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Lecture 16 : The Stone - Weierstrass theorem updated 249

The subject of today 's lecture is Weierstrass 's approximation theorem and its

generalisation ,
the stone - Weierstrass theorem

,
which tell us in particular that

any continuous function on la ,
b ] C resp .

S
'

)
may be approximated arbitrarily

well by a polynomial ( resp .
a trigonometric polynomial )

,
which is to say

that

polynomials give a dense subspace of Cts ( laid
,

IR ) ( resp .
Cts ( S3 IR ) )

.

Recall : We have associated a
space of functions Cb CX

,
Y ) to

any pair of topological

spaces
X

,
Y ( see Lecture 12 ) with a list of good properties :

-

 if F : 2 xx → Y is continuous
,

so is 2 → Cts I XM ) defined by z I → FIZ ,

- )
.

-

 if X is locally compact Hausdorff Cts I 2x X
,

Y ) = Cts ( 2
,

Cb ( X
,

Y ) )

( see Theorem 42-4 and Ex .

42 . 13 )
.

-

 if X is compact and ( Y
,

dy ) is a metic space then Cts I X ,
Y ) is a metric space

with the
sup

metric
,

and moreover if Y is complete so too is Cts ( X
,

Y )

( see Lecture 13
, specifically Theorem L 13 - 2 and Corollary 43 - 6 )

.

We have applied this theory to
prove

the existence of solutions to ODES ( Lecture IS )
.

and we observed that for polynomial ODES the solutions could be approximated by

polynomials ( see Remark 45-2 )
.

Just as our ability to compute effectively with

real numbers is predicated on
OT = IR

, our ability to work with function spaces

Cts ( X
,

IR ) is often predicated on identifying a class of
"

simple
"

functions

A E Cts ( X
,

IR ) with I = Cts C X
,

IR )
.

If X = Carb ] and A is all polynomial functions
,

this works :



②

Theorem LIG - o ( Weierstrass
,

1885 ) Let f E Cts ( Carb ]
,

IR )
.

Then there is a sequence

of polynomials Pn I x ) which converges uniformly to f ( x ) on Ca
,

b ]
.

We need a few ingredients before we are ready for the proof ( the proof we will

give
is not Weierstrass 's original one :  it is due to Bernstein

, see K
. Davidson

and A. Don sig 's "

Real analysis with real applications
"

2002 )
.

Exercise Llb - 0 Prove that  if f : ( X
,

d x ) → l Y
,

dy ) is continuous and X is compact

then f is uniformly continuous
,

that  is

HE > OF 8 > OH Xi
,

Xz EX ( dxcxyxz ) CS ⇒ dyffx , ,
fxz ) L e )

.

Def
"

Given a function f :[ Oil ] → IR the nth Bernstein polynomial Bn ( f ) is

Buff ) Eeo HE ) ( Ya ) xkli - x )
"  

- k

.

To avoid confusion we adopt the convention of writing f as ft z ) to

distinguish the input variable of f- from the x in Bn ( f )
.

Clearly

Bnf ) is linear
,

so Bn ( ft g) = Bn (f) t Bn ( 9 ) and Bn I Xf ) = X But f )

for any
scalar X E IR

.

Lemma 46 -

'
k We have for n > I

Bn ( I ) = I
,

Bn ( z ) = x
, Bn ( ZZ ) = Tnt of t thx

.

Root The binomial theorem gives

Bnl I ) = Ezio ( Ya ) xk ( I - x )
"  

- k

= ( I t CI - x ) )
"

= I
.
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Note the following identity of polynomials in x
, y for n > I

⇒ Iii
 o

(1) xkyn
- k

) = I ( C x turn ) =
n I x ty )

" '

but computing differently ,
as Ek ( I ) Ix ( xk ) y

"  - k

we obtain

{ I=o ( I ) k .
xk

- '

y
"  - k

= n I at y J
- '

multiplying both sides by Fn gives

{ To (2) ten xky
"  

- h
= x C x ty )

"
- t

C 3. i )

substituting y
= I - x gives Bn ( Z ) = x

. Tor the remaining identity ,
we

differentiate C 3. 1) again with respect to x
, obtaining

zero if  n
= ,

{ Eo ( I ) I . k . xk
- '

y

"  
- k

= ( at y )
"  - '

t C n
- i be

GettyI
- 2

again multiplying both sides by I gives

{ I
⇒

( I ) Em xk yn
- k

= In ( x ty )
"

't x
'

( x ty )
"  -

Z

C 3
.

z )

substituting y
= I - x gives

the formula for Bn I E )
. D

Roof of Theorem 46 - O First we prove the [ a
, b) = [ Q 17 case

.

