These lecture notes are from a mini-coune on fusion of defects in topological Landau-ainzburg (LG) models delivered at the IBS in Korea in Jan 2016. Broadly the subject matter is the the our of 2D topological field theories (TFTs) with defects, and the example of $L G$ models.

You can find these notes at www. therisingsea. org
Email corrections or comments to
d.murfet@unimelb.edu.au.

Motivation

Fusion in LG models

Here we can actually compute!

We emphasise two main themes in these lectures

- As the above diagram indicates, various kinds of interesting constructions can be translated into the setting of fusion of defects in LG models, and
- This fusion is computable.

Outline of Lecture 1
(1) 2D TETs with defects
(2) Matrix factorisations
(3) Defects in LG models and their fusion

Lecture 2 Thebicategory $\mathcal{L G}$ (LG/CFT, GO)

Lecture 3 The Hard Stuff (1.e .how the code works)

2D TFT with defects

References

- I. Runkel and R. R. Suszek, Gerbe-holonomy for surfaces with defect networks, Adv. Theor. Math. Phys. 13 (2009), 1137-1219, [arXiv:0808.1419].
- A. Davydov, L. Kong, and I. Runkel, Field theories with defects and the centre functor, Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, [arXiv:1107.0495].
- N. Carqueville and I. Runkel, Orbifold completion of defect bicategories, [arXiv: 1210.6363]

We fix two sets D_{2} (phases) and D_{1} (domain walls, or defect conditions) and a pair of functions

Def The category Board ${ }_{2,1}^{\text {def }}\left(D_{2}, D_{1}, s, t\right)=$: Board has

$$
a, b \in D_{2} \quad X_{1}, y \in D_{1}
$$

$$
s(x)=a, t(x)=b
$$

$$
s(y)=a, t(y)=a
$$

morphisms either a permutation (of decorated circles) or an (equivalence class of) 2D oriented compact manifolds equipped with a ID oriented submanifold (the defect graph) with compatible labels

Def N An (oriented) 2D TFT with defects is a symmetric monoidal functor

$$
\begin{gathered}
Z: \text { Bord } \longrightarrow \text { Vect }_{I} \\
\text { Bord }_{2,1}^{\text {tet }}\left(D_{2}, D_{1}, 1, t\right)
\end{gathered}
$$

Example. Open/closed 2D TFT. Fix a "trivial" phase $\Theta \in D_{2}$ and $a \in D_{2}$ and view e.g.

as

$$
s(x)=\mathbb{B}, t(x)=a
$$

"boundary condition"

- (Conjecturally) sigma models
$D_{2}=$ smooth projective CY varieties

$$
x \in \mathbb{D}^{b}(\operatorname{coh} A \times B)
$$ complex of coherent sheaves

- (Conjecturally) LG models
$D_{2}=$ isolated hypersurface singulanties

$$
V(y) / 1 / 1 / 1 / 1 / 1 / 1 / 2(x) \quad \text { matrix factorisation }
$$

To define a TFT with defects Z we need eng. to specify

For every matrix factorisation X of $V-W$, among many other quantities. These quantities are organised by the bicategory of $L G$ models, denoted \mathcal{L}.

$$
\{\text { 2D TFT w/ defects }\}=\left\{\begin{array}{c}
\text { bicategory with adjoint } \\
\text { which is pivotal }+\cdots . .
\end{array}\right\}
$$

The vector spaces and linear maps encoded by the functor z can be organised into a pivotal bicategory with additional structure, and it is expected that any "sufficiently nice" bicategoy arises in this way (although, as far as I know, the exact list of conditions is not known).

Anyway, at least conceptually we view the bicategouy of Lb models (Lecture 2) as encoding the associated defect TFT.
(2) Matrix factorisations

Let $W \in \mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be a potential, 1.e. the c vitical points of W ave is lated.

Def A matrixfactorisation of W is a \mathbb{Z}_{2}-graded free $\mathbb{C}[x]$-module $X=X^{0} \oplus X^{\prime}$ with an odd operator $d x: X \rightarrow X$ such that $c_{x}^{2}=W \cdot I_{x}$

$$
d x=\left(\begin{array}{cc}
0 & d_{x}^{\prime} \\
d_{x}^{0} & 0
\end{array}\right)
$$

Def N Let X, Y be MF of W. Then

$$
\operatorname{Hom}(x, y)=\operatorname{Hom}(x, y)^{0} \oplus \operatorname{Hom}(x, y)^{1}
$$

is a \mathbb{Z}_{2}-graded complex with differential ∂ defined by

$$
\partial(f)=d_{y} f-(-1)^{|f|} f d x
$$

Def $\quad m f(W)=D G$ category of finite rank MF of W $\operatorname{hmf}(W)=H^{0} \mathrm{mf}(W)$, homotopycategory.

