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Lecture 17 : Integration

As recalled in Lecture 12
,

the course is structured in two parts .

The first part ,

organised under the slogan
"

space as a stage for things
"

emphasised the

following concepts :

• metric space , topological space , symmetry groups , continuity ,

constructing new spaces from old ones , compactness,
Hausdorff spaces .

The second part ,

"

space as a stage for motion
"

,

has been organised around

the concept of a function space .

With Picard 's theorem in Lecture 15 we

got a glimpse of the fundamental role such spaces play in the study of dynamics .

But something is missing .

Recall fwm Lecture 16 that by the Stone - Weierstrass

theorem the trigonometric polynomials are dense in Cts I S7 IR )
.

But this

result is not constructive ( although , see Ex
.

U b - S ) in the sense that it does

not tell us , given f : S1 -7112 continuous
,

a
" preferred

"

coefficient an

of cos ( no ) in an approximating polynomial for f
.

Compare this to the situation for a vector V in a vector space V with

basis I us .
.  - sum}

.

There is a unique expression of v as EE , ai Ui for

ai E IR
,

and the coefficients are
" read off

"

by the linear functionals

uit EV
*

which send v to Ui ( x ) = ai . These functionals tell us

" how much
" of v is in the direction Ui .

We know Cts ( S3 IR ) is an IR - vector space ,
and it is not difficult to

show that { cos I no )
,

sin I no ) } n > ,
u I 13 is a linearly independent

set in this vector space I see Ex . Ll 6 - 2 and 47 - I below )
.

So  it is natural

to ask :  is this a basis for the ( infinite - dimensional ) vector space Cts ( S } IR ) ?

One might then think a dual basis cos l not
*

could produce the desired coefficient an
.
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However
,

this is far too naive : the trigonometric polynomials do not span Cts ( 57 IR )

and even if they did
,

in the infinite - dimensional case we  do not have a dual basis
.

Too bad ! We seem to lack some basic conceptual framework for working constructively in

infinite - dimensional vector spaces of this kind . The appropriate framework ,
whose

study will occupy us for the remainder of the semester
,

is Hilbert space ,
and the

Hilbert space structure on Cts I S
'

,
IR ) ( or rather a suitable replacement  denoted L2 ( S1 ) )

is derived from the integral .

In today 's lecture we develop integrals in the context of function spaces ,
which

will lead us to LZ spaces ,
whose structure we will axiom itis e next lecture using

the notion of  a Hilbert  space .

Exercise 47 - I With S
"

=
"2/2 TIE prove the set { cost no )

,
sin C not }n > ,

U I 13

is linearly independent in Cts ( St
,

IR ) I so the expressions in

egr ( 7. 17 of Lecture 16 are unique )
.

In particular this shows

that Cts ( St
,

IR ) is infinite - dimensional
.

Exercise 47-2 Prove ew " "
Ects l 5-

,
IR ) is not in the linear span of the

linearly independent set considered in the previous exercise
.

DEI An integral pair ( X
,

S ) is a compact

Hausdorff
space X

together with a function S : Cts ( X
, IR ) → IR which is linear

and continuous
,

and satisfies for all f e Cts ( X , IR ) :

1- where f 70 means for( i ) If f 70 then If 70
,

and
all x ex Hx ) 70J

Cii ) if f- 70 then I f  = O if and only if f-  

= O
.



③

Lemma 47 - O For

as
b the Riemann integral fca

, by
: Cts ( La, BT

,
IR ) → IR

gives an integral pair ( C ai b ]
,

Sea
, by )

.

Pweof As usual Cts ( La ,
b ]

, IR ) has the compact - open topology ( and metric do ),
see Tutorial 8 for a reminder on definitions .

For linearity see T . Tao
' '

Analysis I
' '

Theorem 11.4 .

I la )
,

Cb )
.

Condition Ci ) is immediate from the definitions .

For Iii ) suppose
Sca

, by f = O and that f- f Xo ) 7 O
. Then f

-  '

( ( EH xo )
,

a ) )
is anopen neighborhood of no

,
which contains a closed interval

, say

Xo E ( c
,

d ] E f
-  '

( ( Eff Xo )
,

a ) ) E [ a
,

b ] ( c t d)

Then D= { [ a
, c) Cc ,

d ]
,

( d
,

b ) } is a partition and the function

scarf :*,

IIE:L
,

O x E ( d
,

b ]

is piece - wise constant with respect to P
,

hence since f 79 we have

I Ca , by f  = fears] f 7 P . c. Sea
, by 9 = ( d - c) I f- ( xo ) > O

which is a contradiction . Hence f  = O
, proving ( ii )

.

