The LG/CFT correspondence suggests a relationship between matrix factorisations of ADE singularities and modules over vertex algebras. The most promising geometric intermediany between these two worlds are jet schemes of Slodowy slices [AM, AKM]. In this series of talks we pose some questions to guide further work:

An introduction to jet schemes (Part 1)
 From matrix factorisations to jet schemes (Qs)

1. An introduction to jet schemes (Part 1)

The following historical comments are from [Y].

The study of jet (or arc) schemes was initiated by Nash in the 60's [N]. Nash was interested in whether the singularities of a variety X could be reflected in the arc space of X. We know from the Jawbian criterion how the existence of singularities is detected by tangents, and arcs are higher order (in the sense of higher order terms in a Taylor series) analoques of tangent vectors, so this seems reasonable This turned out to be true:

appearing modulo birational equiv. / on every desingularisation

jsch1 4 | 3 | 22

· There is an injective map from the set of "essential" exceptional divison of a resolution of singularities of X to the set of irreducible components of $\pi^{-1}(X_{sing}) \subseteq J_{\infty}(X)$ where $J_{\infty}(X)$ is the jet scheme and $\pi: J_{\infty}(x) \longrightarrow X$ the canonical projection. Nash conjectured that this is bijective. While false in general it is the for A-type surface singularities [N, R]. • Mustață showed a local complete intersection has rational singularities if and only if all its jet schemes are irreducible [M].

So what is a jet? To explain we first recall how $k[t]/t^2$ represents tangent vectors in algebraic geometry. Let k be an algebraically closed field and V a finite-dimensional k-vector space, $Sym(V^*)$ the symmetric algebra. Then there are bijections

$\{m \in Sym(V^*) \mid m \text{ is maximal}\}$	m	ר'({٥})	(2.1)
112	Ţ	1	
$Hom_{kAlg}\left(\begin{array}{c} Sym(v^{*}), k\end{array}\right) Sym(v^{*}), k Sym(v^{*$	$V^*) \rightarrow \frac{\text{Sym}(V^*)}{\text{In}} \underset{=}{\leftarrow} k$	ſ	$f \mapsto f(\omega)$
ll2		Ţ	\square
$Hom_{k}(V^{*}, k)$		$\mathcal{Y} _{\mathcal{V}^*}$	<u> </u>
112			<u> </u>
\checkmark			Ŵ
an a set			
which is how we identify the maximal spectrum Specm (Sym (V*)) with V. Note that			
if e_1, \dots, e_n is a k-basis of V then a point $P = \sum_{i=1}^{n} P_i e_i$ of V corresponds to the k-algebra			
map f_p : Sym $(V^*) \rightarrow k$ with $f_p(f) = f(P_1, \dots, P_n)$ where $f = f(x_1, \dots, x_n)$, $x_i = e_i^*$.			
Replacing & with other zew-dimensional (Knull dimension) k-algebras T we see			
more of the geometry of the affine space $A^* = \text{Spec}(\text{Sym}(v^*))$, where $n = \text{dim}V$.			
For example let us classify k-algebra morphisms			
, , ,			
γ : Sym(\vee^*) —	$\rightarrow k^{[\varepsilon]}/\varepsilon^2$	(≅ k⊕kɛ) (2.2)
There is a canonical quotient map $\pi: \frac{k[\epsilon]}{\epsilon^2} \to k$ sending $\pi(\epsilon) = 0$ and			
so $\pi \circ \gamma$ "is" a point of V, that is $\pi \circ \gamma = \beta_p$ for some $P = (P_1,, P_n) \in \mathbb{R}^n$. Note			
$P_i = \mathcal{J}_P(x_i) = \pi(\mathcal{Y})$	$(e_i^*)) = const.te$	im of Y(ei*)	(2.3)

