As recalled in Lecture 12, the couve is structured in two parts. The fint part, organised under the slogan "space as a stage for things" emphasised the following concepts:

• metric space, topological space, symmetry groups, continuity, constructing new spaces from old ones, <u>compactness</u>, <u>Hausdorff spaces</u>.

The second part, "space as a stage for motion", has been organised around the concept of a function space. With Picard's theorem in Lecture 15 we got a glimple of the fundamental role such spaces play in the study of dynamics. But something is missing. Recall from Lecture 16 that by the Stone - Weierstrass theorem the trigonometric polynomials are clense in Cts (S¹, IR). But this result is not constructive (although, see Ex. L16-5) in the sense that it cloes not tell ws, given $f: S^1 \rightarrow \mathbb{R}$ continuous, a "preferred" coefficient an of cos(nO) in an approximating polynomial for f.

Compare this to the situation for a vector \vee in a vector space \vee with basis { $u_1, ..., u_m$ }. There is a unique expression of \vee as $\sum_{j=1}^{m} a_i u_i$ for $a_i \in \mathbb{R}$, and the coefficients are "read off" by the linear functionals $u_i^* \in \vee^*$ which send \vee to $u_i^*(\vee) = a_i$. These functionals tell us "how much" of \vee is in the direction u_i .

We know $Cts(S^{4}, \mathbb{R})$ is an \mathbb{R} -vector space, and it is not difficult to show that $\{ws(n0), sin(n0)\}_{n \ge 1} \cup \{1\}$ is a linearly independent set in this vector space (ree $\mathbb{E} \times . L16 - 2$ and L17 - 1 below). So it is natural to ask: is this a basis for the (infinite-dimensional) vector space $Cts(S^{4}, \mathbb{R})$? One might then think a dual basis $ws(n0)^{*}$ would pwduce the desired coefficient an.

 (\mathbf{i})

However, this is far too naive: the trigonometric polynomials do not span $Cts(S^{1}, R)$ and even if they did, in the infinile-dimensional cose we do not have a dual basis. Too bad! We seem to lack some basic conceptual framework for working constructively in infinile-dimensional vector spaces of this kind. The appropriate framework, whose study will occupy us for the remainder of the semester, is <u>Hilbertspace</u>, and the Hilbert space structure on $Cts(S^{1}, R)$ (or rather a suitable replacement denoted $L^{2}(S^{1})$) is derived from the integral.

In today's lecture we develop integrals in the context of function spaces, which will lead us to L^2 spaces, whose structure we will axiomitise next lecture using the notion of a Hilbert space.

Exercise L17-1 With $S^{1} = \frac{R}{2\pi Z}$ prove the set { cos(no), sin(no)} $\int_{n>1} \cup \{1\}$
is linearly independent in $Ct_{5}(S^{4}, IR)$ (so the expressions in
eg~ (7.1) of Lecture 16 are unique). In particular this shows
that Cts (S ¹ , R) is infinite-dimensional.

<u>Exercise L17-2</u> Prove $e^{\cos(0)} \in Ct_s(S^2, \mathbb{R})$ is not in the linear span of the linearly independent set considered in the previous exercise.

<u>Def</u> An <u>integral pair</u> (X, S) is a compact Hausdorff space X together with a function $\int \cdot Ct_3(X, \mathbb{R}) \longrightarrow \mathbb{R}$ which is linear and continuous, and satisfies for all $f \in Ct_3(X, \mathbb{R})$:

(i) If f ≈ 0 then ∫f ≈ 0, and

Turbere f 7/0 means for all $x \in X f(x) 7/0$

(ii) if f = 0 if and only if f = 0.

Lemma L17-0 For
$$a < b$$
 the Riemann integral $\int_{[a_1b_3]} Ct_5([a_1b_3, R) \longrightarrow R$
gives an integral pair $([a_1b_3, \int_{[a_1b_3]}).$

Proof As usual Cts ([a,b], IR) has the compact-open topology (and metric do), see Tutorial 8 for a reminder on definitions. For linearity see T. Tao "Analysis I" Theorem 11.4.1 (a), (b). Condition (i) is immediate from the definitions.

