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The La /CFT correspondence suggests a relationship between matrix factoñsations

of ADE singularities and modules over vertex algebras .

The mostpromising geometric

intermediary between these two worlds arejet schemes of Slodowy slices [AM , AKM]
.

In this series of talks we pose some questions to guide further work :

g-
.
An introduction tojet schemes ( Part 1)

2. From matrix factorizations to jet schemes (as )

1. An introduction to jetschemes ( Part 1)

The following historical comments are from [Y ] .

The study ofjet (or arc) schemes was initiated by Nash in the 60 's IN] . Nash was

interested in whether the singularities ofa variety ✗ could be reflected in the arc space

of X . We know from the Jacobian criterion how the existence ofsingularities is

detected by tangents, and arcs are higher order ( in the sense of higher order

terms in a Taylor series ) analogues of tangent vectors, so this seems reasonable .

This turned out to be true :

appearing modulo birational equal .
/ on every desingulañsation

• There is an injectivemap from the setof
"essential "exceptional division of

a resolution of singularities of✗ to the set of irreducible components
of IT

- '

(✗ sing ) c- Joo (X) where Jo (X ) is thejetscheme and
a- : Joo 4)→ ✗ the canonical projection . Nash conjectured that this is

bijective .

While false in general it is time for A-type surface singularities [ N, R] .



②

• Mustafa showed a local complete intersection has rational singularities it and

only if all itsjet schemes are irreducible IM].

So what is ajet ? To explain we first recallhow
" [EYE represents tangent vectors in algebraic

geometry. Let K be an algebraically closed field and Va finite-dimensional k - vector space,
symN* ) the symmetric algebra - Then there are bijection s

{ the SymHt) / thismaximal} in 9-
'

1103) (2-1)

112 I f
Hom ka,g(SymN*) , K ) symlM→sYT¥Ek y f→ flw)

112 I. I

Homk(V* , K ) 9h,* evw

112 I
÷

Vyasa set

which is howwe identify the maximal spectrum Specm ( sym 14*1 ) with V. Note that

if ey . .
-en isak- basis of V then a point P = EI, Piei of V corresponds to the K-algebra

map fp :SymN*)→ K with Yp (f) = f-( Pi, . . . ,Pn ) where f- f-( x , . . >
✗ n )
,
xi=ei*

.

Replacing K with other zero -dimensional (Krull dimension ) k -algebras T we see

more of the geometry of the affine space Ah
:= Spec ( sym W* ) ) , where n=dimV.

For example let us classify k -algebra morphisms

✗ : Sym (H)→
KG]/ez

.

(⇒ K ke ) (2. 2)

There is a canonical quotient map I
-

-

H"/Ez→ k sending THE)=O and

so -1104
" is

"

a point of V, that is Tl°Y=fp for some P= ( Pi, . . . ,Pn)EKh . Note

P;
= Yp (Xi) = Tittle:*) ) = wrist

.

term of Yle :*) ( 2. 3)
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The K-algebra morphism ✗ is determined by its restriction 7h, * and thus by the

sequence
✗(EF)

,
.
. -

,
✗ lent) c- k⑦kE land moreover such sequences are in

bijection with K-algebra maps (2.2) ) .

If we write

✗ (ef ) = Pet Qi E (3-1)

then we know P=(R, . -
.

/
Pn ) is to be thought of as a pointof V ( because it " transforms "

as apoint, more on this in a moment ) . But what about Q=(Qy . . -

,
Qu ) ? Notice that

if we write down the Taylor series of f- c- Sym (IF)-=k[×i , . . -in] at P

gilt - - - + in

f- = &lip,o . . .in> oil ! iz
! - - in ! 2¥

,

-
. - . zing

,

(f) / plxi-P.li ! - - (✗n- pnyin

( 3.2)

and apply to it 4
gilt

- - - + in

in
1

14 f) = [
i
,
> o .

. .in>oil
! - i

- in ! 8¥
,

-
.
. zijn

(f) (14×1) - R )
"
- - - 141in- pm )

P

= § 1-
gilt . - - + in

470 . - in>oil
! - -

- in ! 2¥
,

. . . jinn
(f) /

p
Qi

"
- - - Quin gilt - - + in

-

zero if lil > I
n

= f- (P ) t ⇐ (f) |pQjE (3-3)

~
1-jet

some recognise Q as specifying the K-linear derivation

f- l→ÉQj¥j|p
j =\

We know that such derivations are lbydef
" ) tangent vectors so the information

in ak- algebra homomorphism X : symHt) → HEYE is a pair consisting
of a point and a tangent vector at that point . Inspecting 13.3) leadsus to believe that

b-algebra homomorphisms SymAM → KEYS" ' extract sjets of functions .
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Detn-the.s-jet-ofafunctionfatapo.int Pis the polynomial

Jeff :=É2i÷
.

(f) Ipzs
.

j=o tiles

Nokthatthisisapolynomialinasihgevañablez , sothesearentwhat differential

geometencalljetsifs > 1.This is why sometimes JFF is called anarcrathevlhanajet,
but Arakawacallsthesejetschemesanditseemstoolakto complain about the name .

