# Notes on proof-nets II 

## Daniel Murfet

Most of these notes are copied from the following paper:
$[\mathrm{BM}]=$ Baillot, Mazza "Linear logic by levels and bounded time complexity", 2009.

15/4/2016
therisingsea.org/post/seminar-proofnets/

## Curry-Howard correspondence

| logic | programming | categories |
| :---: | :---: | :---: |
| formula | type | objects |
| sequent | input/output spec | - |
| proof | program | morphisms |
| cut-elimination | execution | - |
| contraction | copying | coproducts |
| stratification | complexity | $?$ |

# Curry-Howard correspondence 

(modulo many details)
logic programming
$\pi$
$\vdots$
Computable $f: \mathbb{N} \longrightarrow \mathbb{N}$
$\pi$ admits a stratification
... and only promotes on $\leq 1$ premise

## Recall: Theorem (Girard)

> A function $\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ is "polytime" if and only if it can be typed as a proof $\pi$ of bint $\vdash$ bint which admits a stratification.
$f:\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ computed by a Turing machine $T$ with polyclock $P$


Upshot: $\pi$ computes $f$

The formulas of second order unit-free multiplicative exponential linear logic (meLL) are generated by the following grammar, where $X, X^{\perp}$ range over a denumerable set of propositional variables:

$$
A, B::=X\left|X^{\perp}\right| A \otimes B|A \ngtr B|!A|? A| \exists X . A|\forall X . A| \S A .
$$

Linear negation is defined through De Morgan laws:

$$
\begin{aligned}
(X)^{\perp} & =X^{\perp} & \left(X^{\perp}\right)^{\perp} & =X \\
(A \otimes B)^{\perp} & =B^{\perp} \ngtr A^{\perp} & (A \ngtr B)^{\perp} & =B^{\perp} \otimes A^{\perp} \\
(!A)^{\perp} & =? A^{\perp} & (? A)^{\perp} & =!A^{\perp} \\
(\exists X . A)^{\perp} & =\forall X . A^{\perp} & (\forall X . A)^{\perp} & =\exists X . A^{\perp}
\end{aligned}
$$

$$
(\S A)^{\perp}=\S A^{\perp}
$$

Two connectives exchanged by negation are said to be dual. Note that the self-dual paragraph modality is not present in the standard definition of meLL [Girard, 1987]; we include it here for convenience. Also observe that full linear logic has a further pair of dual binary connectives, called additive (denoted by \& and $\oplus$ ), which we shall briefly discuss in Sect. 5. They are not strictly needed for our purposes, hence we restrict to meLL in the paper.

Linear implication is defined as $A \multimap B=A^{\perp} \mathcal{P} B$. Multisets of formulas will be ranged over by $\Gamma, \Delta, \ldots$

For technical reasons, it is also useful to consider discharged formulas, which will be denoted by $b A$, where $A$ is a formula.

## Sequent calculus

$$
\begin{array}{cc}
\stackrel{\vdash A^{\perp}, A}{\text { Axiom }} & \frac{\vdash \Gamma, A \vdash \Delta, A^{\perp}}{\vdash \Gamma, \Delta} \mathrm{Cut} \\
\frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} \text { Tensor } & \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \not \supset B} \text { Par } \\
\left.\frac{\vdash \Gamma, A}{\vdash \Gamma, \forall X, A} \text { For all (X not free in } \Gamma\right) & \frac{\vdash \Gamma, A[B / X]}{\vdash \Gamma, \exists X . A} \text { Exists } \\
\frac{\vdash ? \Gamma, A}{\vdash ? \Gamma,!A} \text { Promotion } & \frac{\vdash \Gamma, A}{\vdash \Gamma, ? A} \text { Dereliction } \\
\frac{\vdash \Gamma}{\vdash \Gamma, ? A} \text { Weakening } & \frac{\vdash \Gamma, ? A, ? A}{\vdash \Gamma, ? A} \text { Contraction }
\end{array}
$$

$$
\frac{\vdash \Gamma \quad \vdash \Delta}{\vdash \Gamma, \Delta}_{\operatorname{Mix}}
$$

$$
\frac{\vdash \Gamma, A}{\vdash \Gamma, \S A} \text { Paragraph }
$$

## Proof-net links




Note: paragraph is used for polytime, not needed to encode elementary time functions.



Figure 4: Axiom step.
Figure 5: Multiplicative step.


Figure 6: Quantifier step; the substitution is performed on the whole net.





Figure 7: Exponential step; $b \Gamma$ is a multiset of discharged formulas, so one pax link, why not link, or wire in the picture may in some case stand for several

Figure 8: Paragraph step.

## Indexing of proof-nets

Definition 12 (Indexing) Let $\pi$ be a meLL net. An indexing for $\pi$ is a function I from the edges of $\pi$ to $\mathbb{Z}$ satisfying the constraints given in Fig. 11 and such that, for all conclusions e, $e^{\prime}$ of $\pi, I(e)=I\left(e^{\prime}\right)$.

