19 (Weight of an mL3 proof net) Let π be an mL3 proof net
of level l. If k ∈ Z, we denote by cutsk(π) the set of reducible cut links of π at
level k. The weight of π, denoted by απ, is the function from N to N defined as
follows:

απ(i) =
∑

c∈cutsl−i(π)

♯c.

Note that, if π has level l, then for all i > l, we have απ(i) = 0. Weights are
therefore almost everywhere null, and the set of all weights can be well-ordered
so as to be isomorphic to ωω.

We recall that, concretely, this order is a variant of the lexicographical order,
and is defined as follows. Let α, β be two almost-everywhere-null functions from
N to N. We put Cα,β = {i ∈ N ; α(i) ̸= β(i)}. Observe that Cα,β is finite,
because α and β are almost everywhere null. Moreover, Cα,β is non-empty iff
α ̸= β; in this case, let m = maxCα,β , and we set α < β iff α(m) < β(m).

So for all π, απ can be seen as an ordinal strictly smaller than ωω. Our
cut-elimination proof will simply show that, whenever an mL3 proof net π is
not normal, there always exists π′ such that π → π′ and απ′ < απ.

Below, we say that a flat link b is above a why not link w iff the exponential
branch of b ends in w.

Definition 20 (Contractive order) Let π be an mL3 proof net, and let B, C
be two boxes of π. We write B ≺1 C iff B and C are at the same level, B is cut
with a why not link w, and C contains a flat link above w. We denote by ≼ the
reflexive-transitive closure of ≺1.

Lemma 11 The relation ≼ is a partial order.
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(Here proof net = untyped proof net)
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Proof. Suppose there is a cycle in ≺1, i.e., there exist n ≥ 1 different boxes
B1, . . . ,Bn such that B1 ≺1 · · · ≺1 Bn ≺1 B1. We say that such a cycle has a
lump iff there exist i ̸= j such that Bi ≺1 Bj and Bi is contained in Bj. Let k be
the number of lumps in the cycle; we shall prove a contradiction by induction
on k. If k = 0, then all boxes are disjoint. In this case, it is easy to build,
by induction on n, a cyclic switching of π (or of the contents of the minimal
box containing the whole chain), which is impossible, since π is supposed to
be a proof net. If k > 0, let Bi,Bj be a pair of boxes inducing a lump. Since
we have a cycle, there certainly exists p such that Bp ≺1 Bi. If p = j, then
there is obviously a cyclic switching around Bj, yielding again a contradiction.
Otherwise, by definition, Bp ≺1 Bi means that there is a flat link inside Bi which
is above the why not link to which Bp is cut. But Bi is contained in Bj , so this
flat link is also in Bj, which means that Bp ≺1 Bj as well. Independently of
whether Bp is included in Bj or not, the cycle obtained by removing Bi from the
original one necessarily has k − 1 lumps, and the induction hypothesis applies.
Therefore, ≺1 is acyclic, and its reflexive-transitive closure is a partial order.!

In the following, we deem a cut link contractive iff its premises are the
conclusions of an of course link and a why not link of arity strictly greater than
zero. All other reducible cut links are called non-contractive.

Definition 21 (Cut order) Let π be an mL3 proof net, and let cuts(π) be the
set of reducible cut links of π. We turn cuts(π) into a partially ordered set by
posing, for c, c′ ∈ cuts(π), c ≤ c′ iff one of the following holds:

• ℓ(c) < ℓ(c′);

• c is non-contractive and c′ is contractive;

• c and c′ are both contractive, involving resp. the boxes B and B′, and
B ≼ B′.

That the above relation is indeed a partial order follows easily from the definition
and Lemma 11.

The weak normalization of untyped mL3 is a trivial corollary of the following
result, as anticipated above:

Lemma 12 Let π be an mL3 proof net which is not normal. Then, there exists
π′ such that π → π′ and απ′ < απ.

Proof. By hypothesis, cuts(π) ̸= ∅; of course cuts(π) is also finite, so there
is at least one minimal element w.r.t. the cut order. Take any one of them
(call it c), and reduce it, obtaining π′. Let M (resp. M ′) be the maximum
k such that απ(k) > 0 (resp. απ′(k) > 0). First of all, using Lemma 10, we
have that ℓ(π′) ≤ ℓ(π) and M ′ ≤ M . If any of the two inequalities is strict,
we immediately have απ′ < απ. Therefore, we may assume ℓ(π′) = ℓ(π) = l
and M ′ = M . By the minimality hypothesis, we see that the level of c must be
i = l−M , and that π contains no reducible cut at level j < i. This implies that,
whatever happens in reducing c, απ′(n) = απ(n) = 0 for all n > M , so it is
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Or `(c) = `(c0) and

enough to check that something decreases at level i, i.e., that απ′(M) < απ(M).
The proof now splits into five cases, depending on the nature of c. If c is not an
exponential cut, or if it is a weakening cut, we leave it to the reader to verify
that the condition holds.

