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1. Homological algebra is rather young. Its subject descends from two areas 
of mathematics studied at the end of the previous century; these areas later 
became combinatorial topology and "modern algebra" (in the sense of van 
der Waerden) respectively. As the examples of main notions inherited from 
this early period, we can mention Betti numbers of a topological space and 
D. Hilbert's "syzygy theorem" (1890). 

At present we easily recognize a general construction which underlies t h e e  
notions. A topological space X is glued from cells (or simplices) of various 
dimensions i; the boundary of a cell is a linear combination of other cells. 
The i-tb Betti number is the number of linearly independent chains with zero 
boundary modulo chains that are boundaries themselves; in other words, the 
i-th Betti number is the rank of the group Ker&/Ima,-l, where a, : C, + 
C,-1 is the boundary operator and C, is the group of i-dimensional chains. 
"Syzygies" occur in a different problem. Let M be a graded module with a 
finite number of generators over the ring A = k[xl,. . . , x,] of polynomials 
with coefficients in a fixed field k. Hiibert considered the case when M is 
an ideal in A generated by several forms(homogeneous polynomials). In 
general, generators of M can not be chosen to be independent. F i n g  a set 
of TO generators we obtain a submodule in Ar0 consisting of coefficients of 
all relations among these generators. This submodule has a natural grading 
and is called "the first syzygy module" Zo(M) of the module M. For i > 1 
let Z,(M) = Zo(Z,-l(M)) (on each step we have a freedom in choosing the 
generators of Z,-l(M)). The Hilbert theorem asserts that Zn-~(M)  is a free 
module so that we can always assume Z,(M) = 0. 

The algebraic framework of both constructions is the notion of a com- 
plex; a  complex^ a sequence of modules and homomorphisms . . . -+ K, 3 
K,-1 -+ . . . with the condition 8,-la, = 0. The complex of chains of a topo- 
logical space determines its homology Hd(X) = Ker &/Im&l. The Hilbert 
complex consists of free modules. It is acyclic everywhere hut at the end: 
Z,(M) is both the group of cycles and the group of boundaries in a free 
resolution of the module M: 

Both the complex of chains of a space X and the resolution of a module M,  
are defined non-uniquely: they depend on the decomposition of X into cells 
or on the choice of generators of subsequent syzygy modules. The essence 
of the first theorems in homological algebra is that there is something that 
does not depend on this ambiguity in the choice of a complex, namely the 
Betti numbers (or the homology groups themselves) in the first case, and the 
maximal length of a complex (the last non-zero place) in the second case. 

Introduction 5 

The first stage of homological algebra was marked by the acquisition of 
data. Combinatorial and, later, homotopic topology supplied plentiful exam- 
ples of 

- types of complexes; 
- operations over complexes that reflect some geometrical constructions: 

the product of spaces led to the tensor product of complexes, the multiplica- 
tion in cohomology led to  the notion of a differential graded algebra, homo- 
topy resulted in the algebraic notion of a homotopy between morphisms of 
complexes, the algebraic framework of the geometrical study of fiber spaces 
is the notion of a spectral sequence associated to a filtered complex, and so 
on and so forth; 

- algebraic constructions imitating topological ones; examples are coho- 
mology of groups, of Lie algebras, of associative algebras, etc. 

2. The famous "Homological algebra" by H. Cartan and S. Eilenberg, pub- 
lished in 1956 (and written some time between 1950 and 1953) summarized 
the achievements of this first period, and introduced some very important 
new ideas which determined the development of this branch of algebra for 
many years ahead. It seems that the very name "homological algebra" became 
generally accepted only after the publication of this book. 