Note $M F_{s}$ were introduced by Eisenbud as part of his investigation of twee resolutions over complete intersection singularities

Lemma $\operatorname{hmf}(W)$ has f.dimensional Hom-spaces.
Ploof $\partial_{x_{i}} W \cdot 1_{x} \in \operatorname{Hom}(x, x) \quad W=d x \cdot d x$

$$
\begin{array}{ll}
& \partial x_{i}(w)=\partial x_{i}(d x) d x+d x \partial x_{i}(d x) \\
\therefore \quad & \partial x_{i}(w)-I_{x} \simeq 0
\end{array}
$$

$\Rightarrow H^{0} \operatorname{Hom}(x, x)$ is a f.g. $\mathbb{C}[x] /(\partial W)$-module \therefore f. fim (W is a potential).]

Example $\cdot W=x^{3}, \quad X=\mathbb{C}[x] \oplus \mathbb{C}[x]$

$$
\begin{aligned}
d x & :=\left(\begin{array}{cc}
0 & x^{2} \\
x & 0
\end{array}\right) \\
\cdot W & =y^{5}-x^{3}, \quad y=\mathbb{C}[x, y]^{\oplus 2} \oplus \mathbb{C}[x, y]^{\oplus 2} \\
d y & =\left(\begin{array}{cccc}
0 & 0 & x^{2} & -y \\
0 & 0 & y^{4} & -x \\
-x & y & 0 & 0 \\
-y^{4} & x^{2} & 0 & 0
\end{array}\right)
\end{aligned}
$$

(3) Defects and fusion
imagine this as a local patch on a bordism

If one begins with the TFT Z, then the fusion $Y * X$ is the f. rank MF of y^{5} behaving in all cowelatow as a pair of parallel lines labelled Y, X. Luckily this has a simple mathematical description, which we take as primary.

Pop Let $W(x) \in \mathbb{C}[x], V(y) \in \mathbb{C}[y]$ be potentials and

$$
\begin{aligned}
& y \in \operatorname{hmf}(\mathbb{C}[x, y], V-W) \\
& X \in \operatorname{hmf}(\mathbb{C}[x], w)
\end{aligned}
$$

Then $(Y \underset{\mathbb{C}[x]}{\otimes X}, d y \oplus 1+1 \otimes d x)$ is a MF of V.

Proof $\quad(d y \oplus 1+1 \oplus d x)^{2}$

$$
\begin{aligned}
= & d y^{2} \otimes|+| \otimes d x^{2} \\
& +(d y \oplus \mid)(\mid \oplus d x)+(\mid \oplus d x)(d y \otimes \mid) \\
= & \left.(V-W) \cdot\right|_{y_{\otimes x}}+\left.W \cdot\right|_{y_{\otimes} x} \\
& +d y \oplus d x-d y \otimes d x \\
= & V \cdot 1_{y \otimes x}
\end{aligned}
$$

Note $\quad Y=\mathbb{C}[x, y]^{\oplus r} \quad X=\mathbb{C}[x]^{\oplus S}$

$$
\begin{aligned}
\therefore \quad Y \otimes X= & \mathbb{C}[x, y]^{\oplus r s} \text { is infinite rank } o c \\
= & \mathbb{C}[y]^{\oplus r s} \oplus x \mathbb{C}[y]^{\oplus r s} \oplus \cdots \\
& \mathbb{C}[y]^{\oplus r s} \oplus x \mathbb{C}[y]^{\oplus r r} \oplus \cdots
\end{aligned}
$$

$$
d_{y_{\otimes x}}=\left(\begin{array}{ccccc}
y^{2} & 1 & 0 \\
0 & 0 & y+y^{2} & 0 & \\
1 & 0 & 0 & 1 & \ldots . \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \begin{aligned}
& \text { The "remnant" } \\
& \text { x's contribute } I^{\prime} \text { s } \\
& \text { to the } \infty \text { matrix } \\
& \text { of } d y \oplus x \text { over } \mathbb{C}[y] .
\end{aligned}
$$

Brunner-Roggenkamp [1]
Thm/Def (Khovanov-Rozansky [2], Dyckerhoff-M [3])
There exists a f. $\operatorname{rank} M F Y * X$ of $V(y)$ over $\mathbb{C}[y]$ and a homotopy equivalence

$$
Y * X \cong Y \underset{\mathbb{C}[x]}{Y} X
$$

Note. True as stated in the graded case

- In the ungraded case, only tune over $\mathbb{C}[[y]]$. But over $\mathbb{C}[y]$ it is still tue $y_{\otimes X} X$ is a summand of a f. rank MF.
Question what is $Y * X$? i.e. how to describe it as a matrix given Y, X ?

DEMO
At this point I showed how to use Singular to compute $Y * X$ (ntess/gitanubsommidnurieternt) in the example from earlier, namely

Further reading
[1] Bunner, Roggenkamp "B-type defects in Landau-Ginzburgmodels" ar Xix:0707.0922.
[2] Khovanov, Rozansky "Matrix factorisations and link homology" ar Xiv:0404.1268.
[3] Dyckerhoff, Murfet "Pushing forward matrix factorisations" ar Xiv: 1102.2957.
[4] Carqueville, Murfet "Computing Khovanor-Rozansky homology and defect fusion" arxiy: 1108.1081
(see for move backgwound on the code).

