The subject of today's lecture is <u>Weierstrass's approximation theorem</u> and its generalisation, the <u>stone - Weierstrass theorem</u>, which tell us in particular that any continuous function on [9,b] (resp. S^1) may be approximated arbitrarily well by a polynomial (resp. a trigonometric polynomial), which is to say that polynomials give a <u>dense</u> subspace of Cts ([9,b], R) (resp. Cts (J^1 , R)).

<u>Recall</u>: We have associated a space of functions Cts (X,Y) to any pair of topological spaces X, Y (see Lecture 12) with a list of good properties:

- if $F: \mathbb{Z} \times \mathbb{X} \to \mathbb{Y}$ is continuous, so is $\mathbb{Z} \to Ct_s(\mathbb{X}, \mathbb{Y})$ defined by $\mathbb{Z} \mapsto F(\mathbb{Z}, \mathbb{Z})$.

- if X is locally compact Hausdorff $Ct_s(Z \times X, Y) \cong Ct_s(Z, Ct_s(X, Y))$ (see Theorem L12-4 and Ex. L12-13).

- if X is compact and (Y,dy) is a metric space then Cts(X,Y) is a metric space with the supmetric, and moreover if Y is complete so too is Cts(X,Y) (see Lecture 13, specifically Theorem L13-2 and Corollary L13-6).

We have applied this theory to prove the existence of solutions to ODEs (Lecture 15), and we observed that for polynomial ODEs the solutions could be approximated by polynomials (see Remark L15-2). Just as our ability to compute effectively with real numbers is predicated on $\overline{Q} = \mathbb{R}$, our ability to work with function spaces Cts (X, \mathbb{R}) is often predicated on identifying a class of "simple" functions

 $A \subseteq Ct_{X,R}$ with $\overline{A} = Ct_{X,R}$.

If $X = [a_1b]$ and A is all polynomial functions, this works :

<u>Theorem L16-0</u> (Weierstrass, 1885) Let $f \in Cts([9,b], IR)$. Then there is a sequence of polynomials pn(x) which converges uniformly to f(x) on [9,b].

We need a few ingredients before we are ready for the proof (the proof we will give is not Weierstrass's original one: if is due to Bernstein, see K. Davidson and A. Ponsig's "Real analysis with real applications" 2002).

Exercise L16-0 Rove that if $f:(X, d_X) \longrightarrow (Y, d_Y)$ is continuous and X is compact then f is <u>uniformly continuous</u>, that is

$$\forall \epsilon > 0 \exists \delta > 0 \forall x_1, x_2 \in X (d_x(x_1, x_2) < \delta \Rightarrow d_y(fx_1, fx_2) < \epsilon)$$

Defⁿ Given a function $f: [0,1] \longrightarrow \mathbb{R}$ the nth <u>Bernstein polynomial</u> $B_n(f)$ is

$$B_{n}(f) := \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k}$$

To avoid confusion we adopt the convention of writing f as f(z) to distinguish the input variable of f from the x in Bn(f). Clearly Bn(-) is linear, so Bn(f+g) = Bn(f) + Bn(g) and $Bn(\lambda f) = \lambda Bn(f)$ for any scalar $\lambda \in \mathbb{R}$.

Lemma LIG-1/2 We have for n>1

$$B_n(1) = 1,$$
 $B_n(z) = x,$ $B_n(z^2) = \frac{n-1}{n}x^2 + \frac{1}{n}x.$

Pwof The binomial theorem gives

$$\beta_n(l) = \sum_{k=0}^n \binom{n}{k} x^k (l-x)^{n-k} = (l+(l-x))^n = l.$$

Note the following identity of polynomials in
$$x, y$$
 for $n \ge 1$
 $\frac{2}{2x} \left(\sum_{k=0}^{n} {n \choose k} x^{k} y^{n-k} \right) = \frac{2}{2x} \left((x+y)^{n} \right) = n (x+y)^{n-1}$
but computing differently, as $\ge_{k} {n \choose k} \frac{2}{2x} (x^{k}) y^{n-k}$ we obtain
 $\sum_{k=0}^{n} {n \choose k} k \cdot x^{k-1} y^{n-k} = n (x+y)^{n-1}$
multiplying both sides by $\frac{x}{n}$ gives
 $\sum_{k=0}^{n} {n \choose k} \frac{k}{n} x^{k} y^{n-k} = x (x+y)^{n-1}$ (3.1)
substituting $y = 1-x$ gives $B_{n}(z) = x$. For the remaining identity, we
differentiale (3.1) again with respect to x , obtaining
 $\sum_{k=0}^{n} {n \choose k} \frac{k}{n} \cdot k \cdot x^{k-1} y^{n-k} = (x+y)^{n-1} + (n-1)x(x+y)^{n-2}$
again multiplying both sides by $\frac{x}{n}$ gives
 $\sum_{k=0}^{n} {n \choose k} \frac{k}{n^{2}} x^{k} y^{n-k} = \frac{x}{n} (x+y)^{n-1} + \frac{n-1}{n} x^{2} (x+y)^{n-2}$ (3.2)
substituting $y = 1-x$ gives the formula for $B_{n}(z^{2})$. D
Receft of Theorem L16-0 Finiture prove the $[a_{1}b] = [a_{1}f]$ case. Let continuous
 $f: [a_{1}f] \rightarrow R$ be given. We claim $B_{n}(f) \rightarrow f$ with respect to $d \infty$.
Since fisiontinuous it is, by $\equiv x$. L16-0, uniformly continuous. Given
 $z > 0$ let $\delta > 0$ be such that
 $|x-y| < \delta \implies |f(x) - f(y)| < \xi_{1} = \sqrt{x}, y \in [a_{1}f]$.