Lemma 47 - I If ( X
,

S ) is an integral pair then for f
, g e Cts ( X

,
IR )

( i ) f Eg implies ff E f g tf  Eg means f f x ) Eg Ix ) for  all xexj

Cii ) Iff Is St ft

( iii ) f : Cts I x ,
IR ) → IR is uniformly continuous

.



④

Roof ( i ) If f E g then g - f- 70 so Sg - f f  = f ( g - f) 70 .

Iii ) Let X Ell ,
- I ) be such that Xf f > O

.

Then Xf E Ifl so

I f f I = Xf f  = f If e f Ifl
.

liii ) Immediate from

I f f - f g I = If ( f - g) I E f If - g I E f do If , g) = V. do I fig )

where V = ft . D

Exercise 47-3 Give a continuous linear f not equal to the Scab ] of Lemma L 17-0

for which ( laid
,

S ) is also an integral pair .

Recall that by the adjunction property ( Theorem 42-4 ) for X
,

Y locally compact
Hausdorff we have a homeomorphism I Ex .

42 - 13 )

Ix
, -1,2

Cts ( Xx Y
, 2) > Cts ( X

,
Cts C Y

,
2 ) )

.

( 4. I )
I

F 1- txt FK ,
- I }

We can use this to define the product of integral pairs .
However

,
in order to prove that

the definition is independent of the order of X , Y we will have to use Ex
.

LIG - It which

in turn depends on Ury sohn 's lemma ( which we have not proven )
.

I will provide a

proof of this lemma at the end of the semester

,
but for the moment  I will just

continue to flag explicitly which result depend on it
.

In any case ,
the independence

is also a consequence of Fubini 's theorem when X , Y are of the form given
in Lemma 47 - O .
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DEI A topological IR - vector space is a vector space V together with a topology
on the underlying set - of V

,
such that the structural maps

Vxv - V
,

IRXV → V

( v. w )l→xtw ( 7. v ) MTV

are all continuous
.

A topological vector space is in particular a topological group .

Exercise 47-4 Phone that if Xis locally compact Hausdorff and Visa topological vector

space
that Cts ( Xiv ) with the compact - open topology and the pointwise

operations ( asonp -60
,

⑦ of Lecture 16 ) is a topological IR - vector space .

( Hint mtwpythepwofof Lemma Llb - G )
.

Lemma 47 - I Let C X
,

Ix )
,

c Y
,

Sy ) be integral pain .
Then ( XXY

, fxxy ) is

an integral pair.ca/ledthepwductintegralpairwhenefxxx is

defined so as to make the diagram below commute :

fxxy
ctslxxY.IR ) - - - - - - - - - → IR

^

¥94112 = fx ( 5.1 )

I

Cts ( X
,

Cts 17,112 ) ) > ctslx.IR )
Iyo -

Assuming the Urysohnlemmathe following diagram also commutes :

fxxy
& xxx - xxx ctslXH.IR ) 7 IR

is the swap map
f) oz in '  '

( 5.2 )
( y ,x)1→( x. y )

ctslyxx.IR ) Sy

It ,xnR ti , Cts I YR )ctsly.CH/YRDS+o
-



⑤

Pwot The space X×Y is compact - Hausdorff by Lemma 40-2
, Lemma Lll -3

.

Let us first unpack the definition of fxxy
.

Given F : XM → IR

Ctslxxy ,
IR ) F

I !
,

informally

Cblx ,
Cts HR ) )ICF) at Fla ,

- )

!
,

Jyoti

ctslx.IR ) f,oI(F)xtfyflxy)dy

! Sx

IR

1×(1×0747)
Jxfyflxiydydx

Asawmpositeof continuous maps (using Lemma 12-1 for fyot ) ) it is dear

fxxy is continuous . By Exercise 47-4 all spaces involved are topological
vector spaces . The map Ix

, y.ir is linear since

IX.
y.ir/Fta)Cx)ly)=(Fta)Cx.y)--FCx,y)tGlx,y)=Ix,x,irlFKxlly)tIx.ynRl

a) I HH )
= ( Ix

, y ,
IRLFKX ) t Ix ,y,iR( a) C x ) ]( y )

=L ftx. y.klfltkx.y.ir/a ) I ( x ) ](y )

which proves
IX. Y IR ( Fta ) = Ix

, Yik (F) tix ,y,iR( a )
.