So let c be contractive, and let B be the box involved. We claim that
the content of B contains no reducible cut links at level i. As a matter of
fact, suppose for the sake of contradiction that B contains a reducible cut c′

of level i (which is necessarily different from c). Because of the second clause
of Definition 21, c′ must be contractive, otherwise we would contradict the
minimality of c. But in this case, let B′ and w be resp. the box and the why not
link involved in c′. Since c′ is contractive, there is at least one flat link above w,
which entails B′ ≼ B; by the third clause of Definition 21, we would thus obtain
a second, definitive contradiction.

Now that we know that B is normal at level i, it is not hard to verify that the
thesis holds: π′ contains at least one copy of the content of B, but none of these
copies contributes to the value of απ′(M). Moreover, the new cuts contained
in π′ are all at level i + 1, whereas one reducible cut at level i (c itself) has
disappeared. Therefore, απ′(M) < απ(M), as desired. !

Proposition 13 (Untyped weak normalization) Untyped mL3 proof nets
are weakly normalizable.

Proof. By transfinite induction up to ωω. Let β < ωω, and suppose that
for all α < β, απ = α implies that π is weakly normalizable. Take a proof
net π such that απ = β; π is either normal, hence weakly normalizable, or,
by Lemma 12 and by the above induction hypothesis, it reduces to a weakly
normalizable proof net. But any proof net reducing to a weakly normalizable
proof net is also weakly normalizable. !

3.2 Elementary bound for mL3

From now on, we shall only consider the cut-elimination procedure given by the
proof of Lemma 12, i.e., the one reducing only minimal cuts in the cut order.
More concretely, given an mL3 proof net π, this procedure chooses a cut to be
reduced in the following way:

1. find the lowest level at which reducible cuts are present in π, say i;

2. if non-contractive cuts are present at level i, choose any of them and reduce
it;

3. if only contractive cuts are left, chose one involving a minimal box in the
contractive order.

This is nothing but Girard’s “round by round” procedure, modulo two modifi-
cations: we use levels instead of depths, and we are more restrictive on which
contractive cuts can be reduced (in Girard’s procedure for mLLL, any contrac-
tive cut may be reduced once all non-contractive cuts at the same depth are
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enough to check that something decreases at level i, i.e., that απ′(M) < απ(M).
The proof now splits into five cases, depending on the nature of c. If c is not an
exponential cut, or if it is a weakening cut, we leave it to the reader to verify
that the condition holds.

So let c be contractive, and let B be the box involved. We claim that
the content of B contains no reducible cut links at level i. As a matter of
fact, suppose for the sake of contradiction that B contains a reducible cut c′

of level i (which is necessarily different from c). Because of the second clause
of Definition 21, c′ must be contractive, otherwise we would contradict the
minimality of c. But in this case, let B′ and w be resp. the box and the why not
link involved in c′. Since c′ is contractive, there is at least one flat link above w,
which entails B′ ≼ B; by the third clause of Definition 21, we would thus obtain
a second, definitive contradiction.

Now that we know that B is normal at level i, it is not hard to verify that the
thesis holds: π′ contains at least one copy of the content of B, but none of these
copies contributes to the value of απ′(M). Moreover, the new cuts contained
in π′ are all at level i + 1, whereas one reducible cut at level i (c itself) has
disappeared. Therefore, απ′(M) < απ(M), as desired. !

Proposition 13 (Untyped weak normalization) Untyped mL3 proof nets
are weakly normalizable.

Proof. By transfinite induction up to ωω. Let β < ωω, and suppose that
for all α < β, απ = α implies that π is weakly normalizable. Take a proof
net π such that απ = β; π is either normal, hence weakly normalizable, or,
by Lemma 12 and by the above induction hypothesis, it reduces to a weakly
normalizable proof net. But any proof net reducing to a weakly normalizable
proof net is also weakly normalizable. !