Since
$$[0,1]$$
 is compact f is bounded, say $|f(x)| \le M$ for all $x \in [0,1]$.
Claim For any $x_1y \in [0,1]$, $|f(x) - f(y)| \le 2M(\frac{x-y}{\delta})^2 + \frac{\varepsilon}{2}$
Postfolding if $|x-y| \le \delta$ then $|f(x) - f(y)| \le \frac{\varepsilon}{2}$ to this is clear.
Otherwise if $|x-y| \ge \delta$ then $|f(x) - f(y)| \le \frac{\varepsilon}{2}$ to this is clear.
Otherwise if $(x-y) \ge \delta$ then $(\frac{x-y}{\delta})^2 \ge 1$ so
 $|f(x) - f(y)| \le 2M \le 2M(\frac{x-y}{\delta})^2 + \frac{\varepsilon}{2}$.
Now observe that for a constant $x_0 \in [0,1]$, we have an equality of polynomials in x_0 .
By $(f - f(x_0)) = B_n(f) - f(x_0) B_n(1) = B_n(f) - f(x_0)$.
Here for $x \in [0,1]$ we have
 $|B_n(f) - f(x_0)| = |B_n(f - f(x_0))|$
clearly if $f(x) \le g(x)$ for all $x \in [0,1]^2$
 $B_n(2M(\frac{x-y}{\delta})^2 + \frac{\varepsilon}{2})$
 $= \frac{2M}{\delta^2} [B_n(2^2 - 2x_0 x + x_0^2)] + \frac{\varepsilon}{2}$
 $= \frac{2M}{\delta^2} [B_n(2^2) - 2x_0 B_n(2) + \frac{\varepsilon}{2} B_n(2)] + \frac{\varepsilon}{2}$

Now substituting $x = x_0$, we have

$$B_{n}(f)(x_{0}) - f(x_{0}) \leq \frac{\varepsilon}{2} + \frac{2M}{\delta^{2}} \frac{1}{n} \left(x_{0} - x_{0}^{2} \right)$$

$$\leq \frac{\varepsilon}{2} + \frac{2M}{\delta^{2}} \cdot \frac{1}{n} \cdot \frac{1}{4}$$

$$= \frac{\varepsilon}{2} + \frac{M}{2\delta^{2}n}$$

But this is twe for all $x_0 \in [0,1]$, so

$$d_{\infty}(B_{n}(f), f) \leq \frac{\varepsilon}{2} + \frac{M}{2\delta^{2}n}$$

If we take $N \ge \frac{M}{s^2 \varepsilon}$ then for all $n \ge N$, we have $\frac{M}{2s^2 n} \le \frac{\varepsilon}{z}$ and so

$$d_{\infty}(B_n(F), f) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \leq \varepsilon$$

which proves that $Bn(F) \rightarrow f$ in $(Ctr([0,1], IR), d\infty)$. This completes the proof of the [0,1] case. For the general case, observe that $\phi: [0,1] \rightarrow [a_1b]$ $\phi(x) = (b-a)x + a$ is a homeomorphism, and if $f: [a_1b] \rightarrow IR$ is continuous then $g = f \circ \phi$ is continuous and with $Bn(f) := Bn(g) \circ \phi^{-1}$

$$d_{\infty}(B_{n}(f), f) = \sup\{ |B_{n}(f)(x) - f(x)| | x \in [a_{1}b] \}$$

= $\sup\{ |B_{n}(g)(g^{-1}x) - g(g^{-1}x)| x \in [a_{1}b] \}$
= $\sup\{ |B_{n}(g)(g) - g(g)| |g \in [a_{1}b] \}$
= $d_{\infty}(B_{n}(g), g).$

Hence
$$B_n(F) \longrightarrow f$$
 in $Cf_3([a_1b], IR)$ and moreover $B_n(f)$ is clearly a polynomial. \Box

Exercise L16-1 Let X be compact, (Y, d_Y) a metric space. Given a subset $A \in Ct_3(X, Y)$ the following conditions on $f \in Ct_3(X, Y)$ are equivalent

> (i) f∈ Ā
> (ii) there is a sequence (an) n=0 in A converging uniformly to f
> (iii) f may be uniformly approximated by elements of A, that is, given E>O there exists a ∈ A such that [f(x) - a(x)] < E for all x ∈ X.

<u>Def</u> A subset A of a topological space X is <u>dense</u> if $\overline{A} = X$.

Next we turn to a generalisation of the Weierstrass approximation theorem which will apply to any compact $X \subseteq \mathbb{R}^n$, the <u>Stone-Weierstrass theorem</u>. But first we need to talk briefly about $Cts(X, \mathbb{R})$ as an <u>algebra</u>. Recall that the addition and multiplication give continuous maps

 $+ : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, \quad \cdot : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$

and hence given $f, g \in Ct_1(X, \mathbb{R})$ (here X is any space) we have continuous maps

 $fg : \chi \xrightarrow{\Delta} \chi \times \chi \xrightarrow{f \times g} \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad x \longmapsto f(x)g(x)$

$$f + g : \chi \xrightarrow{\Delta} \chi \times \chi \xrightarrow{f \times g} \mathbb{R} \times \mathbb{R} \xrightarrow{+} \mathbb{R} \qquad \chi \mapsto f(x) + g(x)$$

Here we are using the diagonal $\Delta(x) = (x, x)$, and the product $f \times g$ (see Ex.L12-2). Moreover for fixed $\lambda \in \mathbb{R}$ the map

$$\lambda f: X \xrightarrow{f} \mathbb{R} \xrightarrow{\lambda \cdot (-)} \mathbb{R} \qquad x \mapsto \lambda \cdot f(x)$$

is continuous. Let $a : \mathbb{R} \times Ct_{\mathfrak{s}}(\mathfrak{X},\mathbb{R}) \longrightarrow Ct_{\mathfrak{s}}(\mathfrak{X},\mathbb{R})$ be $(\mathfrak{X},\mathfrak{f}) \longrightarrow \mathfrak{I}\mathfrak{f}$. For any cell the constant function is continuous:

Usually we denote this function again by c. Note it is a(c, 1).