For (ii) suppose $\int [a_{1}b_{7}f = 0$ and that $f(x_{0}) > 0$. Then $f^{-1}((f(x_{0}), \infty))$ is an open neighborhood of x_{0} , which contains a closed interval, say

$$X_{o} \in [C, d] \subseteq f^{-}((\pm f(x_{o}), \infty)) \subseteq [a, b] \qquad (c \neq d)$$

Then
$$P = \{ [a,c) [c,d], (d,b] \}$$
 is a partition and the function

$$g(x) = \begin{cases} 0 & x \in [a,c) \\ \frac{1}{2}f(x_0) & x \in [c,d] \\ 0 & x \in (d,b] \end{cases}$$

is piece-wise constant with respect to P, hence since $f \ge g$ we have

$$\int_{[a_1b]} f = \int_{[a_1b]} f \geqslant p.c. \int_{[a_1b]} g = (d-c) \frac{1}{2} f(x_p) > 0$$

which is a contradiction. Hence $f \equiv 0$, proving (ii).

Lemma L17-1 If (X, S) is an integral pair then for $f, g \in Ctr(X, \mathbb{R})$

(i) $f \leq g$ implies $\int f \leq \int g$	$f \leq g \text{ means } f(x) \leq g(x) \text{ for all } x \in X$
(ii) $ \int f \leq \int f $	
(iii) $\int : Ct_3(X, \mathbb{R}) \rightarrow \mathbb{R}$ is <u>uniformly</u>	j wntinuous.

$$\begin{aligned} & \text{Read} \quad (i) \text{ If } f \leq g \text{ then } g - f \gg 0 \text{ is } \int g - Sf = \int (g - f) \gg 0. \end{aligned}$$

$$(ii) \text{ Let } \lambda \in \{1, -1\} \text{ be such that } \lambda \int f \gg 0. \text{ Then } \lambda f \leq \|f\| \text{ so}$$

$$\|\int f\| = \lambda \int f = \int \lambda f \leq \int |f|. \end{aligned}$$

$$(iii) \text{ Immediate from}$$

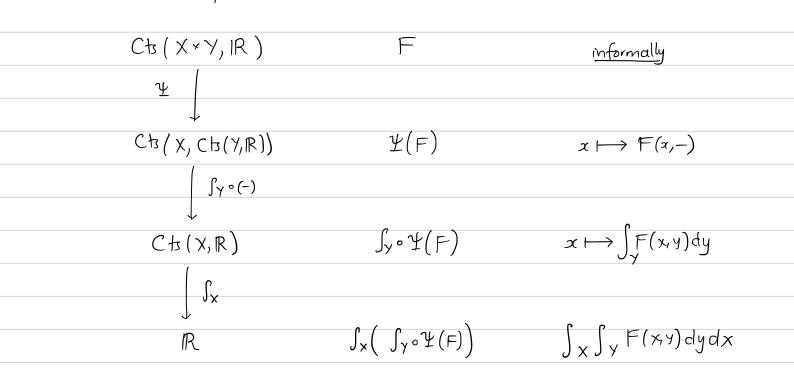
$$\left(\int f - \int g \Big| = |\int (f - g) \Big| \leq \int |f - g| \leq \int d\omega (f, g) = \sqrt{\cdot} d\omega (f, g) \right) \right.$$

$$where \quad \sqrt{=\int 1. \square}$$

$$E \underline{xercise \ L17-3} \quad \text{Give a continuous linear } \int \text{ not equal to the } \int (g_1 \lor g) d Lemma \ L17-0 \quad for which ([Q_1 \lor], f) \text{ is also an integral pair.} \end{aligned}$$
Recall that by the adjunction property (Theorem L12-4) for X, Y locally compact Hausdorff we have a homeomorphism ($E \times L12 - 13$)
$$C \underbrace{H}(X \times Y, Z) \xrightarrow{\Psi_{X,Y,Z}} C \underbrace{I_S}(X, C \underbrace{I_S}(Y, Z)). \quad (4.1) \quad F \longmapsto F(X, -) \Big\}$$
We can use this to define the product of integral pairs. However, in order to prove that the definition is independent of the order of X, Y we will have to are $E \times .L6 - H$ which in turn depends an Ury only is have an end proveer. I which are to flag explicitly which result cleption on the sto flag explicitly which result cleption on the moment $I \cong W_1$ which is independent of the two theorem of proven). I will provide a proof of this lemma at the end of the remember, but for the moment $I \cong W_1$ instance to flag explicitly which result cleption on it. The only case, the independence is also a consequence of Fubini's theorem when X, Y are of the form given in Lemma L17-0.