Let continuous

f : [ o , D → IR be given .
We claim Bn I f) → f with respect to da

.

Since f is continuous it is
, by Ex

. LIG - O
, uniformly continuous

.

Given

E > o let t > O be such that

I x -

y k S ⇒ If Cx) - fly ) I c 42 Hx
, y E Eo , B

.



④

Since Co , it is compact f is bounded
, say

thx ) I E M for all x E CO , D
.

Claim For any
a

, ye Co , B
,

I f- Cx) - fly ) I

E
2M (

'

) 't 42

Proof of  claim if I x -

y I L S then I f I x ) - fly ) I C Elz so this is clear
.

Otherwise if I x -

y I > S then (
"  

) 27 I
so

I f- C x ) - fly ) I E 2 ME 2M (
"  

-

%) 't 42
.

D

Now observe that for a constant Xo Eloi D
,

we have an equality of polynomials in x
,

Bn ( f - f- ( Xo ) ) = Bn ( f ) - f ( Xo ) Bn C I ) = Bn I f ) - f C Xo )
.

Hence for x c- Co
, D we have

I Bn ( f ) - f ( xo ) I = I Bn ( f - f- ( Xo ) ) I

clearly if Hz ) Eg ( z ) for  all z E Co , D I

then Bnc that EB n calx )
,xeco.DEBn ( I f - ffxo ) I ) graceful

insulinFz
.

by the claim  above -
,

E Bn ( 2M ( Z ) 't Elz )

= 2¥ Bn ( C z - xo )
'

) t 42

= 21£( Bn ( ZZ - Zxoztxo ) ] t 42

= 3¥ ( Bn I ZZ ) - Zxo Bn I Z ) t xp Bn 11 ) ) t 42

= III x 't thx - 2x ox t Xo
'

] t 42

= II ( th ( x - of ) t ( x . Xo )
2

] t Eh



⑤

Now substituting x = Xo
,

we have

I Bnl f) ( Xo ) - f C Xo ) / E Ek t 21£ th ( xoxo
'

)

E 42 t 2¥ . th .

Ly

= Elz t ITI

But this is true for all do E I o
,
D

,
so

do ( Bn I f )
,

f ) E 42 t In

If we take N 7 Msk then for  all n 3N
,

we have 17/2 82 h E 42 and so

do ( Bn I ft
,

f ) E Etz t 42 E E

which
proves

that Bn I f) → f in ( Cts C C 0
, D

,
IR )

,

do )
.

This completes the

proof of the Coil ] case .

For the general case
,

observe that of : Co , D → [ a
,

b ]

4 ( x ) = ( b - a) x tais a homeomorphism ,
and if f '

 
- [ a

, b) → IR is

continuous then
g

= fo of is continuous and with Bn ( f ) :  = Bn (g) of
- I

do ( Bn ( ft
,

f ) =

sup { I Bn I f) C x ) - Hx ) I I x E [ ai b ] }

Is
,

up { I Bnl 93145C) -

g ( 0
- '

x ) I see Cais ] }

up I I Bnl 9) l Y ) -

g ly ) I I ye Co , if )
= do ( Bn (9)

,
9 ) .

Hence Bnl f) → f in Cts ( C ai b ]
,

IR ) and moreover Bn I f I is clearly

a polynomial . D



⑥

Exercise Llb - I Let X be compact ,

CY
,

dy ) a metric space .

Given a subset

AE Cts I X ,
Y ) the following conditions on f Ects ( X

,
Y ) are equivalent

I i ) felt

I ii ) there is a sequence ( an )F=o in A
converginguniformly to f

I iii ) f may be uniformly approximated by elements of A
,

that is
, given E 70 there exists a C- A such that

I fly - a I x ) K E for all x E X
.

DEI A subset A of a topological space X is dense if At = X
.

Next we turn to a generalisation of the Weierstrass approximation theorem which

will apply to any compact XE Rn
,

the Stone - Weierstrass theorem
.

But

first we need to talk briefly about Cts ( X
,

IR ) as an atgebra .

Recall

that the addition and multiplication give
continuous maps

t  : IR x IR → R
,

•
: Rx IR → R

and hence given
f

, g Ects I X
,

IR ) ( here X is any space ) we have continuous maps

•

f g : X Xx X 112×112 → R x is flogged

f- xg t

ft g
: X I Xx X → Rx IR → IR x to f Cx ) t g Gc )

Here we are using the diagonal
A C x ) = la

,
x )

,

and the product f x g ( see Ex .
42-2 )

.