Exercise LIG-2 Check that Cts (X, IR) with the above structures is a <u>commutative</u> <u>algebra</u> (over IR) for any space X, which is to say that

• (Cts(X,R), +, a) is an IR-vector space.
• $f(gh) = (fg)h$ for all $f, g, h \in Ctr(X, \mathbb{R})$
• $1f = f 1 = f$ for all $f \in Ct_3(X, \mathbb{R})$ where $1(x) = 1 \in \mathbb{R}$.
• $fg = gf$ for all $f, g \in Ct_3(X, \mathbb{R})$.
• $f(g+h) = fg + fh$ for all $f, g, h \in Ct_S(X, \mathbb{R})$.
• $(\lambda f)d = f(\lambda d) = \gamma \cdot fd$

(Note: occurrences of brackets above do not mean evaluation). A subjet $A \subseteq Cts(X, \mathbb{R})$ is a <u>subalgebra</u> if $1 \in A$, and whenever $f, g \in A$ we have $f + g \in A$, $fg \in A$ and $\lambda f \in A$ for any $\lambda \in \mathbb{R}$. For example, The constant functions give a subalgebra of $Cts(X, \mathbb{R})$ isomorphic to \mathbb{R} , and moreover every subalgebra contains the constant functions. <u>Def</u>ⁿ A function $f: \mathbb{R}^n \to \mathbb{R}$ is <u>polynomial</u> if there exists a function $F: \mathbb{N}^n \to \mathbb{R}$ (where $\mathbb{N} = \{0, 1, ...\}$) with the property that $\{\mathbb{N} \in \mathbb{N}^n \mid F(\mathbb{N}) \neq 0\}$ is finite and for all $x \in \mathbb{R}^n$ (write \mathbb{N} for $(\mathbb{N}_1, ..., \mathbb{N}_n)$)

$$f(x) = \sum_{\underline{N} \in \mathbb{N}^{n}} F(\underline{N}) \pi_{1}(x)^{N_{1}} \cdots \pi_{n}(x)^{N_{n}}$$
(4.1)

where $\pi_i : \mathbb{R}^n \to \mathbb{R}$ are the projection maps $\pi_i(x_1, ..., x_n) = x_i$. We denote by Poly (\mathbb{R}^n , \mathbb{R}) the set of polynomial functions $\mathbb{R}^n \to \mathbb{R}$.

Lemma L16-1 Every polynomial function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is continuous, and $\mathcal{P}_{oly}(\mathbb{R}^n, \mathbb{R})$ is the smallest subalgebra of Cts $(\mathbb{R}^n, \mathbb{R})$ containing π_1, \dots, π_n . We say that $\mathcal{P}_{oly}(\mathbb{R}^n, \mathbb{R})$ is generated as an algebra by the set $\{\pi_1, \dots, \pi_n\}$.

Poorf The polynomial function f of (4.1) may be written as

$$f = \sum_{\underline{N} \in \mathbb{N}^{n}} F(\underline{N}) \pi_{1}^{N_{1}} \cdots \pi_{n}^{N_{n}}$$

where the products (e.g. $\pi_1^{N_1} = \pi_1 \cdots \pi_n$), scalar multiplications and sums are all the algebra operations in Cts(IRⁿ, IR) as defined above. Since the set of continuous functions is <u>closed</u> ander these operations (and the π : are continuous), f must be continuous. Moreover if a subalgebra $A \subseteq Cts(R^n, R)$ contains $\{\pi_1, \dots, \pi_n\}$ if must contain f, and the subset $Poly(R^n, IR)$ is closed under addition, multiplication and scalar multiplication (and contains 1) so it is a subalgebra, implying the second claim. \Box

<u>Def</u> An <u>embedding</u> is an injective continuous map $j : X \longrightarrow Y$ such that the induced continuous map $X \longrightarrow j(X)$ is a homeomorphism (where j(X)has the subspace topology). We say j is a homeomorphism onto its image. Roughly speaking we identify X as a subspace of Y via j.

8)

Example L16-1 Given a subspace
$$X \subseteq Y$$
 the inclusion $X \longrightarrow Y$ is an embedding.

Def^{$$n$$} Given an embedding $j: X \longrightarrow \mathbb{R}^{n}$ we define the subspace $Poly(X, j, \mathbb{R})$
of $Cts(X, \mathbb{R})$ to be the image of

 $\mathcal{P}_{\text{oly}}(\mathbb{R}^n,\mathbb{R}) \xrightarrow{\text{inc}} C^{\text{ts}}(\mathbb{R}^n,\mathbb{R}) \xrightarrow{(-) \circ j} C^{\text{ts}}(X,\mathbb{R})$

that is, the set of continuous maps which are "restrictions" to X of polynomial functions on \mathbb{R} ", where "restriction" means precomposition with j. If the embedding is clear from the context we write $Poly(X, \mathbb{R})$ for $Poly(X, j, \mathbb{R})$.