<u>Def</u> ⁿ A <u>topological R-vector space</u> is a vector space V together with a topology			
on the underlying set of V, such that the structural maps			
$\bigvee \times \bigvee \longrightarrow \bigvee, \qquad \qquad \mathbb{R} \times \lor \longrightarrow \bigvee$			
$(v,\omega)\longmapstov+\omega\qquad\qquad(\lambda,v)\longmapsto\lambdav$			
ave all continuous. A topological vector space is in particular a topological group.			
Exercise L17-4 Prove that if X is locally compact Hausdorff and V is a topological vector			
space that $Ct_s(X,V)$ with the compact-open topology and the pointwise)		
operations (as on p.O, O of Lecture 16) is a topological IR-vector space.			
(Hint: just copy the pwof of Lemma L16-6).			
Lemma L17-1 Let $(X, J_X), (Y, J_Y)$ be integral pairs. Then $(X \times Y, J_{X \times Y})$ is			
an integral pair, called the <u>pwduct integral pair</u> where $\int_{X \times Y}$ is			
defined so as to make the diagram below commute:			
م الم الم الم الم الم الم الم الم الم ال			
$d_{X\times Y}$ Cts (X×Y, IR) R			
$\Psi_{X_j Y_j R} = J_X \qquad (3.1)$			
$Ct_{3}(X, Ct_{3}(Y, \mathbb{R})) \longrightarrow Ct_{3}(X, \mathbb{R})$			
$\int_{Y^{\circ}} -$			
Annuing the Illuscole Lawrence the Ellowing discussion also commutation:			
Assuming the Urysohn lemma the following diagram also commutes:			
$J'_{X \times Y} \qquad $			
the curan map			
(1,2)			
$\frac{\mathcal{Y}_{\mathbf{y},\mathbf{x},\mathbf{R}}}{\mathcal{Y}_{\mathbf{y},\mathbf{x},\mathbf{R}}} \int = 1$			
$Ct_{S}(Y, Ct_{S}(X, \mathbb{R})) \xrightarrow{\int_{X^{\circ}} -} Ct_{S}(Y, \mathbb{R})$			

<u>Pwof</u> The space $X \times Y$ is compact Hausdorff by Lemma LIO-2, Lemma LII-3. Let us first unpack the definition of $\int x \times Y$. Given $F \colon X \times Y \longrightarrow \mathbb{R}$



As a composite of continuous maps (using Lemma 12-1 for Syo(-)) it is clear SXXY is continuous. By Exercise L17-4 all spaces involved are topological vectorspaces. The map YX, Y, IR is linear since

$$\begin{split} \mathcal{Y}_{x,y,\mathrm{IR}}(F+G)(x)(y) &= (F+G)(x,y) \\ &= F(x,y) + G(x,y) \\ &= \mathcal{Y}_{x,y,\mathrm{IR}}(F)(x)(y) + \mathcal{Y}_{x,y,\mathrm{IR}}(G)(x)(y) \\ &= \left[\mathcal{Y}_{x,y,\mathrm{IR}}(F)(x) + \mathcal{Y}_{x,y,\mathrm{IR}}(G)(x)\right](y) \\ &= \left[\left\{\mathcal{Y}_{x,y,\mathrm{IR}}(F) + \mathcal{Y}_{x,y,\mathrm{IR}}(G)\right\}(x)\right](y) \end{split}$$

which proves $\mathcal{Y}_{x, Y, \mathcal{R}}(F+G) = \mathcal{Y}_{x, Y, \mathcal{R}}(F) + \mathcal{Y}_{x, Y, \mathcal{R}}(G)$. Similarly one checks that $\mathcal{Y}_{x, Y, \mathcal{R}}(\mathcal{A}F) = \mathcal{X}\mathcal{Y}_{x, Y, \mathcal{R}}(F)$. The map $\int_{Y} \circ (-)$ is also linear, since $\left[\int_{Y} \circ (f+g)\right](x) = \int_{Y} (f(x)+g(x)) = \int_{Y} (f(x)) + \int_{Y} (g(x))$ and similarly $\int_{Y} \circ (\mathcal{A}f) = \mathcal{A}\int_{Y} \circ f$. So as a composite of linear maps, $\int_{X \times Y}$ is linear.

If remains to check the axioms for an integral pair:

(i) If F > O then for x∈ X the function F(x, -): Y → IR is non-negative, so since Sy is an integral pair Sy F(x, -) > O. Hence x → Sy F(x, -)
 is a non-negative function, which has non-negative integral Sx×y F.

(ii) Suppose $F \ge 0$ and $\int_{X \times Y} F = 0$. That means that the function $F_Y : X \longrightarrow IR$ defined by $F_Y(x) = \int_Y F(x, -)$ has $\int_X F_Y = 0$. By the axioms for \int_X we cledule $F_Y \equiv 0$. But then for $x \in X$ $\int_Y F(x, -) = 0$ yields $F(x, -) \equiv 0$ and hence $F \equiv 0$.