Moreover for fixed TE IR the map

To C- )

If : X t IR → IR x to X. ffx )



⑦

is continuous
.

Let a
: Rx Cts ( X

,
IR ) → Cts ( x

,
IR ) be ( I

,
f) t If

.
For

any

CE IR the constant function is continuous :

X - { * ) I IR xi→c

Usually we denote this function again by c
.

Note it is a ( c
, 1)

.

Exercise 46-2 Check that Cts ( X
,

IR ) with the above structures is a commutative

algebra ( over IR ) for any space
X

,

which
is to say

that

§

¥ • ( Cts ( X
,

IR )
,

t
,

a ) is an IR - vector space .

±
g

Eo
a f ( gh ) = ( fg ) h for all f

, g ,
h Ects ( X

,
IR )

I I

¥oE¥| . If  = f I = f for all fectscx.IR ) where I = 1ER
.

§
. f g

=

g f for all f
, g

Ects ( X
,

IR )
.

•

e
. f- ( g th ) = fg t th for all f

, g
,

he Cts ( X
,

IR )
.

-

. ( Xf ) g
= f I X g ) = X . fg

I Note : occurrences of brackets above do not mean evaluation )
.

A subset

A Ects ( X
,

IR ) is a subalgebra if I C- A
,

and whenever fig E A

we have ft g EA
, Fg EA and X felt for any 7 EIR

.

For example ,

the constant functions give a subalgebra of Cts CX
,

IR ) isomorphic to IR

,
and moreover every subalgebra contains the constant functions .



⑧

DEI A function f : IR
"

→ IR is polynomial if there exists a function F : IN
"

-7 R

I where IN = to
, h . .  -3 ) with the property that { I C- IN

"

I F ( e) to } is finite

and for all x E IR
"

( w  vile I for ( Ny . . .

,
Nn ) )

f- f x ) = I F ( Ne ) Th ( x )
N

!
.  - In ( x )

" "

14 .
I )

I C- IN
"

where IT i
 '

 
- IR

"

→ IR are the projection maps

Tila
's . .

.

, xn ) =

Xi
. We denote

by Poly ( Rn
,

IR ) the set of polynomial functions IR
"

→ IR
.

Lemma Llb - I Every polynomial function f : IR
"

→ IR is continuous
,

and Poly ( IR ? IR )

is the smallest subalgebra of Cts I IR
"

,
IR ) containing Ty . .  # n

. We

say
that Poly ( IR

"

,
IR ) is generated as an algebra by the set L Tty . .

.

,
Tin }

.

Proof The polynomial function f of ( 4. I ) may be written as

£  =

Earn Ffa ) IT
,

"
.

. . Team

where the products Ce - g .

IT Y '
= Ti .  - . IT

, )
,

scalar multiplications and sums

are all the algebra operations in Cts ( IR
"

,
IR ) as defined a bone

.

Since the

set of continuous functions is doted under these operations ( and the IT i are

continuous ) ,
f must be continuous

.

Moreover if a subalgebra A E Cb I Rn,
IR )

contains { Ky . . .

,
Tn } it must contain f

,

and the subset Poly ( IR
"

,
IR ) is

doted under addition
, multiplication and scalar multiplication ( and contains

1) so it is a subalgebra , implying the second claim . D

'

: X → Y such that theDEI An embedding is an injective continuous map j

induced continuous
map

X → j I X ) is a homeomorphism ( where j ( X )

has the subspace topology ) .

We
say j is a homeomorphism onto its image .

Roughly speaking we identify X as a subspace of Y via j .



⑨

Example 46 - I Given a subspace X E Y the inclusion X → Y is an embedding .

Def Given an embedding j : X → R
"

we define the subspace Poly ( X
, j ,

IR )

of CH ( X
,

R ) to be the image of

C- to j

Poly ( IR
"

,
IR ) Cts HR

"

,
R ) → Cts I X

,
IR )

that is
,

the set of continuous maps
which are

a restrictions
"

to X of polynomial

functions on IR
"

,
where " restriction

"

means pre composition with j .

If the

embedding is dear from the context we write Poly ( X
,

IR ) for Poly ( X
, j ,

IR )
.