3.2 Elementary bound for mL3

From now on, we shall only consider the cut-elimination procedure given by the
proof of Lemma 12, i.e., the one reducing only minimal cuts in the cut order.
More concretely, given an mL3 proof net π, this procedure chooses a cut to be
reduced in the following way:

1. find the lowest level at which reducible cuts are present in π, say i;

2. if non-contractive cuts are present at level i, choose any of them and reduce
it;

3. if only contractive cuts are left, chose one involving a minimal box in the
contractive order.

This is nothing but Girard’s “round by round” procedure, modulo two modifi-
cations: we use levels instead of depths, and we are more restrictive on which
contractive cuts can be reduced (in Girard’s procedure for mLLL, any contrac-
tive cut may be reduced once all non-contractive cuts at the same depth are
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reduced). This last point is strictly technical: it is required because of config-
urations such as the one shown in Fig. 15, as discussed above. What is really
fundamental is the shift from depth to level, which is indeed the key novelty of
our work.

Let us start with a few useful definitions:

Definition 22 Let π be an mL3 proof net.

1. The size of level i of π, denoted by |π|i, is the number of links at level i of
π different from auxiliary ports.

2. π is i-normal iff it contains no reducible cut link at all levels j ≤ i.

3. π is i-contractive iff it is (i− 1)-normal and contains only contractive cut
links at level i.

Lemma 14 Let π be an (i − 1)-normal proof net. Then, the round-by-round
procedure reaches an i-normal proof net in at most |π|i steps.

Proof. Let π = π0 → π1 → · · ·→ πn be reduction sequence generated by our
procedure, with πn i-normal. By what we have seen in the proof of Lemma 12,
if we put M = ℓ(π)− i, we have that απj+1

(M) < απj (M) for all 0 ≤ j ≤ n− 1.
Therefore, n ≤ απ(M). But by definition απ(M) ≤ |π|i, hence the thesis. !

Below, we use the notation 2n
k with the following meaning: for all n, 2n

0 = n,
and 2n

k+1 = 22n
k .

Lemma 15 Let π be an i-contractive proof net, such that π →∗ π′ under the

round-by-round procedure, with π′ i-normal. Then, |π′| ≤ 2|π|2 .

Proof. In the proof, we shall say that the arity of a contractive cut link c
is the arity of the why not link whose conclusion is premise of c. Let π0 be an
i-contractive proof net, such that π0 → π1 by reducing a minimal cut c at level i.
We have that, for all k ̸= i, |π0|k = Bk +Ck, while |π0|i = Bi +Ci +3, where Bk

is the size of level k of the content of the box B whose principal port’s conclusion
is premise of c, and Ck is a suitable non-negative integer. It is enough to inspect
Fig. 7 to see that, if the arity of c is A, we have |π1|k = ABk + Ck, for all k.
Now, since the step is contractive, A ≥ 1, so that |π1|k ≤ A(B + C) = A|π0|k.

We now make the following claims:

1. π1 is i-contractive;

2. if c1 is cut link of π1 at level i, and c0 is its lift in π0, then the arities of
c0 and c1 coincide.

The first fact can be checked by simply looking at Fig. 7. For what concerns
the second, let w0,B0 and w1,B1 be resp. the why not link and box cut by resp.
c0 and c1. Note that, by hypothesis, w0 and B0 are the lifts of resp. w1 and
B1. Now suppose, for the sake of contradiction, that the arity of w1 is different
than that of w0. Another simple inspection of Fig. 7 shows that this may be

33

reduced). This last point is strictly technical: it is required because of config-
urations such as the one shown in Fig. 15, as discussed above. What is really
fundamental is the shift from depth to level, which is indeed the key novelty of
our work.

Let us start with a few useful definitions:

Definition 22 Let π be an mL3 proof net.

1. The size of level i of π, denoted by |π|i, is the number of links at level i of
π different from auxiliary ports.

2. π is i-normal iff it contains no reducible cut link at all levels j ≤ i.

3. π is i-contractive iff it is (i− 1)-normal and contains only contractive cut
links at level i.

Lemma 14 Let π be an (i − 1)-normal proof net. Then, the round-by-round
procedure reaches an i-normal proof net in at most |π|i steps.

Proof. Let π = π0 → π1 → · · ·→ πn be reduction sequence generated by our
procedure, with πn i-normal. By what we have seen in the proof of Lemma 12,
if we put M = ℓ(π)− i, we have that απj+1

(M) < απj (M) for all 0 ≤ j ≤ n− 1.
Therefore, n ≤ απ(M). But by definition απ(M) ≤ |π|i, hence the thesis. !