First of all, this book contains a detailed study of the main algebraic 
formalism of (co)homology groups and of working instructions that do not 
depend on the origin of the complex. Second, this book gave a conceptially 
important answer to  the question about the nature of homological invariants 
(as opposed to  complexes themselves, which cannot be considered as invari- 
ants). This answer can he formulated as follows. The application of some 
basic operations over modules, such as tensor products, the formation of the 
module of homomorphisms, etc., to short exact sequences violates the exact- 
ness; for example, if the sequence 0 + M' + M + M" + 0 is exact, the 
sequence 0 + N @ M' + N @ M + N @ M" + 0 can have non-trivial cohe 
mology at the left term. One can define the "torsion product" Torl(N, M") 
in such a way that the complex 

Torl(N, M') + Torl(N, M") + Torl(N, M") + 

+ N @ M ' + N B M + N @ M " + O  

is acyclic. However, to extend this complex further to the left one must in- 
troduce Torz(N, M"), etc. 

These modules Tor,(N, M) are the derived functors (in one of the ar- 
guments) of the functor @. They are uniquely determined by the require 
ment that the exact triples are mapped to acyclic complexes. To compute 
these functors one can use, say, free resolutions of the module M and define 
Tor,(M, N)  as homology groups of the tensor product of such a resolution 
with the module N. 
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Hence, a homological invariant of the module N is the value on N of 
some higher derived functor which can be uniquely characterized by a list of 
properties and can be computed using resolutions. 

This idea, which first originated in the algebraic context, immediately re- 
turned to topology in the extremely important paper by A. Grothendieck 
"Sur quelques questions d'algbbre homologique", published in 1957. In or- 
der to pursue the point of view of Cartan and Eienberg, Grothendieck had 
to revise completely the system of basic notions of combinatorial topology. 
Before his paper it was clear that the (co)homology depends, first of all, on 
the space X ,  and the axioms of homology described the behavior of H(X) in 
passing to an open subspace (the excision axiom), under homotopy, etc. How- 
ever, spaces X look quite unlike modules over a ring, and in this context the 
groups H(X) do not behave like the derived functors. Grothendieck stressed 
the role of a second "hidden" parameter of the cohomology theory, the group 
of coefficients. It occurs that if we consider the cohomology HZ(X,F)  of X 
with coefficients in an arbitrary sheaf of abelian groups F on X (at the begin- 
ning of the fifties this notion was introduced and studied in detail due to the 
needs of the theory of functions in several complex variables), we can almost 
completely '%gnoren the space X! Namely, HZ(X, F )  becomes in this context 
the i-th derived functor of the functor F + r ( X , F )  (the global sections 
functor) in the spirit of Cartan-Eilenberg. 

This idea turned out to be extremely fruitful for topology (understood in a 
wide sense). Being widely developed and generalized by Grothendieck himself 
and by his students and collabarators, it led to algebraic topology of algebraic 
varieties over an arbitrary field (the "Weil program"). The jewel of this theory 
is P.Deligne's proof of Riemann-Weil conjectures. We must mention also the 
cohomological version of class field theory (Chevalley and Tate among others), 
the modern version of Hodge theory (Griffiths, Deligne, ...), theory of perverse 
sheaves, and the general penetration of the homological language into various 
areas of mathematics. 

3. In the sixties homological algebra was enriched by yet another impor- 
tant construction. We mean here the notions of derived and triangulated 
categories. 

While earlier the main concern of a mathematician working with homology 
were homological invariants, in the last twenty years the role of complexes 
themselves was emphasized; the complexes are viewed as objects of a rather 
complicated and not very explicit category. The idea is that, say, a resolution 
of a module is not only a tool to compute various Ext's and Tor's, but, 
in a sense, a rightful representative of this module. What we only need is 
a method that enables us to identify all resolutions of a given module. In 
the same way the chain complex of a space together with a sufficient set of 
auxiliary structures, is an adequate substitute of this space. 

Although the axioms and the initial constructions of the theory of de- 
rived and triangulated categories are rather cumbersome, the approach itself 
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is rather flexible and in the last few years this approach turned out to be 
indispensable in topology, representation theory, theory of analytical spaces, 
not to mention, of course, algebraic geometry which initiated all this (the 
Grothendieck seminars, the Verdier thesis, the Hartshorne notes). 