1.1 Coordinate transforms

Beforewewnsider
"

larger
" Artinian K-algebras such as

"% ( larger ink-dimension)

letustakeamomenttoobsewethe coordinate dependence in our derivation of Q from Y

in (3-1)
. Suppose there isalinearmap A :V→V hence Aei=Ejajiej

A* : y*Éx* eEi→eE°A

Sym /A+) : Sym/At) sym /A*)
"

Ej? ,aijej*
11

EjiaijxjThen the following diagrams commute

ei*oA Sym( IF) Tp

Isym(AM ± Jk 9p(ei%A)=Ej^=,aijPj=(AP ) ;

xi=eE Sym #-)
TAP " points transform as points

"

(4-2)

Sym /Vt) Xp
, @

XP,Q(f) =f(P)tEjQj¥×j|pE
^

sym(A*) |
>

k[Eyez
7

symlvt) Yap
,@
←

what goes here
? surely AQ?
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Yp
, ( sym /AMA ) ) = HAP ) t §,

( sym /A*KfD|pQj E
p

f(Ej= , aijxj , . . -

, Ej? ,anj×j )
chain .

rule

= HAP ) + É(É
,

0¥. aij ] /
* pQjE

j=i
15.1 )

= HAP ) + ÉÉaijQj 3¥ / Ape

i=1J=¥?
So indeed TAP

, AQ makes (4-2) commute .

But suppose now we replace A :X→ V

by an arbitrary polynomial map A , that is, we assume polynomials Ay . . .

/
An such that

AIR
,

.
. .

,
Pn ) = ( Ai / Pi, . . . ,Pn ) , .

. -

,
An /Pi, - -

,
Pn ) ) ( 5. 2)

This corresponds to the K-algebra morphism d : Sym /1H)→ sym /V14
, uniquely

determined by xlxi )
- Ai in the sense that

⇐

HOMKAIG ( sym AM ,

K ) < y

Tp P
15.3)

f)ox A

→ Spot API
v

Homkµg( sym 14*1 , K ) < =
V

commutes
.

To checkthis note that

(Fox ) (sci ) = Yp ( Ai ) = Ai ( Pi, . .
.

/
Pn )
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Lemma_ For a polynomial function A :X→ Vas above the diagram

HomkA1g(symN*),
"%) <

±

11×11

A- ✗ JA / P) (6-1)f)oh |
, v

HomkA|g(symN*), k[%z ) <
=

11×11

commutes
,
where the horizontal maps send (BQ) to YBQ as in 13.3 ) and

JA ( P ) is the Jacobian ( 3¥. Ip ) ⇐ i. jen viewed as a linear transformation on
V.

Proof Given (BQ ) we compute

ftp.ao d) (f) = f- ( AP ) + É t

j= ,

(Nfl ) / pQjE

= f-(AP) + £ ÷jf(Aila, - . ,×n ) , . . -

, Anlx, . .

.in/)/pQjEj--1--flAP)+E.&Ifx-i/ap??i-j/p)QjE16.21
j=i

= f-(AP ) +É [ £ ZAI

g-
= ,

Ip Qj ] 3¥. /Ape
i = 1

as claimed . ☐

The upshot is that the functor HOMKAIGC- ,
"%-) sends a vector space V

lviewedasak-algebra Sym /1H) ) to 11×11 . Wesaid earlier that REYEZ
" represents

" tangent vectors but this is not quite true, as the notion of a tangent vector
is of a tangent vectorplus the point it is

"attached
"

.

This information is represented not by

the single algebra
k[EVE - but by the diagram

IT

k[E]/gz > k -1114--0 16.3)
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since the following diagram commutes

to f)

HomkNg( sym /V4 , "%-) > HomkA1g(symN*),k )
^ Xp,Q Tl°Yp,Q ^

(7. 1)
⇐ I

P

-111=4×4
"?"

> V
projection

Itis therefore natural to consider applying HOMKAIG ( RT) to the inverse system

. . . > KEY,> > k[%z > k

and defining the inverse limit to be
"
arcs

"

on ✗ = Spec /R) .
We will keep going in this

direction in the next talk - Roughly speaking Jax is this space of arcs .

2. From MFS to jet schemes

Let ✗ be a singular scheme, e. g. ✗ = Spec (
① ["""/ ( xztyn - zz) ) .

Let Xveg denote the regular part (e- g. ✗He} in the example ) and ✗sing
its complement, the singular locus .

We expect Jaolx ) to look like some

dense open set Jo( Xreg ) which is boring , meeting some interesting geometry
at the "boundary

" I
- ' ( ✗ sing ) where

I : Jo /X )→ ✗

maps an arc to thepoint Pit passes through . Indeed the theorem of Nash cited

earlier says we have an injective map

{
essential components of
the exceptional divisor }→ {

irreducible components}of IT- ' ( ✗ sing )
of a resolution Y→X
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Inthe case of ADE surface singularities ✗ = Spec (
""¥/f) we know

{
essential components of
the exceptional divisor }→ {

irreducible component
of IT- ' ( ✗ sing ) }

of a resolution Y→ ✗

112

{ indecomposable Mfs off ]✓
②

which means we can associate to any
MF E an irreducible component Ce of F-

'(✗sing )

in Jaxx)
. The first question

⑧ Give a directgeometric construction of Ce

Following [AM ,
AKM] itseems we can construct from Ce modules over W-algebras .
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