Exercise L16-3 Prove Poly(X, j, R) is the smallest subalgebra of Cts (X, R) containing the functions { $\pi_1 \circ j, ..., \pi_n \circ j$ }.

Example L16-2 Let
$$S^{1} = \{(x,y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\}$$
, and let $j_{1}: S^{1} \longrightarrow \mathbb{R}^{2}$
be the inclusion. Let j_{2} be the composite

$$S^{1} \xrightarrow{j_{j}} \mathbb{R}^{2} \xrightarrow{R_{O}} \mathbb{R}^{2}$$

where Ro is multiplication by (sind wso). Since Ro is a homeomorphism this is again an embedding. Then

 $(\pi_1 \circ j_2)(x,y) = x \cos \theta - y \sin \theta$ $(\pi_2 \circ j_2)(x,y) = x \sin \theta + y \cos \theta$

Since O is fixed there are polynomial functions of x, y and so $P_{oly}(S^{1}, j_{2}, R) \subseteq P_{oly}(S^{1}, j_{1}, R)$. Since $j_{2} = R - o^{\circ} j_{2}$ the same argument shows $P_{oly}(S^{1}, j_{1}, R) = P_{oly}(S^{1}, j_{2}, R)$.

Howeveringeneral Poly (X, j, R) does depend on j:

Example L16-3 Let
$$j_{i}, j_{2}: (0,1) \longrightarrow \mathbb{R}$$
 be $j_{i}(x) = x, j_{2}(x) = x^{2}$. These are
both embeddings, but the function $x^{3}: (0,1) \longrightarrow \mathbb{R}$ lies in
 $Poly((0,1), j_{i}, \mathbb{R})$ but not in $Poly((0,1), j_{2}, \mathbb{R})$.

<u>Def</u>ⁿ We say a subalgebra $A \subseteq Ctr(X, \mathbb{R})$ <u>separates points</u> if whenever $x, y \in X$ are distinct points there exists $f \in A$ with $f(x) \neq f(y)$.

<u>Lemma L16-2</u> If $j: X \longrightarrow \mathbb{R}^n$ is an embedding then the subalgebra $P_{Oly}(X, j, \mathbb{R}) \subseteq Ct_{\mathcal{I}}(X, \mathbb{R})$ separates points.

<u>Proof</u> If $x, y \in X$ are distinct, then for some $| \leq i \leq n$ we have $\pi_i(jx) \neq \pi_i(jy)$, and so $\pi_i \circ j \in Poly(X, j, \mathbb{R})$ will do. \Box

Example L16-4 Consider the embedding

$$j: \mathbb{R}/_{2\pi\mathbb{Z}} \longrightarrow \mathbb{R}^{2}, \quad j(0) = (\cos 0, \sin 0)$$

where $\mathbb{R}/2\pi\mathbb{Z}$ is the quotient of \mathbb{R} by the relation $\lambda \sim \mu$ if $\lambda - \mu \in 2\pi\mathbb{Z}$ (see Tutorial 4). We claim that $A = Poly(\mathbb{R}/2\pi\mathbb{Z}, j, \mathbb{R})$ is the smallest subalgebra of $Ctr(\mathbb{R}/2\pi\mathbb{Z}, \mathbb{R})$ containing the set $\{\cos(n0), \sin(n0)\}_{n \in \mathbb{Z}}$. By definition A is the smallest subalgebra containing $\cos 0$, $\sin 0$, so the claim follows from

$$\cos(n0) = \operatorname{Re}(e^{in0}) = \operatorname{Re}([\omega s0 + isin0]^{n}) \in A$$

$$\sin(n0) = \operatorname{Im}(e^{in0}) = \operatorname{Im}([\omega s0 + isin0]^{n}) \in A$$

using the binomial formula (this does n>0, but this suffices).

Lemma L16-3 With the above notation, the elements of $Poly(R/2\pi z, j, R)$ are precisely the functions

$$f(0) = a_0 + \sum_{n=1}^{N} \left(a_n \cos(n0) + b_n \sin(n0) \right)$$
 (7.1)

for some $a_0, a_1, \dots, a_N, b_1, \dots, b_N \in IR$, and $N \ge 1$. This collection of functions therefore separates points of $IR/2\pi Z$. We call such functions trigonometric polynomials.

<u>Proof</u> Clearly these expressions give functions in $Poly(R | 2\pi \mathbb{Z}, \hat{J}, \mathbb{R})$, so it suffices to prove functions of this form compose a <u>subalgebra</u> of $(t_1(R / 2\pi \mathbb{Z}, \mathbb{R}), For$ this it is enough to observe that these functions are closed under multiplication:

$$sin(mt)\omega_s(nt) = \frac{1}{2} \left[sin((m+n)t) + sin((m-n)t) \right]$$

$$sin(mt)sin(nt) = \frac{1}{2} \left[\omega_s((m-n)t) - \omega_s((m+n)t) \right]$$

$$\omega_s(mt)\omega_s(nt) = \frac{1}{2} \left[\omega_s((m-n)t) + \omega_s((m+n)t) \right].$$

The claim about separating points is now immediate from Lemma LIG-2.

Theorem L16-3 (Stone-Weierstrass) Let X be a compact Hausdorff space and $A \subseteq Cts(X, \mathbb{R})$ a subalgebra which separates points. Then we have $\overline{A} = Cts(X, \mathbb{R})$.

<u>Corollary L16-4</u> Given $X \subseteq \mathbb{R}^n$ compact we have

$$Poly(X, \mathbb{R}) = Cts(X, \mathbb{R}).$$

Proof Immediate from the theorem and Lemma LIG-2.