Assuming Urysohn, we have to show the two ways around (5.2) are equal as continuous linear maps

 $C \not \exists (X \times \forall, \mathbb{R}) \longrightarrow \mathbb{R}$

But by Lemma L17-2 below it suffices to show they agree on a dense subset $A \to C$ ts $(X \times Y, \mathbb{R})$. But as a consequence of stone-Weierstrass $(E \times . L16 - 11)$ we know a convenient dense subset, namely the set of all finite sums of products of functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$, i.e.

 $A = \left\{ \sum_{i} f_{i} g_{i} \mid f_{i} \in C_{\mathfrak{h}}(X, \mathbb{R}), g_{i} \in C_{\mathfrak{h}}(Y, \mathbb{R}) \right\}.$

Since the two ways around (J-2) are linear, to show they agree on Ait suffices to show they agree on a single fg with $f: X \to \mathbb{R}, g: Y \to \mathbb{R}$. But then both ways around are easily checked to send F = fg to the product $(J_X f) \cdot (J_Y g)$ so we are done. \square T

Lemma L17-2 If $f,g: X \longrightarrow Y$ are continuous maps of topological spaces, with Y Hausdouff, and $A \subseteq X$ is clease then $f|_A = g|_A$ implies f = g.

<u>Proof</u> Consider the continuous map $(\Delta(x) = (x, x))$

$$\chi \xrightarrow{\Delta} \chi_{\times} \chi \xrightarrow{+ \times \mathfrak{g}} \chi_{\times} \chi$$

since Y is Hausdorff the cliagonal $\Delta = \{(y,y) | y \in I\} \subseteq Y \times Y$ is closed, and its preimage under the above map $\{x \in X \mid f(x) = g(x)\}$ is therefore closed in X. Hence if $A \subseteq X$ is clease and $f|_A = g|_A$ then $A \subseteq \{x \mid f(x) = g(x)\}$ and therefore $\{x \mid f(x) = g(x)\} = X$. \Box

The outcome of Lemma L17-1 is essentially Fubini's theorem: we may interchange the order of integrals, so roughly speaking (roughly because "dx", "dy" have not entered our notation)

$$\int_{Y} \int_{X} F(x,y) dx dy = \int_{X \times Y} F(x,y) = \int_{X} \int_{Y} F(x,y) dy dx$$

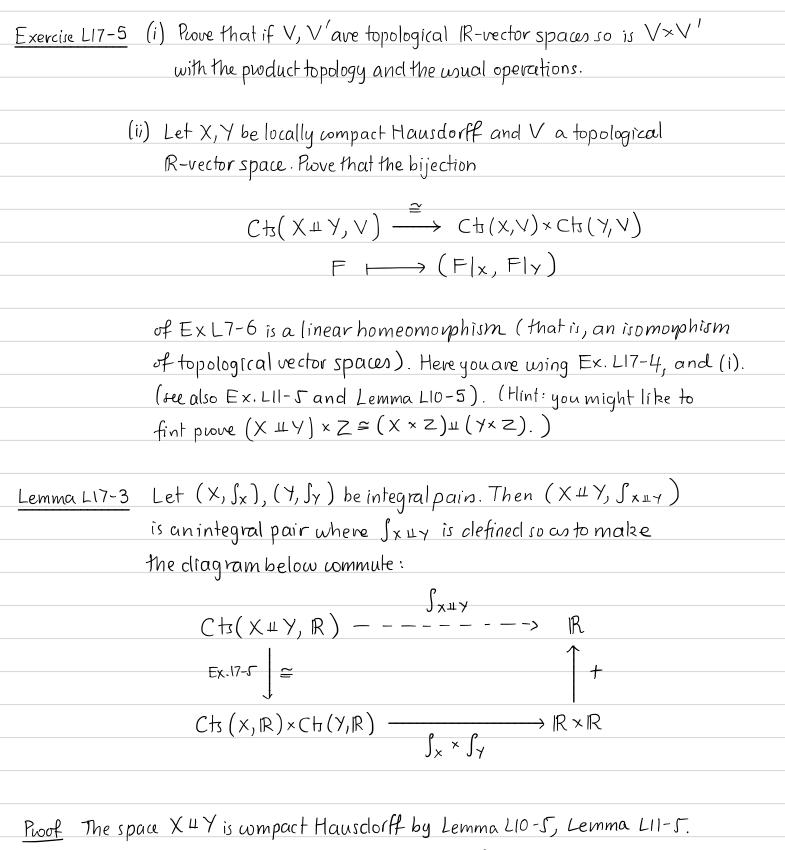
Example LI7-1 Combining Lemma LI7-0, LI7-1 we have an integral pair

$$\left(\left[a_{1,b_1} \right] \times \cdots \times \left[a_{n,b_n} \right] \int_{\left[a_{1,b_1} \right]} \int_{\left[a_{2,b_2} \right]} \cdots \int_{\left[a_{n,b_n} \right]} \right)$$

for any collection of intervals.