One of the paradoxes of homological algebra, which now slowly becomes 
to be understood, is that in some cases an appropriately chosen triangulated 
category is simpler than the abelian category studied before. For example, 
the derived category of coherent sheaves on a projective space is understood 
better than the category of sheaves themselves. Next, one triangulated cate- 
gory can have several abelian "cores". Such a phenomenon leads to various 
meaningful versions of classical duality theories. 

4. This volume of the Encyclopaedia is not intended to be a complete 
survey of all known results in homological algebra. This task could not pre- 
sumably be solved both because of authors' limitations and the huge amount 
of data involved. 

The volume can be roughly divided into three parts. The introductory 
Chap. 1-3 contains the most classical aspects of the theory; even now the 
main technical methods of homological algebra are based on these ideas 
(complemented from time to time by new constructions). For example, a 
comparatively new subject is cyclic (co)homology. 

Chapters 4 and 5 describe derived and triangulated categories. 
Finally, Chap. 6-8 contain geometrical applications of the modern home 

logical algebra to mixed Hodge structures, perverse sheaves and D-modules. 
In other topological and algebraic geometry volumes of the Encyclopaedia 
the reader can find several parallel expositions and of additional material; in 
this volume we mostly emphasize the categorical and homological aspects of 
the theory. 

The bibliography, inevitable quite incomplete, can help the interested 
reader to learn more about topics involved. 

Let us remark also that the references in the text give section and sub- 
section numbers, e.g. Chap.2, 2.1, or Chap. 1, 1.5.1. In references inside the 
current chapter the chapter number is omitted. 
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5 1. Complexes and the Exact Sequence 

1.1. Complexes. A cham complex is a sequence of abelian groups and 
homomorphisms 

d..+l dm dm-l c.: ... - C" - cn-1 - ... 
with the property d, o dn+l = 0 for all n. Homomorphisms dn are called 
boundary operators or differentials. A cochazn complex is a sequence of abelian 
groups and homomorphisms 

d"-' d" dm+* C': ... - C" - C"+l - ... 
with the property dn o dn-I = 0. A chain complex can be considered as a 
cochain complex by reversing the enumeration: C" = C-,, dn = d-,. This 
is why we will usually consider only cochain complexes. A complex of A- 
modules is a complex for which Cn (respectively Cn) are modules over a ring 
A and dn (resp. d") are homomorphisms of modules. 

1.2. Homology and Cohomology. Since d, o = 0, we have imdncl c 
ker dn. A homology of a chain complex is the group H,(C.) = ker dn/ im d,+l. 
A cohomology of a cochain complex is the group H n ( C )  = ker dn/ im dn-I. 
The standard terminology is as follows: elements of Cn are called n-dimen- 
sional chains, elements of Cn are n-dimensional wchains, elements of ker d, = 
Z, are n-dimensional cycles, elements of kerdn = Zn are n-dimensional co- 
cycles, those of i m & + ~  = Bn are boundaries, those of imdn-I = Bn are 
coboundaries. If C' is a complex of A-modules, its cohomology is an A-module. 
A complex is said to be acytlic (or an exa'ct sequence) if Hn(C') = 0 for all n. 

1.3. Morphisms of Complexes. A morphism f :  C' + D' is a family of 
group (module) homomorphisms f : C" + Dn commuting with differentials: 
fn+l o d"& = dZ, o fn.  A morphism f induces a morphism of cohomology 
H'(f) = {Hn(f): Hn(C') + Hn(D')) by the formula {the class of a cocycle 
C) H {the class of a cocycle f (c)). 

A homotopy between morphiims of complexes f ,g :  C' --t D' is a family 
of group homomorphisms hn: Cn + Dn+l such that f n  - g" = hnfl o dn + 
dn-I o hn. The class of morphisms homotopic to zero form "an ideal," i.e. it 
is stable under addition and the composition with an arbitrary morphism. 