Exercise 46-3 Rove Poly ( X
, j ,

IR ) is the smallest subalgebra of Cts C X
,

IR ) containing

the functions { IT
,

o j
,

.
. .

,
In o j ]

.

Example Llb - 2 Let S
"

= I ( x. y ) E R
'

I x 't
y

'
= I }

,

and let j ,

: S
it

→ 1122

be the inclusion .

Let jz be the composite

j , Ro

£ - IR
'

- 1122

cos O - since

where Ro is multiplication by ( since wso
)

.

Since Ro is a

homeomorphism this is again an embedding .

Then
( IT

,

o j a ) ( x . y ) =
a cos O -

y si n O

( The o ja ) ( x , y ) =
x sin O t y cos O

Since O is fixed these are polynomial functions of x
, Y and so

Poly ( S
'

, ja ,

IR ) E Poly ( S3 ji
,

IR ) .

Since j z
= R - o ojz

the same argument shows Poly ( S 7J .

,
IR ) = Poly I S3 ja ,

IR )
.



④

However in general Poly ( X
, j ,

IR ) does depend on j
'

.

Example 46-3 Let j .

, ja
: ( 0

,
1) → IR be j ,

( x ) = x
, ja ( x ) = x ? These are

both embeddings ,
but the function x

3
: ( 0

,
1) → IR lies in

Poly ( ( 0
,

it
, ji ,

IR ) but not in Poly ( CO
,

D
, ja ,

IR )
.

Def
'

We
say

a subalgebra AE Cb ( X
,

R ) separates points if whenever x
, y EX

are distinct points there exists f EA with floc ) t fly )
.

Lemma Llb - 2 If j :X → IR
"

is an embedding then the subalgebra

Poly ( X
, j ,

IR ) E Cts ( X
,

IR ) separates points .

Roof If x. y E X are distinct
,

then for some Is is n we have Hi C j x ) t Ii I jy )
,

and so Ii  Oj E Poly ( X
, j ,

IR ) will do
. D

Example 46 - 4 Consider the embedding

j
: IRI zit I

→ IR
'

, j I O ) = ( wsd
,

since )

where 112/2 TIE is the quotient of IR by the relation 7 -

M it A -

M C- 247L

( see Tutorial 4)
.

We claim that A  = Poly ( 113/2*2
, j

,

IR ) is the smallest subalgebra

of Cb ( 112/2×2
,

IR ) containing the set { cost no )
,

sin C no ) ) n ez
. By definition

A is the smallest subalgebra containing cos O
,

since
, so the claim follows from

cos ( no ) = Re ( eino ) = Re ( I w so ti since ]
"

) E A

sin ( no ) = Im ( ein O ) = Im ( ( w so tis in 01h ) c- A

using the binomial formula I this does n > O
,

but this suffices )
.
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Lemma 46-3 With the above notation
,

the elements of Poly ( RKTCE
,

j
.

IR )

are precisely the functions

f- ( O ) = ao t €=
,

( an Cosmo ) tbn sin ( no ) ) G. , )

for some ao
, ay . . .

,
an

,
by . - .

,
b N E IR

,
and N 7 I

.
This collection of

functions therefore separates points of 11212172
.

We call such functions

trigonometric polynomials .

Root clearly these expressions give functions in Poly ( MkII
,

j
,

IR )
,

so it suffices

to prove functions of this form compose a subalgebra of Cts ( IR 12h E
,

IR )
.

For

this it is enough to observe that these functions are closed under multiplication :

sin I mt ) cos ( ht ) = If sin ( I m tht t ) t sin ( C m - n ) t ) ]

sin I mt ) sin I n t ) = I ( Ws I ( m - nlt ) - cos ( C mtn ) t ) ]

wslmttws Intl = If cos I C m
- htt ) t cos ( C Mtn ) t ) ]

.

The claim about separating points is now immediate from Lemma 46-2 . D

Theorem

46-3
( Stone - Weierstrass )

Let
X be a compact Hausdorff space

and

A E Cts I X
,

IR ) a subalgebra which separates points .
Then

we have At = Cts ( X
,

IR )
.

Corollary 46-4 Given X ER
"

compact we have

Poly ( X
,

R ) = Cts ( X
,

R )
.

Root Immediate from the theorem and Lemma 46-2 . D
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Corollary 46-5 The trigonometric polynomials are dense in Cts (
" 7292

,
IR )

,

i.e
.

Poly ( Klutz
,

j
,

IR ) = Cts ( RIZTLZ
,

IR )
.