Below, we use the notation 2n
k with the following meaning: for all n, 2n

0 = n,
and 2n

k+1 = 22n
k .

Lemma 15 Let π be an i-contractive proof net, such that π →∗ π′ under the

round-by-round procedure, with π′ i-normal. Then, |π′| ≤ 2|π|2 .

Proof. In the proof, we shall say that the arity of a contractive cut link c
is the arity of the why not link whose conclusion is premise of c. Let π0 be an
i-contractive proof net, such that π0 → π1 by reducing a minimal cut c at level i.
We have that, for all k ̸= i, |π0|k = Bk +Ck, while |π0|i = Bi +Ci +3, where Bk

is the size of level k of the content of the box B whose principal port’s conclusion
is premise of c, and Ck is a suitable non-negative integer. It is enough to inspect
Fig. 7 to see that, if the arity of c is A, we have |π1|k = ABk + Ck, for all k.
Now, since the step is contractive, A ≥ 1, so that |π1|k ≤ A(B + C) = A|π0|k.

We now make the following claims:

1. π1 is i-contractive;

2. if c1 is cut link of π1 at level i, and c0 is its lift in π0, then the arities of
c0 and c1 coincide.

The first fact can be checked by simply looking at Fig. 7. For what concerns
the second, let w0,B0 and w1,B1 be resp. the why not link and box cut by resp.
c0 and c1. Note that, by hypothesis, w0 and B0 are the lifts of resp. w1 and
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the case only if an exponential branch of π0 ending in w0 crosses the border of
B (the box involved in the reduction leading from π0 to π1). But if it is so, then
there is a flat link above w0 which is inside B, which implies that B0 ≼ B. By
Definition 21, we have c0 < c, contradicting the minimality of c. Therefore, the
maximum arity of all cuts of π1 at level i cannot exceed the maximum arity of
all cuts of π0 at level i.

Let now π = π0 → · · · → πn = π′ be the reduction sequence generated
by the round-by-round procedure. If A1, . . . , An are the arities of the cut links
reduced at each step, we have, for all k,

|π′|k ≤ |π|k

n∏

j=1

Aj .

But, by the above claim, each Aj cannot be greater than the greatest arity of
why not links present in π. This is of course bounded by |π|i+1 (a contraction
of arity A at level i needs the presence of A flat links at level i + 1), so we can
conclude that

|π′|k ≤ |π|k|π|
n
i+1 ≤ |π|k|π|

|π|i
i+1,

where we have used Lemma 14, which tells us that n ≤ |π|i. Now, if put
l = ℓ(π′) = ℓ(π), we have

|π′| =
l∑

k=0

|π′|k ≤
l∑

k=0

|π|k|π|
|π|i
i+1 = |π||π||π|ii+1 ≤ |π||π|+1 ≤ 22|π|

,

as stated in our thesis. !

Theorem 16 (Elementary bound for mL3) Let π be an mL3 proof net of
size s and level l. Then, the round-by-round procedure reaches a normal form
in at most (l + 1)2s

2l steps.

Proof. We can decompose the reduction from π to its normal form πl as
follows: π = π−1 →∗ π0 · · ·→∗ πl, where each πi is i-normal. By Lemma 14, if
we call the length of the whole reduction sequence L, we have

L ≤
l∑

i=0

|πi−1|i ≤
l∑

i=0

|πi−1|.

The reductions leading from πi to πi+1 can be further decomposed as πi →∗

π′
i →

∗ πi+1, where π′
i is the first i-contractive proof net obtained in the reduc-

tion sequence. Observe now that the size of proof nets does not grow under
non-contractive steps; therefore, for all i, |π′

i| ≤ |πi|. From this, if we apply

Lemma 15, we have that, for all i, |πi+1| ≤ 2|πi|
2 .

It can now be proved by a straightforward induction that, for all i ≥ 0, we
have |πi−1| ≤ 2s

2i. Hence, we obtain

L ≤
l∑

i=0

|πi−1| ≤
l∑

i=0

2s
2i ≤ (l + 1)2s

2l,
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Admits stratification = elementary time
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Figure 14: An mL3 proof-net corresponding to t101.