1.3.1. Lemma. Iff  and g are homotopic then Hn(f)  = Hn(g) for each n. 

Indeed, if c is a cocycle then f (c) = g(c) + d(h(c)), so that the classes of 
f (c) and g(c) coincide. 
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1.4. Exact Triple of Complexes. A sequence of complexes and morphisms 
0 + K' + L' + M' + 0 is said to be exact (or an exact triple) if for each 
n the sequence of groups (modules) 0 + Kn + Ln + Mn + 0 is exact. 

1.5. Connecting Homomorphism. Let 0 + K' -+ L' M' -+ 0 be an 
exact triple of complexes. For any n define a homomorphism 6" = Sn(f, g) : 
Hn(M') + Hn+l(K') as follows. Let m E Mn be a cycle. Choose 1 E Ln such 
that gn(l) = m. Then gnfl(dn(l)) = 0, so that dn(l)) = fnfl(k) for some 
k E Kn+l. It is clear that dn+lk = 0. Set 6(the class of m) = (the class of k). 
Direct computations show that Sn does not depend on the choices. 

1.5.1. Theorem. The cohomology sequence 

is exact. 

§ 2. Standard Complexes in Algebra and in Geometry 

2.1. Simplicia1 Sets. Complexes in homological algebra are mostly either 
of topological nature or somehow appeal to topological intuition. A classical 
method to study a topological space is to consider its triangulation, i.e. to 
decompose it into simplexes: points, segments, triangles, tertrahedra, etc. The 
corresponding algebraic technique is the technique of simplicial sets. 

2.1.1. Dehition. A geometrical n-dimensional simplex is the topological 
mace 

The point e, such that x, = 1 is called its i-th uertex. To any nondecreasing 
mapping f : [m] + [n], where [m] = 0, 1, . . . , m, we associate the mapping 
A,, called "the f-th face," as follows: Af is a unique linear mapping that 
sends the vertex e, E A, to the vertex ef(,) E An for i = 0,1,. . . , m. 

2.1.2. Definition. A simplicia1 set is a family of sets X = (X,), n = 0,1,. . . , 
and mappings X( f )  : X, --t X,, one for each nondecreasing map f : [m] --t 
[n], such that 

X(id) =id, X(g o f )  = X(f)  o X(g). 

One can consider X, as the set of indices enumerating a family of n- 
dimensional geometrical simplexes. Mappings X(f)  describe how to glue all 
these simplexes together in order to obtain one topological space. 
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2.1.1. Dehition. A geometrical n-dimensional simplex is the topological 
mace 

The point e, such that x, = 1 is called its i-th uertex. To any nondecreasing 
mapping f : [m] + [n], where [m] = 0, 1, . . . , m, we associate the mapping 
A,, called "the f-th face," as follows: Af is a unique linear mapping that 
sends the vertex e, E A, to the vertex ef(,) E An for i = 0,1,. . . , m. 

2.1.2. Definition. A simplicia1 set is a family of sets X = (X,), n = 0,1,. . . , 
and mappings X( f )  : X, --t X,, one for each nondecreasing map f : [m] --t 
[n], such that 

X(id) =id, X(g o f )  = X(f)  o X(g). 

One can consider X, as the set of indices enumerating a family of n- 
dimensional geometrical simplexes. Mappings X(f)  describe how to glue all 
these simplexes together in order to obtain one topological space. 
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A simplicial mapping 9 : X + Y is a family rp, : Xn + Y, such that 
Y(f)pn = 9,X(f) for each nondecreasing f : [m] + [n]. 

2.1.3. De6nition. Geometric realization of a simplicial set X is the topo- 
loeical mace 

where the equivalence relation R is defined as follows: (s, x) E An x Xn is 
identified with (t, y) E A, x X, if there exists a nondecreasing mapping 
f : [m] + [n] with Y = X(f)x, s = A f t  The topology on 1x1 is the weakest 
one for which the factorization by R is continuous. 