2

The k-algebra morphism \mathcal{Y} is determined by its restriction $\mathcal{Y}|_{\mathcal{V}}^*$ and thus by the sequence $\mathcal{Y}(e_i^*), \ldots, \mathcal{Y}(e_n^*) \in \mathbb{R} \oplus \mathbb{R} \in (and moreover such sequences are in bijection with k-algebra maps (2.2)). If we write$

$$\Psi(e_i^*) = P_i + Q_i \mathcal{E}$$
(3.1)

then we know $P = (P_1, ..., P_n)$ is to be thought of as a point of V (because it "transforms" as a point, more on this in a moment). But what about $Q = (Q_1, ..., Q_n)$? Notice that if we write down the Taylor revies of $f \in Sym(V^*) \cong k[x_1, ..., x_n]$ at P

$$f = \sum_{i_1 \neq 0 \dots i_n \neq 0}^{l} \frac{1}{i_1 i_2 \dots i_n!} \frac{\partial^{i_1 + \dots + i_n}}{\partial^{i_1}_{x_1} \dots \partial^{i_n}_{x_n}} (f) \Big|_{P} (x_1 - P_1)^{i_1} (x_n - P_n)^{i_n}$$
(3.2)

and apply to if
$$\Psi$$

$$\Psi(f) = \sum_{i_{j} \ge 0 \cdots i_{n} \ge 0} \frac{1}{i_{1}! \cdots i_{n}!} \frac{\partial^{i_{1} + \cdots + i_{n}}}{\partial^{i_{1}}_{x_{1}} \cdots \partial^{i_{n}}_{x_{n}}} (f) \left| \left(\Psi(x_{1}) - P_{1} \right)^{i_{1}} \cdots \left(\Psi(x_{n}) - P_{n} \right)^{i_{n}}} \right. \\
= \sum_{i_{j} \ge 0 \cdots i_{n} \ge 0} \frac{1}{i_{1}! \cdots i_{n}!} \frac{\partial^{i_{1} + \cdots + i_{n}}}{\partial^{i_{1}}_{x_{1}} \cdots \partial^{i_{n}}_{x_{n}}} (f) \left|_{p} Q_{1}^{i_{1}} \cdots Q_{n}^{i_{n}} \underbrace{\varepsilon^{i_{1} + \cdots + i_{n}}}_{z_{m}} \underbrace{\varepsilon^{i_{1} + \cdots + i_{n}}}_{y_{n}} \underbrace{\varepsilon^{i_{1} + \cdots + i_{n}}}_{z_{n}} \underbrace{\varepsilon^{i_{1} + \cdots + i_{n$$

So we recognise Q as specifying the k-linear derivation

$$f \longmapsto \sum_{j=1}^{n} Q_j \frac{\partial}{\partial x_j} \Big|_{F}$$

We know that such derivations are (by def") tangent vectors so the information in a k-algebra homomorphism Ψ : Sym $(V^{+}) \longrightarrow k[\epsilon^{27}/\epsilon^{2}]$ is a pair consisting of a point and a tangent vector at that point. Inspecting (3.3) leads us to believe that k-algebra homomorphisms Sym $(V^{*}) \longrightarrow k[\epsilon^{27}/\epsilon^{s+1}]$ extract s-jets of functions.

3

Def The s-jet of a function f at a point P is the polynomial

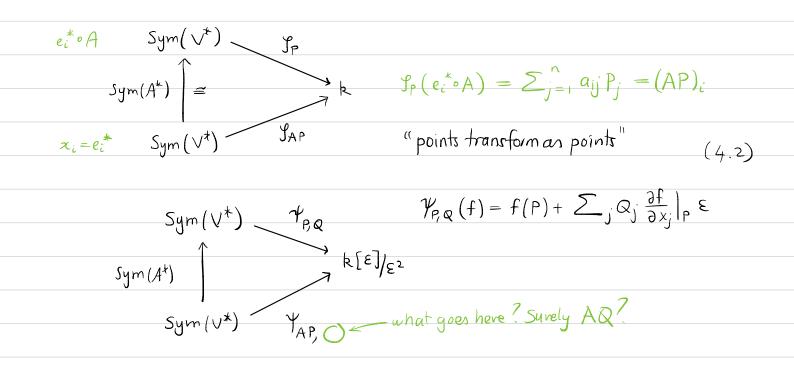
$$J_{p}^{s}f := \sum_{j=0}^{s} \sum_{|\underline{i}| \leq s} \frac{1}{i_{j}! \cdots i_{n}!} \frac{\partial^{\underline{i}}}{\partial \underline{x}^{\underline{i}}} (f)|_{p} z^{s}$$

Note that this is a polynomial in a single variable z, so there are not what differential geometers call jets if s > 1. This is why sometimes $T_p^s f$ is called an arc rather than a jet, but Arakawa calls there jet schemes and it seems too late to complain about the name.