Root Again ,
immediate from the theorem and Lemma 46-3 . D

Of course 51=112/2172 so this actually computes a dense subset of Cts (S3 IR )
,

namely the trigonometric polynomials , presented in terms of the angle rather than

cartesian coordinates
.

Before proving the Stone - Weierstrass theorem we need some preliminary result .

Lemma Llb -6 If X is locally compact Hausdorff the functions

Cblx ,
IR ) x Cts I X

,
R ) → Cts ( X

,
IR )

,
( f

, g) tsftg

Cts I X
,

IR ) x Cts ( X
,

R ) → Cts ( X
,

IR )
,

Cf
, g) t fg

IR x Cts ( X
,
IR ) Icts I X

,
IR )

,
( X. f) I → Xf

are continuous
.

We say Cb CX ,
IR ) is a topological IR - algebra ,

to emphasise this
.

In particular Cts I x
,

IR ) is a topological abelian
group

under addition
.

Pwd Consider the map ( 3 denotes an  interchange X ,xXz= XXX
, )

Sx txt

Xx Cts ( X
,

IR ) xctslx.IR ) → Xxxx Cts ( X
,

R ) xcblx.IR )

!
,

1×6×1

IR c- Phx IR - Xx Cts ( X .IR/xXxctsCX,lR )
+

EXxypieYX.IR



④

which is continuous since X is locally compact Hausdorff and hence evx
, R

is continuous . Corresponding to this is the continuous map

Cts ( X
,

IR ) x Cb C X
,

IR ) → Cts I X
, IR ) ( f

, g) IT ft g .

The other claims are handled similarly. D

Lemma 46-7 Let X be locally compact Hausdorff and A E Cb ( X
,

IR ) a

subalgebra . Then AT Ects ( X
,

IR ) is also a subalgebra .

Root Clearly 1 EA
,

so we have to show At is closed under the operations t
,

• and

scalar multiplication . Suppose t.ge#butftgtEA .

Then there is

U Ects I X
,

IR ) open
with ft g EU and U n A  = of

.

But then by

Lemma 46 - 6

Q
'

 
.

= { ( a
,
b) Ects ( X

,
RT I atb E U }

is open ,
and we may therefore find C

,
D E Cts I X

,
R ) open

with

( f
, g) E C xD E Q

.

Since f , g e At we have CAA  to and DNA  to
,

say f
'

E C A A and
g

'

ED n A. Then f 't
g

'

EA and

( f
'

, g
'

) E C xD E Q ⇒ f 't
g

'

E U

which contradicts UAA  =p .

Hence ft g E At
. Similarly we show

f-g E At and Xf E At for any X HR . D

Exercise 46-242 Give an alternative proof of the Lemma in the case where

X is compact using the do metric .



④

Def
"

Let Xbea topological space
and fecblx.IR )

.

Then Ifl Ects ( X
,

IR )

is the composite

X
t

s IR

' "

> IR
,

xi→ If I
.

Given fig E Cts ( X
,

IR ) we define

min { f
, G ) :X → IR

,

xi→min{ Hx )
,

glx ) }

max { f
, g } :X -3112

,
xl→max{ fix )

,
glx ) }

.

These functions are continuous since

minff , g } = If ft g
- If -

g I )

maxffig } =
'

z( ft g t If - 91 )
.

Exercise 46-4 Bove that if Xis locally compact Hausdorff then

I - I : ctsfx.IR ) → Cts ( X
,

R )

min
,

max : Cts C X
,

IR ) xctscx
,

IR ) → Cts C X
,

R )

are all continuous functions .

The most difficult part of purring Stone - Weierstrass is proving that acted

subalgebra A Ects ( X
, IR ) has the property that IAIEA

,
i. e . iff EA

then also Ifl E A. To
pure

this we will use that I - I can be approximated

by polynomials ( so we use Weierstrass to
prove

stone - Weierstrass )
.



④

Lemma Llb - 8 Let X be a compact space and AE Cts ( X
,

IR ) a closed

subalgebra .

If f
, g EA then If I

,
min { f

, 93
,

Max L f
, g) E A

.

Roof It clearly suffices to prove that If I c- A
. Given f Ects C X

,
IR ) are know

f- is bounded
,

since X is compact . Say I f- ( x ) I E M for all x EX
.

Then

the function If I
may

be written as

f- I - I

X - L - M
,

M ] → R

Let pn
E Cts I L - M

, MT
,

R ) be a sequence of polynomials converging

to I - I ( this exists by Theorem L 16 - O )
.