2.2. Homology and Cohomology of Simplicia1 Sets. Let X be a simplicial 
set. Denote by Cn(X,Z), n > 0, the free abelian group generated by the set 
Xn, and set Cn = 0 for n < 0. For any abelian group F set Cn(X, F )  = 
Cn(X,Z) 6& F. Hence, elements of Cn(X, F) ,  called chains of X with co- 
efficients in F, are formal linear combinations of the form CZEX, a(x)x, 
a(x) E F. The boundary operator is defined as follows. Let 8; : In - 11 -+ [n] 
be a unique decreasing mapping whose image does not contain i. We set 
do = 0, and then 

Cochains Cn(X, F )  are defmed dually: Cn(X, F )  consists of functions on Xn 
with values in F, and 

n+l 

(d"f)(x) = C(-l)"f(X(%+1)(.). 
1=0 

Set 
Hn(X,F)=Hn(C.(X,F)) ,  Hn(X,F)=Hn(C'(X,F)) .  

2.3. The Singular Complex. Let Y be a topological space. By a singular 
n-simplez of Y we mean a continuous mapping rp : An + Y. D e h e  

Xn is the set of singular n-simplexes of Y; 
X(f)rp = rp o Af ,  where f : [m] + [n] does not decrease, Af : An + A,. 

(Co)homology Y with coefficients in an abelian group F is defined as H,(X, F )  
and Hn(X, F )  and denoted H p g ( X ,  F )  and H&(X, F). 

2.4. Codcient  Systems. In the definition of an n-chain of a simplicial set 
coefficients we can assume that coefficients a t  diierent simplexes are taken 
from different group. However, to define the boundary operator in this case 

§ 2. Standard Complexes in Algebra and in Geometry 11 

one has to impose to these coefficient groups the following compatibility con- 
ditions. 

2.4.1. Dehition. a. A homological coeficient system A on a simplicial 
set X is a family of abelian group 4, one for each simplex x E X, and a 
family of group homomorphisms A(f,x) : A, + Ax(f),, one for each pair 
(x E Xn, f : [m] + [n]), such that the following conditions are satisfied: 

b. A cohomological coefticient system U on a X is a similar family of 
abelian group {a,), and a similar family of group homomorphisms B(f, x) : 
Bx(f)z + B, such that 

2.5. Homology and Cohomology with Coe5cients. In the notation of 2.4, 
set 

and similarly 

If the groups A, (resp. Uz) do not depend on x, and all mappings A(f, x) 
(rep.  U(f,x)) are the identity homomorphisms, we recover the definition 
from 2.2. (Co)homology of C.(X, A) and C'(X, U) are called the (co)homology 
of the simplicial set with the coefficient system. 

2.6. Cech Cohomology with Coe5cients in a Sheaf. Let Y be a topological 
space, U = (U,), a E A, be its open or closed covering. The nerve of the 
covering U is the following simplicial set X: 

Xn = {(ao, . . . , an )  I U,, n . . . n U,, # 0) c A~"; 
X(f)(ao,..  . , an)  = (af(o)>. .. = for f : [mI + In]. 

Let 3 be a sheaf of abelian groups on Y. It determines a cohomological 
coefficient system on the nerve of Y as follows: 

F,~ ,...,,, =r(u , ,  n . . . n u , , , ~ ) ,  
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3 ( a .  a ) )  maps the section ip E r(U, ,(,, n . . . n U ,,(,,, 3) 
to its restriction to U,, n . . . n U,,. 

Cohomology of X with this coefficient system is called the Cech cohomology 
of the covering U with coefficients in the sheaf 3. 

2.7. Group Cohomology. Let G be a group. Define a simplicia1 set BG as 
follows: 

(BG)n = Gn; 
for f : Iml -+ In], B G ( f ( g l , .  . . ,gn) = (hl, . . . ,h,), 

f (4 
where h, = n g, (= e if f (i - 1) = f (i)). 