Similarly

one checks that Ix
,
4,11217 F) =X¥x

, -1,112 l F )
.

The map Sy - C- ) is also

linear
,

since ( Iyo ( ft 's ) ) ( x ) = fylflxltglx ) ) = fyffxsltfylgcx ) )

and similarly Iyo ( Xf ) = 74 of
.

Soas a composite of linear maps ,
Kay is linear

.
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It remains to check the axioms for an integral pair :

l i ) If F 70 then for see X the function Fla ,
- ) : Y → IR is non - negative ,

so since Sy is an integral pair fy FGs - ) 70
. Hence x I → Sy Floe

.

- )

is a non - negative function ,
which has non - negative integral Jxxy F

.

I ii ) Suppose F 30 and fxxy F  = O
. That means that the function

Fy :X → IR defined by Fy ( x ) = Sy Fla ,
- ) has Sx Fy = O

.

By the axioms for f × we deduce Fy = O
.

But then for  x E X

I y Fla
, -1=0 yields F ( x

, -1=-0 and hence F  = O .

Assuming Ury sohn
, we have to show the two ways around C 5. 2) are equal

as continuous linear maps

Cts ( Xx Y
,

IR ) > IR

But by Lemma 47-2 below it suffices to show they agree on a dense subset A of

Cts ( Xx Y
,

IR )
.

But as a consequence of Stone - Weierstrass ( Ex .
Ll 6 - I 1) we

know a convenient dense subset
, namely the set of all finite sums of products

of functions f :X → IR and g : Y → IR
,

i. e
.

A  = { Ei fig i I fi Ects I X ,
IR )

, gi Ects ( Y
, IR ) } .

Since the two ways around I 5- 2) are linear
,

to show they agree on A

it suffices to show they agree on a single fg with f : X → IR
, g : Y → IR

.

But then both ways around are easily checked to send F  = fg to the product
( Sx f I . ( I y 9 ) so we are done

. D



⑤

Lemma L

17-2
If f , g : X → Y are continuous maps of topological spaces ,

with Y Hausdorff
,

and A  EX is dense then f la = 91A

implies f  = g .

Boot Consider the continuous map ( s K ) = C x
,

x ) )

s f  x g

X - Xx X - Yxy

since Y is Hausdorff the diagonal S =L ( Y , y ) I yet ) EYXY is closed
,

and its pre image under the above map { x E X I f- I x ) = g ( x ) ) is

therefore closed in X . Hence if A E X is dense and f IA  = g IA then

A E { x I f- C x ) = g l x ) } and therefore { x I fix ) = g Ix ) 3 = X
. D

The outcome of Lemma L 17 - I is essentially Fubini 's theorem : we may interchange
the order of  integrals ,

so roughly speaking ( roughly because " dx "

,

" dy "

have not entered our notation )

↳ f× Flxiyldxdy = J *  y FC x , y ) = 1×1,
F C x , y ) dydx

Example 47 - I Combining Lemma 47 - O
,

47 - I we have an integral pair

( far , bit x . . . x ( an
,

bn )
, fca.is

, ,
Sea

.
, by

- -
- Scanian ] )

for any collection of intervals
.

We learned in Lecture 7 a few other ways of constructing spaces : disjoint
unions and quotients ( and push outs

,
which were a combination of the two )

.

It is natural to extend these operations to integral pairs .
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Exercise 47-5 (i ) Rove that if V
,

V' are topological IR - vector spaces so is VXV
'

with the product topology and the usual operations .

Iii ) Let X
, Y be locally compact Hausdorff and V a topological

IR - vector space . Rove that the bijection

=

Cts ( XIY
,

V ) s Cts IX. v ) x Cb l Y
,

v )

F 1-7 ( FI x ,
Fly )

of Ex LI - 6 is a linear homeomorphism ( that is
,

an isomorphism

of topological vector spaces )
.

Here you are using Ex . 47-4
,

and ( i ) .

( see also Ex . Lll - 5 and Lemma LIO - 5) .

l Hint :

you might like to

first prove ( X14 ) x 2 = ( X x 2) it (xx 2) . )

Lemma Ln - 3 Let ( X
, Sx )

,
( Y

,
Sy ) be integral pain .