Definition 16 (Multiplicative light linear logic by levels) Multiplicative
light linear logic by levels (mL4) is the logical system composed of all mL3

proof nets π satisfying the following conditions:

(Weak) Depth-stratification: Each exponential branch (Definition 8) of π
crosses at most one auxiliary port.

Lightness: Each box of π has at most one auxiliary port.

It is not hard to see that mL4 is stable under cut-elimination, i.e., that a
suitable version of Proposition 6 holds. Indeed, the depth-stratification condi-
tion is needed precisely for that purpose: in its absence, one can find an mL3

proof net satisfying the lightness condition which reduces to a proof net no
longer satisfying it.

As expected, mL4 is related to mLLL. To see how, we consider the forget-
ful embedding of mLLL into meLL which simply removes paragraph boxes,
retaining only the corresponding paragraph links (recall that our definition of
meLL includes the paragraph modality). Observe that this embedding is com-
patible with cut-elimination: if π1 → π2, then π+

1 → π+
2 (see [Mazza, 2006]

for the details on cut-elimination with §-boxes). We can then see mLLL as a
subsystem of mL4, in the following sense:

Proposition 9 Let π be a mLLL proof net, and let π+ be its forgetful image
in meLL. Then, π+ is in mL4 and, for every link l+ of π+ whose conclusion
is not a discharged formula and which corresponds to a link l of π, we have
ℓ(l+) = d(l) (we remind that in mLLL proof nets the depth also takes into
account paragraph boxes, see Definition 10).

As already observed above, §A is not isomorphic to A in mL3 (or mL4).
However, it is not hard to check that in both systems the paragraph modality
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Proof. We can decompose the reduction from π to π′ into π →∗ π0 →∗ π′,
where π0 is the first i-contractive proof net obtained during the reduction. Now,
applying, in the order, points 1 and 2 of Lemma 19, Lemma 20, Lemma 21, and
the well known fact that |π0| ≤ |π|, we obtain

|π′| = [π′]i ≤ [π0]i ≤ |π0|
ρ(π0)+2 ≤ |π0|

ρ(π)+2 ≤ |π|ρ(π)+2,

as desired. !

Theorem 23 (Polynomial bound for mL4) Let π be an mL4 proof net of
size s, level l, and relative depth r. Then, the round-by-round procedure reaches
a normal form in at most (l + 1)s(r+2)l

steps.

Proof. We start by applying the same arguments used in the beginning of the
proof of Theorem 16: we decompose the reduction from π to its normal form πl

into π = π−1 →∗ π0 · · ·→∗ πl, where each πi is i-normal; then, using Lemma 14
(which is valid because mL4 is a subsystem of mL3), if we call the length of
the whole reduction sequence L, we can write

L ≤
l∑

i=0

|πi−1|.

Now, using Lemma 22, we have, for all 0 ≤ i ≤ l, |πi| ≤ |πi−1|
ρ(πi−1)+2. But,

by Lemma 21, for all 0 ≤ i ≤ l, we have ρ(πi) ≤ ρ(π), so we can actually write

|πi| ≤ |πi−1|
r+2.

From this, it can be proved by a straightforward induction that, for all i ≥ 0,
we have |πi−1| ≤ s(r+2)i

. Hence, we obtain

L ≤
l∑

i=0

|πi−1| ≤
l∑

i=0

s(r+2)i

≤ (l + 1)s(r+2)l

,

which is the bound stated in the thesis. !

Observe that, by Proposition 9, if π+ is the mL4 embedding of an mLLL
proof net π of size s and depth d, then |π+| = s, ℓ(π+) = d, and ρ(π+) = 0, so

that normalizing π+ takes at most (d + 1)s2d

steps, which is the same bound
given by [Girard, 1998].

3.4 Characterization of FE and FP

Propositions 8 and 9 tell us that mL3 and mL4 are conservative extensions of
mELL and mLLL, so programming in the former systems can be done using
the same types and proofs as in the latter. In particular, the type of finite
binary strings in mL3 and mL4 are respectively

SE = ∀X.(?(X⊥ ⊗X)

&

?(X⊥ ⊗X)

&

!(X⊥ &

X)),

SP = ∀X.(?(X⊥ ⊗X)

&

?(X⊥ ⊗X)

&

§(X⊥ &

X)).

45

Theorem (Girard, Baillot-Mazza, Danos-Joinet, Mairson-Terui)

A function f : {0, 1}⇤ �! {0, 1}⇤ is polytime

if and only if it can be typed as a proof in mL4

of level d with conclusion (bint§)?, §dbint§.