 \bigcirc

Corollary L16-5 The trigonometric polynomials are dense in Cts (R/212, IR), i.e.

 $Poly(\mathbb{R}/2\pi\mathbb{Z}, j, \mathbb{R}) = Cb(\mathbb{R}/2\pi\mathbb{Z}, \mathbb{R}).$

Proof Again, immediate from the theorem and Lemma LIG-3. D

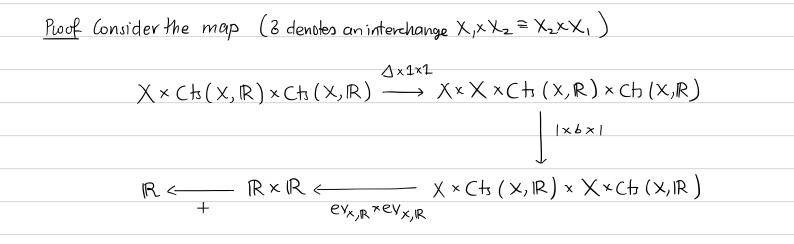
Of course $S^{\perp} \cong \mathbb{R}/2\pi\mathbb{Z}$ so this actually computes a clense subset of $Ct_s(S^{\perp}, \mathbb{R})$, namely the trigonometric polynomials, presented in terms of the angle rather than cartesian coordinates.

Before puving the Stone-Weierstrass theorem we need some preliminary results.

Lemma LIB-6 If X is locally compact Hauscloff the functions

$Ctr(X,\mathbb{R}) \times Ctr(X,\mathbb{R}) \longrightarrow Ctr(X,\mathbb{R}),$	$(f_1g) \mapsto f + g$
$Ctr(X,\mathbb{R})XCtr(X,\mathbb{R})\longrightarrowCtr(X,\mathbb{R}),$	$(f,g) \mapsto fg$
$\mathbb{R} \times C \mapsto (X, \mathbb{R}) \xrightarrow{\alpha} C \Rightarrow (X, \mathbb{R}),$	$(\lambda, f) \longmapsto \lambda f$

are <u>continuous</u>. We say Cts(X,IR) is a t<u>opological IR-algebra</u>, to emphasize this. In particular Cts(X,IR) is a topological abelian group under addition.



which is continuous since X is locally compact Hausdorff and hence eVx, R is continuous. Corresponding to this is the continuous map

 $Ct_{3}(X,\mathbb{R})\times Ct_{3}(X,\mathbb{R}) \longrightarrow Ct_{3}(X,\mathbb{R}) \qquad (f,g) \longmapsto f+g.$

The other claims are handled similarly.

<u>Lemma L16-7</u> Let X be locally compact Hausdorff and $A \subseteq Cts(X, \mathbb{R})$ a subalgebra. Then $\overline{A} \subseteq Cts(X, \mathbb{R})$ is also a subalgebra.

<u>Rouf</u> Clearly $1 \in \overline{A}$, so we have to show \overline{A} is closed under the operations +, \bullet and scalar multiplication. Suppose $f,g \in \overline{A}$ but $f+g \notin \overline{A}$. Then there is $U \subseteq Ct_{5}(X,\mathbb{R})$ open with $f+g \in U$ and $U \cap A = \phi$. But then by Lemma L16-6

$$Q := \left\{ (a_1 b) \in Ct_3(X, \mathbb{R})^2 \mid a + b \in U \right\}$$

is open, and we may therefore find C, $D \subseteq Ct(X, \mathbb{R})$ open with $(f,g) \in C \times D \subseteq \mathbb{Q}$. Since $f,g \in \overline{A}$ we have $C \cap A \neq \phi$ and $D \cap A \neq \phi$, say $f' \in C \cap A$ and $g' \in D \cap A$. Then $f' + g' \in A$ and

$$(f',g') \in C \times D \subseteq Q \implies f'+g' \in U$$

which contradicts $U \cap A = \phi$. Hence $f + g \in \overline{A}$. Similarly we show $fg \in \overline{A}$ and $\lambda f \in \overline{A}$ for any $\lambda \in \mathbb{R}$. \Box

Exercise L16-2/2 Give an alternative proof of the Lemma in the case where X is compact using the close metric. <u>Def</u> Let X be a topological space and $f \in Ct_{X}(X, \mathbb{R})$. Then $|f| \in Ct_{X}(X, \mathbb{R})$ is the composite

$$X \xrightarrow{f} \mathbb{R} \xrightarrow{|-|} \mathbb{R}, \qquad x \longmapsto |f(x)|.$$

Given $f, g \in Ctr(X, IR)$ we define

 $\min\{f,g\}: X \longrightarrow \mathbb{R}, \qquad x \longmapsto \min\{f(x),g(x)\}$ $\max\{f,g\}: X \longrightarrow \mathbb{R}, \qquad x \longmapsto \max\{f(x),g(x)\}.$

These functions are continuous since

$$\min\{f,g\} = \frac{1}{2}(f+g-|f-g|)$$

$$\max\{f,g\} = \frac{1}{2}(f+g+|f-g|).$$

Exercise LIG-4 Prove that if X is locally compact Hausdorff then

$$|-|: Ct_{X}(X, \mathbb{R}) \longrightarrow Ct_{X}(X, \mathbb{R})$$

min, max: Ct_{X}(X, \mathbb{R}) \times Ct_{X}(X, \mathbb{R}) \longrightarrow Ct_{X}(X, \mathbb{R})

are all continuous functions.