[BM] Prop 5, 6









Figure 11: Constraints for indexing meLL proof nets. Next to each edge we represent the integer assigned by the indexing; formulas are omitted, because irrelevant to the indexing.

Definition 13 (Multiplicative linear logic by levels) Multiplicative linear logic by levels $\left(\mathbf{m L}^{\mathbf{3}}\right)$ is the logical system defined by taking all meLL proof nets admitting an indexing.

## Theorem to be proven

Definition 2 (Depth, size) Let $\sigma$ be a pre-net.

- A link (or edge) of $\sigma$ is said to have depth $d$ if it is contained in $d$ (necessarily nested) boxes. The depth of a box of $\sigma$ is the depth of the links forming its border. The depth of a link l, edge e, or box $\mathcal{B}$ are denoted resp. by $\mathrm{d}(l), \mathrm{d}(e)$ and $\mathrm{d}(\mathcal{B})$. The depth of $\sigma$, denoted by $\mathrm{d}(\sigma)$, is the maximum depth of its links.
- The size of $\sigma$, denoted by $|\sigma|$, is the number of links contained in $\sigma$, excluding auxiliary ports.

Definition 15 (Level) Let $\pi$ be an $\mathbf{m L}^{\mathbf{3}}$ proof net, and let $I_{0}$ be its canonical indexing. The level of $\pi$, denoted by $\ell(\pi)$, is the maximum integer assigned by $I_{0}$ to the edges of $\pi$. If l is a link of $\pi$ of conclusion e (or of conclusions $e_{1}, e_{2}$ in the case of an axiom link), and if $\mathcal{B}$ is a box of $\pi$ whose principal port has conclusion $e^{\prime}$, we say that the level of $l$, denoted by $\ell(l)$, is $I_{0}(e)$ (or $I_{0}\left(e_{1}\right)=I_{0}\left(e_{2}\right)$ in the case of an axiom), and that the level of $\mathcal{B}$, denoted by $\ell(\mathcal{B})$, is $I_{0}\left(e^{\prime}\right)$.

Theorem 16 (Elementary bound for $\mathbf{m L}^{\mathbf{3}}$ ) Let $\pi$ be an $\mathbf{m L}^{\mathbf{3}}$ proof net of size $s$ and level l. Then, the round-by-round procedure reaches a normal form in at most $(l+1) 2_{2 l}^{s}$ steps.

First encoding of 101 in mL3

$\operatorname{bint}^{\S}=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha))$

## Second encoding of 101 in mL3



$$
\left.\operatorname{bint}^{!}=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap!(\alpha \multimap \alpha))\right)
$$

## Level $\neq$ depth



Figure 15: An example of nested boxes of identical level (much smaller examples exist; we gave this one because we shall re-use it later on for different purposes).

## Round by round procedure for reduction

$($ Here proof net $=$ untyped proof net $)$

Definition 17 (Isolevel tree) Let $\pi$ be a meLL proof net, and let $e$ be an edge of $\pi$ which is the conclusion of a link $l$ different from flat or pax. The isolevel tree of $e$ is defined by induction as follows:

- if $l$ is an axiom, why not, of course, or paragraph link, then the isolevel tree of e consists of the link l alone;
- otherwise, let $e_{1}, \ldots, e_{k}$ (with $k \in\{1,2\}$ ) be the premises of $l$; then, the isolevel tree of $e$ is the tree whose root is $l$ and whose immediate subtrees are the isolevel trees of $e_{1}, \ldots, e_{k}$.

Definition 18 (Complexity of reducible cuts) Let $\pi$ be a meLL proof net, and let c be a reducible cut link of $\pi$, whose premises are $e_{1}, e_{2}$. The complexity of $c$, denoted by $\sharp c$, is the sum of the number of nodes contained in the isolevel trees of $e_{1}$ and $e_{2}$. (Note that the isolevel trees of $e_{1}, e_{2}$ are always defined because the premises of a cut can never be conclusions of flat or pax links).

Definition 19 (Weight of an $\mathbf{m L}^{\mathbf{3}}$ proof net) Let $\pi$ be an $\mathbf{m L}^{\mathbf{3}}$ proof net of level $l$. If $k \in \mathbb{Z}$, we denote by $\operatorname{cuts}_{k}(\pi)$ the set of reducible cut links of $\pi$ at level $k$. The weight of $\pi$, denoted by $\alpha_{\pi}$, is the function from $\mathbb{N}$ to $\mathbb{N}$ defined as follows:

$$
\alpha_{\pi}(i)=\sum_{c \in \operatorname{cuts}_{l-i}(\pi)} \sharp c
$$

[BM] Contractive order

## Round by round procedure for reduction

Definition 21 (Cut order) Let $\pi$ be an $\mathbf{m L}^{\mathbf{3}}$ proof net, and let cuts $(\pi)$ be the set of reducible cut links of $\pi$. We turn cuts $(\pi)$ into a partially ordered set by posing, for $c, c^{\prime} \in \operatorname{cuts}(\pi), c \leq c^{\prime}$ iff one of the following holds:

- $\ell(c)<\ell\left(c^{\prime}\right) ;$

Or $\ell(c)=\ell\left(c^{\prime}\right)$ and

- $c$ is non-contractive and $c^{\prime}$ is contractive;
- $c$ and $c^{\prime}$ are both contractive, involving resp. the boxes $\mathcal{B}$ and $\mathcal{B}^{\prime}$, and $\mathcal{B} \preceq \mathcal{B}^{\prime}$.

From now on, we shall only consider the cut-elimination procedure given by the proof of Lemma 12, i.e., the one reducing only minimal cuts in the cut order. More concretely, given an $\mathbf{m L}^{\mathbf{3}}$ proof net $\pi$, this procedure chooses a cut to be reduced in the following way:

1. find the lowest level at which reducible cuts are present in $\pi$, say $i$;
2. if non-contractive cuts are present at level $i$, choose any of them and reduce it;
3. if only contractive cuts are left, chose one involving a minimal box in the contractive order.

## Proofs

Lemma 12 Let $\pi$ be an $\mathbf{m L}^{\mathbf{3}}$ proof net which is not normal. Then, there exists $\pi^{\prime}$ such that $\pi \rightarrow \pi^{\prime}$ and $\alpha_{\pi^{\prime}}<\alpha_{\pi}$.

Proposition 13 (Untyped weak normalization) Untyped $\mathbf{m L}^{\mathbf{3}}$ proof nets are weakly normalizable.

Definition 22 Let $\pi$ be an $\mathbf{m L}^{3}$ proof net.

1. The size of level $i$ of $\pi$, denoted by $|\pi|_{i}$, is the number of links at level $i$ of $\pi$ different from auxiliary ports.
2. $\pi$ is $i$-normal iff it contains no reducible cut link at all levels $j \leq i$.
3. $\pi$ is $i$-contractive iff it is $(i-1)$-normal and contains only contractive cut links at level i.

Lemma 14 Let $\pi$ be an ( $i-1$ )-normal proof net. Then, the round-by-round procedure reaches an i-normal proof net in at most $|\pi|_{i}$ steps.

Lemma 15 Let $\pi$ be an $i$-contractive proof net, such that $\pi \rightarrow^{*} \pi^{\prime}$ under the round-by-round procedure, with $\pi^{\prime} i$-normal. Then, $\left|\pi^{\prime}\right| \leq 2_{2}^{|\pi|}$.

Theorem 16 (Elementary bound for $\mathbf{m L}^{\mathbf{3}}$ ) Let $\pi$ be an $\mathbf{m L}^{\mathbf{3}}$ proof net of size $s$ and level l. Then, the round-by-round procedure reaches a normal form in at most $(l+1) 2_{2 l}^{s}$ steps.

## Admits stratification $=$ elementary time

$$
\left.\operatorname{bint}^{!}=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap!(\alpha \multimap \alpha))\right)
$$

Theorem (Girard, Baillot-Mazza, Danos-Joinet, Mairson-Terui)
A function $f:\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ is elementary time if and only if it can be typed as a proof in $\mathbf{m L}^{3}$ of level $d$ with conclusion (bint $\left.{ }^{!}\right)^{\perp},!^{d}$ bint ${ }^{!}$.

## Admits stratification + restricted promotion = polytime

$$
\operatorname{bint}^{\S}=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha))
$$

Definition 16 (Multiplicative light linear logic by levels) Multiplicative light linear logic by levels $\left(\mathbf{m L}^{4}\right)$ is the logical system composed of all $\mathbf{m L}^{3}$ proof nets $\pi$ satisfying the following conditions:
(Weak) Depth-stratification: Each exponential branch (Definition 8) of $\pi$ crosses at most one auxiliary port.

Lightness: Each box of $\pi$ has at most one auxiliary port.

Theorem 23 (Polynomial bound for $\mathbf{m L}^{4}$ ) Let $\pi$ be an $\mathbf{m L}^{4}$ proof net of size s, level l, and relative depth $r$. Then, the round-by-round procedure reaches a normal form in at most $(l+1) s^{(r+2)^{l}}$ steps.

Theorem (Girard, Baillot-Mazza, Danos-Joinet, Mairson-Terui)
A function $f:\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ is polytime
if and only if it can be typed as a proof in $\mathbf{m} \mathbf{L}^{4}$ of level $d$ with conclusion $\left(\text { bint }^{\S}\right)^{\perp}, \S^{d} \mathbf{b i n t}^{\S}$.