1.1 Coordinate transforms

Before we consider "larger" Artinian k-algebras such as $k[\epsilon]/\epsilon^3$ (larger in k-dimension) let us take a moment to observe the coordinate dependence in our derivation of R from Yin (3.1). Suppose there is a linear map $A: V \rightarrow V$ hence $Ae_i = \sum_j a_{ji}e_j$

Then the following diagrams commute



(4)

$$\begin{aligned} &\mathcal{Y}_{p,a}\left(S_{ym}(A^{n})(f)\right) = f(AP) + \sum_{j=1}^{n} \frac{\partial}{\partial s_{j}}\left(S_{ym}(A^{n})(f)\right|_{p}Q_{j} \in f\left(\sum_{j=1}^{n} a_{j} \in j, \ldots, \sum_{j=1}^{n} a_{nj} \neq j\right) \\ & f\left(\sum_{j=1}^{n} a_{j} \in j, \ldots, \sum_{j=1}^{n} a_{nj} \neq j\right) \\ &= f(AP) + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}Q_{j} \xrightarrow{\partial f}_{Ax_{i}}|_{AP} \in (S,i) \\ &= f(AP) + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}Q_{j} \xrightarrow{\partial f}_{Ax_{i}}|_{AP} \in (AQ)_{i} \end{aligned}$$
So indeed $\forall AP, AQ$ makes (4.2) commute. But suppore now we replace $A : \forall \rightarrow \forall$
by an arbitrary polynomial map A , that is, we assume polynomials $A_{1,\dots,An}$ such that
 $A(P_{1,\dots,Pn}) = (A_{1}(P_{1,\dots,Pn}), \dots, A_{n}(P_{1,\dots,An})) \quad (S:2) \end{aligned}$
This corresponds to the k-algebra morphism $\alpha : Sym(\forall^{k}) \rightarrow Sym(\forall^{k})$, uniquely
determined by $\alpha(z_{i}) = A_{i}$ in the rense that
 $Hom_{k,klg}\left(Sym(\forall^{k}), k\right) \xleftarrow{m} \forall i \in A_{i} = V \\ Hom_{k,klg}\left(Sym(\forall^{k}), k\right) \xleftarrow{m} \forall i \in A_{i} = V \end{aligned}$

commutes. To check this note that

 $(f_{P} \circ d)(\pi i) = f_{P}(Ai) = Ai(P_{1},...,P_{n})$

5

Lemma For a polynomial function $A: V \longrightarrow V$ as above the diagram

commutes, where the horizontal maps send (P,Q) to $Y_{P,Q}$ as in (3.3) and JA(P) is the Jacobian $\left(\frac{\partial A_i}{\partial x_j} \mid_P\right)_{i \leq i, j \leq n}$ viewed as a linear transformation on V.

Proof Given (P,Q) we compute

$$\begin{pmatrix} \Psi_{P,Q} \circ \boldsymbol{\alpha} \end{pmatrix} (f) = f(AP) + \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} (\boldsymbol{\alpha}(f)) \Big|_{P} Q_{j} \boldsymbol{\Sigma}$$

$$= f(AP) + \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} f(A_{1}(x_{1}, \dots, x_{n}), \dots, A_{n}(x_{1}, \dots, x_{n})) \Big|_{P} Q_{j} \boldsymbol{\Sigma}$$

$$= f(AP) + \sum_{j=1}^{n} \left[\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \Big|_{AP} \frac{\partial A_{i}}{\partial x_{j}} \Big|_{P} \right] Q_{j} \boldsymbol{\Sigma}$$

$$= f(AP) + \sum_{i=1}^{n} \left[\sum_{j=1}^{n} \frac{\partial A_{i}}{\partial x_{j}} \Big|_{P} Q_{j} \right] \frac{\partial f}{\partial x_{i}} \Big|_{AP} \boldsymbol{\Sigma}$$