The most difficult part of puring Stone-Weievstrass is proving that a <u>closed</u> subalgebra $A \subseteq Cts(X, \mathbb{R})$ has the property that $|A| \subseteq A$, i.e. if $f \in A$ then also $|f| \in A$. To pure this we will use that |-| can be approximated by polynomicals (so we use Weierstrass to pure Stone-Weierstrass). Lemma L16-8 Let X be a compact space and $A \subseteq Ctr(X, \mathbb{R})$ a closed subalgebra. If $f, g \in A$ then $|f|, \min\{f, g\}, \max\{f, g\} \in A$.

<u>Proof</u> It clearly suffices to prove that $|f| \in A$. Given $f \in Ct_1(X, IR)$ we know *f* is bounded, since X is compact. Say $|f(x)| \leq M$ for all $x \in X$. Then the function |f| may be written as

$$\begin{array}{c} f & & |-| \\ X \longrightarrow [-M, M] \longrightarrow \mathbb{R} \end{array}$$

Let pn & Cts ([-M, M], R) be a sequence of polynomials converging to I-I (this exists by Theorem LIG-O). The function

$$C_{t_{1}}([-M,M],\mathbb{R}) \xrightarrow{(-)\circ f} C_{t_{2}}(X,\mathbb{R})$$

is continuous by Lemma L12-1, and since
$$Pn \longrightarrow 1-1$$
 we have
 $pn \circ f \longrightarrow |f| \simeq n \longrightarrow \infty$. But if for some fixed n we have
 $pn = a_0 + a_1 t + \cdots + a_k t^k$ for constants $a_i \in IR$ then

$$p_n \circ f = q_0 + q_1 f + \dots + q_k f^k$$

is an element of A. Hence $(p_n \circ F)_{n=0}^{\infty}$ is a sequence in A, and since A is cloved the limit |f| also lies in $A \cdot \Box$

We are now prepared for the proof of the Stone-Weierstrass theorem. Our proof will <u>use</u> the Weierstrass theorem to prove the move general result. All the proofs of Stone-Weierstrass I am aware of hinge ultimately on a polynomial approximation of 1-1, sometimes done "by hand" wing a Taylor series of JI-t. This has its own womplexities, and seems to me no easier than just proving the Weierstrass theorem. <u>Boof of Theorem L16-3</u> Let $A \subseteq Ctr(X, \mathbb{R})$ be a subalgebra which separates points. Then by Lemma L16-7, \overline{A} is also a subalgebra, and it clearly separates points since $A \subseteq \overline{A}$, so we may assume from the beginning that A is <u>closed</u> and our goal is to show $A = Ctr(X, \mathbb{R})$.

Let $f \in Ctr(X, \mathbb{R})$ be given : we have to show $f \in A$. Given E > O we will produce $g \in A$ such that $cl_{\infty}(f, g) \leq E$. This shows $f \in \overline{A} = A$. To produce g we take distinct points $s, t \in X$ (if X is empty or $X = \{*\}$ there is nothing to prove, as $Ctr(\{*\}, \mathbb{R}) \cong \mathbb{R}$ and any subalgebra contains the constants). We claim there exists $fs, t \in A$ agreeing with f on $\{s, t\}$, that is

$$f_{s,t}(s) = f(s), \qquad f_{s,t}(t) = f(t)$$

Since A separates points there exists $h \in A$ such that $h(s) \neq h(t)$. Then we can just appropriately "massage" h to produce fs, t with the desired property:

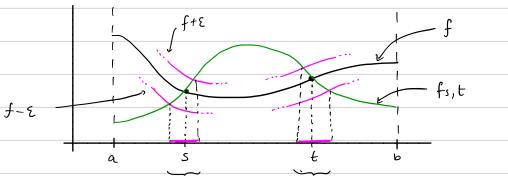
$$f_{s,t} := f(t) + \frac{f(s) - f(t)}{h(s) - h(t)} [h - h(t)]$$

More over since A is a subalgebra it is clear that $fs, t \in A$. Now we construct g from the collection $\{fs, t\}_{s \neq t} \subseteq A$ (the construction involves for each s, t choosing a h, but we don't care, any $fs, t \in A$ agreeing with f on $\{s, t\}$ will do). The idea is to use the fs, t to construct the required approximation g to f. Now, f_s , t approximates f only near $\{s, t\}$ (as far as we know) but

$$D_{s,t} = |f_{s,t} - f| : X \longrightarrow \mathbb{R}$$

is continuous, so the following set (where fs, + approximates fufficiently) is open:

$$U_{s,t} = D_{s,t}((-\infty, \varepsilon)) = \{x \in X \mid f(x) - \varepsilon < f_{s,t}(x) < f(x) + \varepsilon \}$$



the set Us, t is the union of these two open intervals

We want to stitch g together from the $f_{s,t}$ by <u>switching to a different pair</u> (s',t')one we leave $U_{s,t}$, and we can use max, min to do the switching. But we have to be careful: in the context of the above picture, say $f_{s',t'} < f - \varepsilon$ on $U_{s,t}$, then min { $f_{s,t}, f_{s',t'}$ } is <u>not</u> an approximation to f on $U_{s,t} \cap U_{s',t'}$. The trick is to fix one of the points, say s, and compute instead min{ $f_{s,t}, f_{s,t'}$ } which is an approximation to f near s, and is at least bounded above by $f + \varepsilon$ on $U_{s,t} \cup U_{s,t'}$. By compactness finitely such min's can awange this to be the case on all of X(still with s fixed), so we'll have an approximation h_s to f near s which is at least $< f + \varepsilon$ everywhere. But then we can take <u>max</u>'s of these h_s 's to impose a lower bound as well.