3=f(z-l)+l 
The geometric realization lBGl is called the classifying space of the group G. 

Let A be a left G-module, i.e. an additive group with the action of G by 
automorphisms. Such a module yields the following cohomological coefficient 
system B on BG: 

B, = A for all x; 

Using the above definitions we can describe the complex C'(BG, B) (denoted 
also by C'(G,A)) explicitly: 

cO(G,'A) = A; 
Cn(G, A) = function on Gn with values in A. 

Next, for an n-cochain f ,  

Cohomology of this complex are denoted Hn(C, A). Similarly, using A one 
can construct the following homological coefficient system A on BG: 

A, = A for all x; 
f (0) 

A(f, x)a = h-'a, where h = n g,. 
3=1 

It gives the homology Hn(C,A). 

3 2. Standard Complexes in Algebra and in Geometry 13 

2.8. The de Rham Complex. In the above examples the transition from 
geometry to  algebra was performed using combinatorics and simplicial de- 
composition. In the case when the topological space X has the structure of 
a smooth manifold, the ring of smooth differential forms is a complex. More 
precisely, let Ri(X) be the space of i-forms. The exterior derivative is given 
in local coordinates (xl,.  . . , xn) by the formula 

where 

I = ( I , .  . . i )  111 = il + . . . + ik, dxZl A .. . A dxi* 

The cohomology of the complex (R'(X), d), denoted HbR(X), is called the 
de Rham cohomology of the manifold X. 

The de Rham theorem established a canonical isomorphism 

On the level of chains this isomorphism associates to a differential i-form its 
integrals over smooth i-dimensional singular chains. 

2.9. Lie Algebra Cohomology. Let us consider the de Rham complex of a 
connected Lie group G. The group G acts on this complex by the right shifts. 
Denote by R,,,,(G) the subcomplex consisting of G-invariant chains. It admits 
a purely algebraic description. Let g be the Lie algebra of G considered as the 
Lie algebra of right-invariant vector fields on G. Then REv(G) = L(Ang, R) is 
the space skew-symmetric n-linear real forms on g. The exterior derivative of 
an n-form considered as a polylinear function on vector fields (on an arbitrary 
smooth manifold) is given by the following Cartan formula: 

(here A means that the corresponding term is omitted). Applying this formula 
to  Rk,,(G) we obtain the following formula for d on C'(g) = L(A'g,R): 

Denote the cohomology of this complex by H'(g,R). Merging the de Rham 
theorem with the averaging over a compact subgroup, we obtain the E. Cartan 
theorem: for a compact connected group G 
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The construction of G'(g) does not require the existence of the Lie group 
G associated to the Lie algebra g and can be applied to an arbitrary Lie 
algebra over a field k. 

More generally, let M be a g-module. Set Cn(g, M)  = L(A"~ ,  M)  and 
define the differential by the Cartan formula 

Denote the cohomology of this complex by H'(g, M). 
To define the homology H.(g, M)  we must use the complex H.(g, M)  = 

M @ A'g with the differential 

d(m@(glA...Ag,)) 
= x (-1)3+"-lm@([g,,gl],g1~...~g~...~g~...~gn) 

l<,<l<n 
n+I + C(-1)3+1g,m @ (g, A , .  . A 6 A , .  . ~ g , + ~ ) .  
,=I 

2.10. The Hochschild Complex. Let k be a commutative ring with unity, A 
be an associative k-algebra with unity. Consider the following chain complex 
T(A): 

n+2 times 
T,(A)=A@k...@kA, n 2 - 1 ,  

It can be considered as a complex of k-modules, as a complex of A-bimodules, 
and, finally, as a complex of Ae -modules where Ae = A@k At, At is the oppo- 
site ring of A (i.e. the ring A with the oppposte multiplication). This complex 
is acyclic since its identity mapping is homotopic to  the zero mapping: the 
homotopy is given by the formula 