The function

( → of

Cts ( I - M
,

MT
,

IR ) → Cts ( X
,

IR )

is continuous by Lemma 42 - I
,

and since Pn → I - I we have

pn of  → If I as n → oo . But if for some fixed n we have

p n
= aot a

,
t t .

.  
- t a k t

' '

for constants ai E IR then

pin of =

a o
t a

, f t -
- - t a k f

k

is an element of A .
Hence ( P no f) E-

 o is a
sequence in A

,
and

since A is closed the limit If I also lies in A . D

We are now prepared for the proof of the stone - Weierstrass theorem
.

Our proof will

use the Weierstrass theorem to
prove

the move general result
.

All the proofs of

stone - Weierstrass I am aware of hinge ultimately on a polynomial approximation

of I - I

,
sometimes done

"

by hand
"

using a Taylor series of ft
.

This has its own

complexities
,

and seems to me no easier than just proving the Weierstrass theorem
.



④

Proof of Theorem 40-3 Let A Ects ( X
,

R ) be a subalgebra which separates

points .

Then by Lemma Llb -7
,

F is also a subalgebra ,
and it clearly

separates points since AEA
,

so we may assume from the beginning that

A is closet and our goal is to show A  = Cts ( X
,

IR )
.

Let f Ects l X
,

IR ) be given : we have to show f EA
.

Given E > O we will

produce g
EA such that do ( f

,
g)

E
E

. This shows f E I = A
.

To produce

g we take distinct points s
,

t E X ( if X is empty or X = 1*3 there is

nothing to
prove ,

as Cts I 1*3
,

IR ) I IR and
any subalgebra contains the constants )

.

We claim there exists fs
,

t E A agreeing with f on { s
,

t }
,

that is

f-s
,

t ( s ) = Hs )
,

fs
,

t ( t ) = ft t)

I
I

'

,

if
l

I

X = La ,
b ]

i,!# fs
,

t

I

I

I I

a S t b

Since A separates points there exists he A such that h C s ) t htt )
. Then

we can just appropriately
"

massage
" h to pwduufs ,

t with the desired property
:

fat Htt t

t

,
Ch - hits ]

Moreover since A is a subalgebra it is clear that fs
,

t EA
. Now we construct

g from the collection { fs
,

t } s  t t
E A ( the construction involves for each s

,
t

choosing a h
,

but we don't care
, any

fs
,

t E A agreeing with f on { s
, t )

will do )
.



④

The idea is to use the fs
,

t to construct the required approximation g to f .

Now
,

f s
,

t approximates f only near { s
,

t } ( as far as we know ) but

Ds
,

t
= Ifs

,
t

- f / : X → 112

is continuous
,

so the following set I where fs it approximates f sufficiently ) is
open

:

Us
,

t  = D sit
'

( too
,

e ) ) = { see X I f ( x ) - E Cfs
.

t I a ) c f I x ) t E )

I
I

I

,

I

,
I

* ii:÷ In
.toIS

a S t b

-  -

the  set Us
,

t  is the union of these two open
intervals

We want to stitch g together from the fat by switching to a different pair ( s
'

it
' )

once we leave Us
,

t
,

and we can use Max
,

min to do the switching .
.

But we have

to be careful : in the context of the above picture , say fsi
,

t
' L f - E on Us

,
t

,
then

m in Ifs
,

t
,

fsl
,

t
' } is net an approximation to f on Us

,

th
Us '

,
t

'

. The trick is to fix one

of the points , says ,
and compute instead min { fat

,

fs
,

t
' } which is an

approximation to f near s
,

and is at least bounded above by ft E on Us
,

t U Us
,

t
'

.

By compactness finitely such min 's
can arrange

this to be the case on all of X

I still with s fixed )
,

so we 'll have an approximation h
s

to f near s which

is at least L ft E everywhere .

But then we can take mae 's of these hs 's

to impose a lower bound as well
.

Ok
,

so enough preamble ,
let 's perform the construction

.



⑧

For each s E X
,

use compactness of X to find Ty . . .

,
tr Cdepending on s ) such that

Us
,

ti
,

. - .

,
Us

,
tr cover X

,
and set

h
,

'

 
. = min { fs

,
ti

,
. .  -

,
fs

,
tr }

.