Then ( X # Y
,Sx # y )

is an integral pair where Ix hey is defined so as to make

the diagram below commute :

SXIY
Cts ( X # Y

,
IR ) - - - - - -

- - - s IR
^

Ex .
17-5 I t

I

Cts ( X ,
IR ) x Cts ( Y , IR ) > Rx IR

Ix × Sy

Proof The space X HY is compact Hausdorff by Lemma 40-5
,

Lemma Lll - 5
.

The map is continuous and linear as a composite of continuous linear maps

( using Ex .
47-5 ) . The axioms of an integral pair are immediate since

if F :X HY → IR then F 70 iff .
F 1×70 and Fly 70

. D



⑥

Lemma 47-4 Let ( X
,
Sx) be an integral pair and ~

an equivalence relation

on X such that Xlr is Hausdorff . Then ( XIN , fan ) is an

integral pair where Sxh is the composite ( p is the quotient map )

( top Sx
Cts ( Xlr

,
IR ) > Cts ( x

, IR ) > IR

Pw of The composite is continuous and linear ( and X is compact by Lemma Ll 0 - I )
.

If f- DO then f  of > O and hence f xp f  = f× ( f  op ) 70 .
If f 70

and O = f×µ f  = f× ( f  op ) then f  op
= O and hence f  = O . D

Example 47-2 We define ( S
it

,
Sse ) :  = ( " '

" %
, Ico

, say ) ,
where 021T

.

Note that as Exercise 47-3 shows
,

a space can be equipped with many

integrals ,
and for instance using the definition Co

, D I - would

induce a different integral on St
.

We choose 10,21T ] so that

Is I I = 21T
.

Of course we are free to use a different model of S ? say
" 2/242

,
but while

these spaces are homeomorphic if we want to 4
move

" Is 1 to be defined on

1121242 we have to specify

which
homeomorphism 4 : S

'

→
" 4217L we

mean and then we would obtain an integral pair from

C- So  of Is I

Cts ( 11212ha
,

IR ) → Cts ( S ? IR ) → IR
.

Anyway ,
the point is that while we can switch around between

"2/2 TIE
,

192%
,

[ o
, idk , { C x

, y ) laity 't } as space we must be more careful as in-Ear .



④

Example 47-3 Let X be a finite CW - complex with presentation
Xo

,
Xi

,
. . .

,
Xn - i

,
Xn= X

.
For j 7 I choose  a homeomorphism

Yj : ft , Dj → DJ C the j - disk )
y

This is not the usual

Riemann integral on

the disk !

and we make ( Di
,

Sisi ) an integral pair using Yj and to ,gi
.

We make Xo = { I
,

. . .

,
r } an  integral pair with I of .

Ex LIZ - 5)

Cts ( Xo
,

IR ) ) IR
,

ft EE ,
fli )

Then by induction and Lemmas 47-3
, 47-4 we obtain a

continuous linear mapIxs .
t

. ( X
,Sx) is an integral pair . This

will depend on the choice of presentation and of the Yj ,
but we

can at least choose Y .
 = id canonically .

Exercise 47 - 6 Leta be a finite uh oriented graph and X (a) the associated

CW - complex ( Ex .
LI - 4)

. Compute fxca ,
1

.

Lemma L

17-5
If ( X

,
S ) is an integral pair then diff , g) = ft f - g I

defines a metric on Cts ( X , IR )
.

Pwd ( Mt ) Since If - g 170 we have diff , g) 70 .

( 172 ) If  diff , g) = O then by axiom Iii ) of an integral pair If -91=0

and hence f  =g .

( 173 ) Clearly did is symmetric .

( 144 ) Since I f - g It I g - ht > If - ht by the triangle inequality in IR
,

we have by Lemma 217 - Ili ) that ft f - g I tf Ig - ht > ft f - ht
and hence the triangle inequality holds .



Solutions to selected exercises

47 - I Suppose a o t Ent
, ( an cos C no ) t bn sin ( no ) ) = O as functions .

Then differentiating yields

I II , ( - nan sin C no ) t  n brews I no ) ) = O
.

[ II
,
( - n Zan cos I no ) - n

- b n sin ( no ) ) = O

:
I

Setting 0=0 in all these equations yields

I I
,

n b n
= O

[ n'I ,
n

2
an = O

En ! , n
3 bn = 0

(

:

Collating every second equation gives the matrix e g
"

ii.÷: .to
But this is a Vander monde matrix whole determinant is nonzero ,

so we conclude

bi  

= O for I E is N
. Similarly a c-

 = O for I si  E N
,

and then also go = O
. D