We learned in Lecture 7 a few other ways of constructing spaces : disjoint unions and quotients (and pushouts, which were a combination of the two). It is natural to extend these operations to integral pairs.

(8)



The map is continuous and linear as a composite of continuous linear maps (wing Ex. L17-5). The axioms of an integral pair are immectiate since

if $F: X \perp Y \rightarrow \mathbb{R}$ then $F \gg 0$ iff. $F|_X \gg 0$ and $F|_Y \gg 0$. \Box

(9)

$$\begin{split} \underline{\mathsf{Example L17-3}} \quad \text{Let X be a finite CW-complex with presentation}} \\ & X_0, X_1, \dots, X_{n-1}, X_n = X. \text{ For } j > 1 \text{ choose a homeomorphism}} \\ & Y_i: [-1, 1]^j \longrightarrow D^j \quad (\mathsf{mej-disk}) \qquad / \overset{\mathsf{Thiss ind the could}}{/ \mathsf{Riemann integration}} \\ & \mathsf{Riemann integration} \\ & \mathsf{Riemann integration} \\ & \mathsf{Hue disk}! \\ & and we make (D^j, J_{0}j) an integral pair using $\mathcal{V}_j \text{ and } \int_{\mathcal{O}_i \mathcal{T}^j} \\ & \mathsf{We make X_0 = \{1, \dots, r\}} \text{ an integral pair using } \mathcal{V}_j \text{ and } \int_{\mathcal{O}_i \mathcal{T}^j} \\ & \mathsf{We make X_0 = \{1, \dots, r\}} \text{ an integral pair with } (cf. \mathsf{Ex.L12-\Gamma}) \\ & \mathsf{Ct}_1(X_0, \mathbb{R}) \longrightarrow \mathbb{R}, \quad \mathsf{f} \longmapsto \mathsf{E}_{i=1}^{-1}\mathsf{f}(i) \\ & \mathsf{Then by induction and Lemmas L17-3, L17-4 we obtain a} \\ & \mathsf{continuous linear map } \int_X \quad s.t. (X, S_X) \text{ is an integral pair. This} \\ & will depend on the choice of presentation ancl of the Y_j, but we \\ & \mathsf{can at least choose } Y_i = \mathsf{id canonically.} \\ & \underline{\mathsf{Exercire L17-6}} \quad \mathsf{Let } \mathsf{G} \text{ be a finite unoviented graph and } X(\mathsf{G}) \text{ the associaled} \\ & \mathsf{CW-complex } (\mathsf{Ex.L7-4}). \quad \mathsf{Compute } \int_{X(\mathsf{a})} 1. \\ & \underline{\mathsf{Lemma L17-5}} \quad \mathrm{If } (X, S) \text{ is an integral pair then } d_1^S(\mathsf{f}, 9) = \int |\mathsf{f} - 9| \\ & \mathsf{defines a metric on } \mathsf{Cts}(X_i \mathbb{R}). \\ & \underline{\mathsf{Roof}} \quad (\mathsf{M}) \text{ Sine } |\mathsf{f} - 9| > 0 \text{ we have } d_1^S(\mathsf{f}, 9) > 0. \\ \end{array}$$$

(11)

(m2) If $d_i^s(f_{,9}) = 0$ then by axiom (ii) of an integral pair |f-g| = 0and hence f = g.

(M3) Clearly di is symmetric.

(M4) Since |f-g|+|g-h|≥|f-h| by the triangle inequality in IR, we have by Lemma 217-1(i) that ∫IF-g|+∫Ig-h|≥ ∫IF-h| and hence the triangle inequality holds.

Solutions to selected exercises

But this is a Vandermonde matrix whole determinant is nonzero, so we write under $b_i = 0$ for $1 \le i \le N$. Similarly $a_i = 0$ for $1 \le i \le N$, and then also $q_0 = 0$. 7