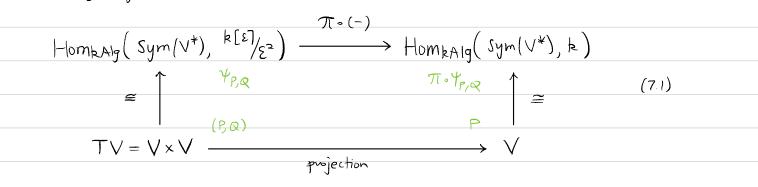
$$= f(AP) + \sum_{i=1}^{n} \left[\sum_{j=1}^{n} \frac{\partial A_{i}}{\partial x_{j}} \Big|_{P} Q_{j} \right] \frac{\partial f}{\partial x_{i}} \Big|_{AP} \boldsymbol{\Sigma}$$

as claimed. []

The upshot is that the functor $\operatorname{Hom}_{kAlg}(-)^{k[\epsilon T/\epsilon^2})$ sends a vector space V(viewed as a k-algebra $\operatorname{Sym}(V^*)$) to $V \times V$. We said earlier that $\operatorname{R}[\epsilon T/\epsilon^2]$ "represents" tangent vectors but this is not quite true, as the notion of a tangent vector is of a tangent vector <u>plus</u> the point it is "attached". This information is represented not by the single algebra $\operatorname{R}[\epsilon T/\epsilon^2]$ but by the <u>diagram</u>

 $k[z]_{/z^2} \xrightarrow{\pi} k \qquad \pi(z) = 0 \quad (6.3)$

since the following diagram commutes



It is therefore natural to consider applying HompAlg (R,-) to the inverse system

$$\cdots \longrightarrow {^{k[\epsilon]}}_{\ell^3} \longrightarrow {^{k[\epsilon]}}_{\ell^2} \longrightarrow k$$

and defining the inverse limit to be "arcs" on X = Spec(R). We will keep going in this direction in the next talk. Roughly speaking $J \infty X$ is this space of arcs.

2. From MFs to jet schemes

Let X be a singular scheme, e.g. $X = \operatorname{Spec}\left(\frac{\mathbb{C}[x,y,z]}{(x^2+y^2-z^2)}\right)$. Let Xreg denote the regular part (e.g. $X \setminus \{2\}$ in the example) and X sing its complement, the singular locus. We expect $J_{\infty}(X)$ to look like some dense open set $J_{\infty}(Xreg)$ which is boring, meeting some interesting geometry at the "boundary" $\pi^{-1}(X \operatorname{sing})$ where

$$\pi\colon J_{\infty}(x)\longrightarrow X$$

maps an arc to the point P it passes through. Indeed the theorem of Nanh cited earlier says we have an injective map

 $\left\{ \begin{array}{c} \text{exential components of} \\ \text{the exceptional divisor} \\ \text{of a resolution } Y \rightarrow X \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} \text{imeducible components} \\ \text{of } \pi^{-1}(X \text{ sing }) \end{array} \right\}$

Ð

In the case of ADE surface singularities $X = \text{Spec}\begin{pmatrix} \mathbb{C}[x,y,z]/f \end{pmatrix}$ we know $\left\{ \begin{array}{c} \text{essential components of} \\ \text{the exceptional divisor} \\ \text{of a resolution } Y \rightarrow X \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} \text{imeducible components} \\ \text{of } \pi^{-1}(X \text{ sing }) \end{array} \right\}$ (2 112 { indecomposable MFs of f } which means we can associate to any MF \mathcal{E} an irreducible component $C_{\mathcal{E}}$ of $\pi'(X_{sing})$ in $J_{\infty}(X)$. The first question [QI] Give a direct geometric construction of $C_{\mathcal{E}}$ Following [AM, AKM] it seems we can construct from CE modules over W-algebras.

[AM] T. Arakawa, A. Moreau "Arc spaces and chiral symplectic cores"

[AKM] T. Arakawa, T. Kuwabara, F. Malikov "Localization of affine W-algebras" Comm. Math. Phys. 2014.

[EM] L. Ein, M. Mustata "Jet schemes and singularities" 2009.

[M] M. Mustață "Jetschemes of locally complete intersection canonical singularities" Invent. Math 2001.

[Y] C. Yuen "Jet schemes and truncated wedge schemes". PhD thesis 2006.

[N] J. Nash "Arc structure of singularities" Duke Math. 1995 (written in the 68)

[R] A Reguera "Families of arcs on rational surface singulavities" Manuscripta Math. 1995.

[N2] M. Mustață "Singularities of pairs via jet schemes" J. Amer. Math. Soc 2002.