OK, so enough preamble, let's perform the construction.

For each $s \in X$, use compactness of X to find t_1, \ldots, t_r (depending on s) such that $U_{s_1}t_1, \ldots, U_{s_r}t_r$ were X, and set

$$h_s := \min\{f_{s,t_1}, \ldots, f_{s,t_r}\}.$$

By Lemma L16-8 (and hence ultimately by our polynomial approximation to [-1) we have $h_s \in A$. Moreover $h_s(s) = f(s)$ and if $x \in X$ then $x \in U_{s, +j}$ for some j and hence

$$h_s(x) \leq f_{s,+j}(x) < f(x) + \varepsilon$$

Also for x in the open set $V_s = \bigcup_{s,t}, \bigcap_{s,t}, \bigcup_{s,t}$ we have

$$h_{s}(x) = \min\{f_{s, +i}(x) \mid | \le i \le r\} > f(x) - \varepsilon$$

The open sets $\{V_s\}_{s \in X}$ were X, and we may take a finite subcover $V_{s_1, \ldots}, V_{s_n}$. Then $g := \max\{h_{s_1, \ldots}, h_{s_n}\}$ is by the same argument an element of A, and if $c \in X$ then

$$g(x) = \max\{h_{s_1}(x), ..., h_{s_n}(x)\} < f(x) + \varepsilon$$

while there exists $1 \le j \le n$ with $x \in V_{s_j}$ and so

$$g(x) \ge h_{s_1}(x) > f(x) - \varepsilon$$

This shows that $d\infty(9, f) \leq \varepsilon$ and completes the poor f.

The construction of the approximating polynomials Bn(f) in Weierstrass's theorem was explicit (although the N we have to take s.t. $n \ge N$ ensures $d\infty (Bn(fl, f) < \varepsilon$ depends on S which we may not be able to easily calculate). The Stone-Weierstrass theorem is less constructive, since it is not necessarily clear how to pick the finite subcovers involved, or how to choose the $h \in A$. However the other ingredients can be made constructive, in the way outlined by the following exercise:

Exercise L16-5 Let
$$X \subseteq \mathbb{R}^2$$
 be compact, $f: X \longrightarrow \mathbb{R}$ continuous, let
 $A = Poly(X, \mathbb{R})$ and suppose $|f(x)| \leq M$ for all $x \in X$.

(i) Compute Bn (1-1) on [-M,M], as explained at the end of the proof of Theorem L16-0.

(ii) set s = (0,0) and $t_1 = (0,1)$, $t_2 = (0,2)$. Then h(x,y) = y is a polynomial which separates both the pain (s,t_1) and (s,t_2) , and we may define $(\alpha = f(s), \beta = f(t_1), T = f(t_2))$

$$f_{s,t_1}(x,y) := \beta - [\alpha - \beta](y-1)$$

$$f_{s,t_2}(x,y) := \delta - \frac{1}{2}[\alpha - \beta](y-2).$$

Computering (i) a sequence of polynomial functions wonverging to min { fs, t, fs, tz }.

Def" A topological space is separable if it contains a countable clense subset.

Exercise LI6-6	Prove that if $X \subseteq \mathbb{R}^n$ is compact then $C^{\frac{1}{2}}(X, \mathbb{R})$ is separable,
	and hence second-wuntable (this means that there is a basis B
	for the topology with B a countable set).

(19)

Exercise L16-7 Recall from Ex. L12-II that if X is locally compact Hausdorff and $Y_1 \subseteq Y_2$ is a subspace then there is an embedding

$$\mathsf{C}\mathsf{t}_{\mathsf{T}}(\mathsf{X},\mathsf{Y}_{\mathsf{I}}) \longrightarrow \mathsf{C}\mathsf{t}_{\mathsf{T}}(\mathsf{X},\mathsf{Y}_{\mathsf{Z}})$$

given by post-composition with the inclusion $Y_1 \longrightarrow Y_2$. We identify $Ct_3(X_1Y_1)$ with a subspace of $Ct_3(X_1Y_2)$ via this map. Prove

(i) If X is compact and $Y_1 \subseteq Y_2$ is open, Cts $(X, Y_1) \subseteq Cts(X, Y_2)$ is open. (ii) If $Y_1 \subseteq Y_2$ is closed, Cts $(X, Y_1) \subseteq Cts(X, Y_2)$ is closed.

We say a function
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 is polynomial if each of the composites
 $\mathbb{R}^n \xrightarrow{f} \mathbb{R}^n \xrightarrow{\pi_z} \mathbb{R}$ $|\leq i \leq m$

is polynomial, and we write $Poly(\mathbb{R}^n, \mathbb{R}^m) \subseteq Cts(\mathbb{R}^n, \mathbb{R}^m)$ for the set of polynomial functions. If $j: X \longrightarrow \mathbb{R}^n$ is an embedding then as above we define

 $Poly(X, j, \mathbb{R}^{m}) := \{ f \circ j \in Ct_{\mathfrak{I}}(X, \mathbb{R}^{m}) \mid f \text{ is polynomial } \}$

Exercise L16-8 Prove that $Poly(X,j,\mathbb{R}^m)$ is dense in $Ct_3(X,\mathbb{R}^m)$.

Exercise L16-9 Prove that for any space X and USX open, $A \subseteq X$ dense that UNA is a dense subset of U, with its subspace topology.