By Lemma Ll 6 - 8 ( and hence ultimately by our polynomial approximation to H )

we have hs E A
-

Moreover h s ( s ) = f ( s ) and if x EX then x E Us
,

t
,

- for

some j and hence

h
s

C a ) - E f  s
, tj ( x ) L f I x ) t E

Also for x in the
open set Vs = Us

,
t

,
n - - . n Us

,
tr we have

h
,

C x ) = min { fs
,

ti Ix ) I I E c

'

Er } 7 f Cx ) - E
.

The open
sets L Vs } sex cover X

,

and we may
take a finite sub cover

Vs.
,

. .

.

, Vsn
 

Then g
'
 

.
= Max { hsi

,
.

. .

,
hsn } is by the same argument

an element of A
,

and if x E X then

g ( x ) = Max { hs
, ( x )

,
. .

.

,
h s n

( x ) } a f- foe) t E

while there exists I Ej Eh with x E Vg
- and so

g. ( x ) > hsj ( x ) > f I x ) - E

This shows that do ( 9 , f) E E and completes the proof . D



④

The construction of the approximating polynomials Bn ( f ) in Weierstrass 's theorem

was explicit ( although the N we have to take sit
. n > N ensures do I But ft

, f) a E

depends on 8 which we may not be able to easily calculate )
.

The stone - Weierstrass

theorem is less constructive
,

since it is not necessarily clear how-to pick the finite

sub covers involved
,

or how to choose the h EA
. However the other ingredients can

be made constructive
,

in the way outlined by the following exercise :

2

Exercise Llb -5 Let X E IR be compact,
f :X → IR continuous

,

let

A  = Poly ( X
,

R ) and suppose If G) Is M for all x E X
.

( i) Compute Bn ( I - I ) on EM
, MT

,
as explained at the

end of the proof of Theorem 46 - O
.

( i i ) Set s =

'

( O
,

0 ) and t
,

= ( 0
,

I )
,

t z

= ( 0
, 2)

.

Then

h I Ky ) =

y is a polynomial which separates both the pain

( s
,

ti ) and C Sits )
,

and we may define ( a = ffs )
, P

-

- f Cti )
,

F- f ( ta ) )

Fs
,

t
,

L x . y ) : = P
- [ a -

p ] ( y
- I )

fs
,

ta ( x
, y ) :  = 8 - I ( a - o ] ( y

- 2)
.

Compute using lil a sequence of polynomial functions

converging to min { fs
,

ti
,

fats }
.

DEI A topological space is separable if  it contains a countable dense subset .

Exercise 46-6 Prove that  if XE IR
"

is compact then Cts IX ,
IR ) is separable ,

and hence second - countable I this means that there is a basis 13

for the topology with 13 a countable set )
.



⑧

Exercise Llb
- 7 Recall fwm Ex

.
42 - I I that if X is locally compact Hausdorff

and Y
,

E Yz is a subspace then there is an embedding

Cts ( X
,

Y
, ) → Cts ( X

,
Ya )

given by post - composition with the inclusion Y
,

→ Yz
. We identity

Cts I X
, Yi ) with a subspace of Cb ( X Ms ) via this map .

Prove

( it If X is compact and Y
,

EY
a

is  open ,
Cts ( X

,
Yi ) E Cts ( X

, Yz ) is
open .

Iii I If Y
,

E Yz is closed
,

Cts I X
,

Y
, ) E Cts ( X

,
Ya ) is closed

.

We say a function f : IR
"

→ IR
m

is polynomial if each of the composites

IR
" tIR IR Is is m

is polynomial ,
and we write Poly ( IR

"

,
IR

'm

) E Cts ( Rn
,

Rm ) for the set of

polynomial functions . Ifj : X → Rn is an embedding then as above we define

Poly ( X
,
j

,
Rm ) i  = { to j Ects ( X

,
Rm ) I f- is polynomial }

.

Exercise 46-8 Prove that Poly ( Xj ,
IRM ) is dense in Cts I X

,
Rm )

.

Exercise 46-9 Prove that for any space X and VEX
open ,

A  E X dense that

U AA is a dense subset of U
,

with its subspace topology .

Exercise 46
- to Pure that if X E IR

"

is compact and YE IRM is open
then the set of

polynomialfunctions is dense in Cb C X
,

Y )

,
where we call f : X → Y

polynomial if X → Y → Rm is the restriction of a polynomial function
.



f
quoted only for Exercise LIG - H

,
not officially

④

part of the  course

Theorem ( Ury sohn lemma ) Let X be a normal
space ,

A
,

B disjoint closed subset

of X . Then there exists a continuous map f : X → I oil ] such that

f- (a)= O for all.ae A and f (b) = I for all BE B
.