Exercise L16-10 Prove that if $X \subseteq \mathbb{R}^n$ is compact and $Y \subseteq \mathbb{R}^m$ is open then the set of polynomial functions is dense in Ctr(X, Y), where we call $f: X \to Y$ polynomial if $X \to Y \to \mathbb{R}^m$ is the restriction of a polynomial function. quited only for Exercise L16-11, not officially part of the course

Theorem (Urysohn lemma) Let X be a normal space, A, B disjoint closed subsets of X. Then there exists a continuous map $f: X \longrightarrow [0,1]$ such that f(a) = 0 for all ac A and f(b) = 1 for all $b \in B$.

Exercise L16-11 Assuming the Urysohn lemma, powe that if X, Y are compact Hausdorff spaces and $h: X \times Y \longrightarrow \mathbb{R}$ is continuous then for every $\varepsilon > 0$ there are continuous functions (for some n) $f_{1,...,f_n} \in Ct_5(X,\mathbb{R}), g_{1,...,g_n} \in Ct_7(Y,\mathbb{R})$ such that $d_{\infty}(h, \Sigma; f; g;) < \varepsilon$, where given $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$ we write fg for the function (fg)(x,y) = f(x)g(y).

Note There is for X locally compact Hausdorff a homeomorphism

It is not true that $Cts(Y \times Z, X) \cong Cts(Y, X) \times Cts(Z, X)$ (what would a natural map velating LHS and RHS even be? It doesn't make sense). But if X, Y are locally compact Hausdorff we have the continuous map

$$X \times Y \times Ct_{X}(X,\mathbb{R}) \times Ct_{Y}(Y,\mathbb{R}) \cong (X \times Ct_{Y}(X,\mathbb{R})) \times (Y \times Ct_{Y}(Y,\mathbb{R}))$$

$$\downarrow ev_{X} \times ev_{Y}$$

$$\mathbb{R} \times \mathbb{R} \xrightarrow{\bullet} \mathbb{R}$$

associated to which is a continuous map (not injective if either $X \neq \phi$ or $Y \neq \phi$)

$\underline{\pm}: Ct_{X}(X,\mathbb{R}) \times Ct_{Y}(Y,\mathbb{R}) \longrightarrow Ct_{Y}(X \times Y,\mathbb{R})$

The Exercise says: the subalgebra generated by the image of $\overline{\Phi}$ is dense, if both X, Y are compact (this is not the same as saying $Im(\overline{\Phi})$ is dense).

Exercise L16-12 Set $S^1 = \frac{R}{2\pi Z}$ and $TT = S' \times S^1$, with angular wordinates
(O, Y). Give an appropriate class of trigonometric polynomials
in Cts (TT, IR) and prove that yourset of polynomials is dense.
Exercise L16-13 Let X be locally compact Hausdorff, set $Y := X \amalg \{\infty\}$
(here ∞ denotes anything, $\infty = 0$ will do (although it looks nuts))
and define a topology on Y as follows: the open subjects of Y
not containing ∞ are precisely the open subrets of X, and
the open subsets of Y containing ∞ are of the form $K^{c} \perp \{\infty\}$
where $K \in X$ is compact. The space Y is called the

one-point compactification of X:

 (i) Prove Y is compact Hausdorff and X → Y is continuous
 (ii) Prove that the one-point compactification of R is homeomorphic to S¹ (see Ex. L12-12).

The next exercise gives the generalisation of Stone-Weierstrass to locally compact spaces. We say $A \in Ct_3(X, \mathbb{R})$ is a <u>nonunital subalgebra</u> if whenever $f, g \in A$ we have $f+g, f-g, \lambda f \in A$ for all $\lambda \in \mathbb{R}$ (but not necessarily $1 \in A$). If X is locally compact Hausdorff we say $f: X \longrightarrow \mathbb{R}$ vanishes at infinity if

 $\forall \epsilon > 0 \exists K \leq X \text{ compact } \forall x \in K (|f(x)| < \epsilon)$

We write $Ct_{so}(X, \mathbb{R}) \subseteq Ct_{s}(X, \mathbb{R})$ for the subspace of functions vanishing at infinity.

Exercise L16-14 Suppose X is locally compact Hausdorff and that A is a nonunital subalgebra of Ctso (X, IR) which separates points and has the property that for every $x \in X$ there exists $f \in A$ with $f(x) \neq 0$. Then $\overline{A} = Ctso(X, IR)$.

LIG-O Suppose fis continuous but not uniformly, so that for some ε>O no matter how small we make δ, say δ = Yn, there exists a pair xn, yn with dx(xn, yn) < Yn but dy(fxn, fyn) ≥ ε. Since X is requentially compact (yn)n=1 has a convergent subsequence Ynk, with say Ynk→y as k→∞. We claim xnk→y also, since

 $d_{x}(x_{n_{k}}, y) \leq d_{x}(x_{n_{k}}, y_{n_{k}}) + d_{x}(y_{n_{k}}, y)$ $< \gamma_{n_{k}} + d_{x}(y_{n_{k}}, y)$

so given $\varepsilon' > 0$ let K be s.t. $n_k \ge \varepsilon'$ if $k \ge 1$ and $d_x (y_{n_k}, y) \le \varepsilon'_2$ for $k \ge K$, then $d_x(\pi_{n_x}, y) < \frac{\varepsilon'_2}{2} + \frac{\varepsilon'_2}{2} = \varepsilon'$. But then since fir writinuous $fx_{nk} \longrightarrow fy$ and $fy_{nk} \longrightarrow fy as k \longrightarrow \infty$ and hence (again using a triangle inequality, or that dy is continuous) we have $d_Y(f_{x_{n_k}}, f_{y_{n_k}}) \rightarrow 0$ as $k \rightarrow \infty$. But this contradicts the lower bound $dy(fxn, fyn) \gg \varepsilon$.

(23