Exercise 46-11 Assuming the Ury Sohn lemma
, prove

that  if X
,
Y are compact

Hausdorff spaces
and h : Xx Y → IR is continuous then

for every
E 20 there are continuous functions ( for some n )

fi
,

. . .

,
fu C- Cts I X

,
IR )

,
9 y .  . .

, 9 n
E CH ( Y

, IR ) such that

do ( h
,

Ei fig i ) < E
,

where
given f :X → IR

and
g

: Y → IR we write f g for the function ( fg ) ( x
, y ) = fix ) g I y )

.

Note There is for X locally compact Hausdorff a homeomorphism

Cts I X
,

Y x 2) Ects ( X
,

Y ) x Cfs ( X , 2)
.

It is not true that Cts ( 4×2
,

X ) = Cts ( Y
,

X ) x Cts ( 2
,

X ) ( what  would a natural

map relating LHS and RHS even be ? It doesn't  make sense )
.

But if X
,

Y are locally

compact Hausdorff we have the continuous
map

X x Y x Cts ( X
,

IR ) x Cts C Y
,

IR ) = ( Xx Cts ( X
, IR ) ) x ( Yx Cts I Y

, IR ) )

I
,

ex
×

x e Vy

IR x R I IR

associated to which is a continuous
map

( not injective if either X # for Y to )

I : Cts I X
,

IR ) x Cts C Y
,

IR ) → Cts ( Xx Y
,

IR )

The Exercise
says

: the subalgebra generated by the image of It is dense
,

if

both X
,

Y are compact ( this is  not the same as saying Im I Io ) is dense ) .



②

Exercise 46-12 Set S
it

= Klutz and IT = S
'

x S1
,

with angular coordinates

( O
,

4)
.

Give an appropriate class of trigonometric polynomials

in Cts ( IT
,

IR ) and
prove

that
your

set of polynomials is dense
.

Exercise 46-13 Let X be locally compact Hausdorff
,

set Y :  = X 11003

( here 00 denotes anything ,

= O will do (although it looks nuts ) )

and define a topology on Y as follows : the open
sublets of Y

not containing are precisely the open
subsets of X

,
and

the
open

subsets of Y containing A are of the form Kc I { a }

where K E X is compact . The space
Y is called the

one - point compactification of X :

( i ) Pw ve Y is compact Hausdorff and X → Y is continuous

Iii ) Prove that the one - point compactification of IR

is homeomorphic to Sit f see Ex
.

42 - 12 )
.

The next exercise
gives the generalisation of Stone - Weierstrass to locally compact spaces .

We
say

A  E Cts I X
,

IR ) is a non unital subalgebra if  whenever f
, g EA we have

f- tg
,

fg
,

If E A for all XE IR ( but not necessarily I C- A )
.

If X is locally compact

Hausdorff we say f : X → IR vanishes at infinity if
I

HE > OF KEX compact Hae K ( Ifk ) K E )
.

We write Cbo ( X
,

IR ) E Cts ( X
,

IR ) for the subspace of functions vanishing at infinity .

Exercise 46 - I 4* Suppose X is locally compact Hausdorff and that A is a non unital

subalgebra of Cto ( X
,

IR ) which separates points and has the property that

for every
x EX there exists FEA with flat to - Then II = Cto ( X

,
IR )

.



④

Solutions to selected exercises

6- O Suppose f is continuous but net uniformly ,
so that for some E > O

no matter how small we make 8
, say 8 = Yn

,
there exists a

pair an
, yn with d x ( xn

, yn ) a Yu but  dy ( fan
,

fyn ) 3 E
.

Since X is sequentially compact C yn ) EE,
has a convergent

subsequence ynk ,

with say ynk →
y

as k → a
. We claim

ahh →
y also

,
since

dx ( xn
n ,

Y ) E d x ( Kun
,

Yun ) t d x ( Yhk
,

y )

< Yuk t d x ( Yuk
,

Y )

so given E
'

> O let K be sit
. hk > ¥it k > K and dx ( Yhk

, y ) E

Etzfor k > K
,

then dx ( an
a

,
y ) c 42tEtz = E

'

. But then since

f is continuous tank → fy and fynk → fy as k - soo and

hence ( again using a triangle inequality ,
or that dy is continuous )

we have dy ( fann
,

fyhk ) → O as k - soo
. But this contradicts

the lower bound dyffxn
,

fyn ) 7 E
. D