Let M be an A-bimodule. Then we can consider the complexes of k-modules 
M @A= T.(A) and HomA=(T(A), M). The homology of these complexes are 
denoted by Hn(A, M)  and Hn(A, M)  respectively and called the Hochschild 
(co)homology of the algebra A with coefficient in the module M. We can get 
rid of the tensor product over Ae using the isomorphism 

5 2. Standard Complexes in Algebra and in Geometry 15 

In this setting Hn(A, M)  becomes the homology of the following complex 
C.(A, M): 

the n-th term is M @ Aen; 
d ( rn@al@. . .@a, )  = m a l @ a z @ . . . @ a ,  

Similarly, is the cohomology of the complex C'(A, M): 

the n-th term is ~omk(A@", M); 
d f ( a ~  @ . . . @ an+l) = alf (a2 @ . . . @  a,+l) 

n + x ( - l ) ' f  (a1 @ .  .. @ (a,a,+l) @ .  . . @ an+l) 
2=0 

+ (-l)n+l f (a1 @ .  . . @ an)an+l. 

2.11. Cyclic Homology of an Algebra. Let us keep the setup of the previous 
subsection and take in this setup k > Q, M = A. The cyclic shift acts on the 
terms of the complex C.(A, A), whose homology is Hn(A, A). Define 

t(ao @ ... @an) = (-l)nan @ a0 @ . . . @ an-1. 

The operator t does not commute with the differential. However, if we set 

2=0 
then 

d(l  - t) = (1 - t)dl. 
Hence the image of 1 - t is a subcomplex of Cn(A, A) so that we can define 
the quotient complex 

c:(A) = C,(A,A)/im(l- t),  
dX = d mod im(1- t). 

Its homology is called the cyclic homology of the algebra A and are denoted 
Hi (A) or HCn(A). 

2.12. Cyclic Cohomology of an Algebra. To define it we have to consider 
the subcomplex Ci(A) c C ( A ,  A*) consisting of t-invariant cochains, i.e. of 
k-linear functionals f : Aan + A* with the property 

The coboundary operator is given by the last formula in 2.9. 
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Cohomology is denoted by HT(A) or HCn(A). 5 3. Spectral Sequence 

2.13. (Co)Chain Complex of a Cell Decomposition. To use the singular 
(co)chain complex in the computation of (co)homology of a topological space 
X is non-economic because this complex is infinite-dimensional. Topologists 
often use (co)chains associated to a realization of X as a cell decomposition. 
Let us give the basic definitions. 

A cell decomposition (or CW-complex) is a topological space X repre- - - 
sented as a union X = U U e? of disjoint sets er  (cells) with mappings 

n=O iEI, fr : Bn -+ X of the closed unit ball into X such that the restriction of fp 
to the interior Int Bn of Bn is a homeomorphism f? : Int Bn 2 er, and the 
following conditions are satisfied: 

a) The boundary @ = % \ er of any cell is contained in the union of a 
finite number of cell of smaller dimensions. 

b) The set Y C X is closed if and only if the preimage (f?)-'(Y) n$ is 
closed in for all n and all i E In. 

For a pair of cells er ,  ey-' define the incidence coefficient c(e?, ey-') as 
follows. Let XT be the union of all cells of dimension 2 T. Then Xn-1/Xn-2 
(Xn-2 is contracted to a point in Xn-') is the wedge of (n - 1)-dimensional 
spheres Sn-' in the number equal to the cardinality of In-l, and the cell 
ey-' distinguishes one sphere in this wedge (denote it by S). Consider the 
composite mapping 

where n is the projection of the wedge onto one of its components. The 
resulting mapping Sn-I -* Bn = Sn-' determines an element of the group 
?in-l(Sn-l), i.e. an integer (the degree of the mapping), and we define the 
incidence coefficient c(e:, ey-') to be equal to this integer. 

Define now the group of integral n-dimensional chains as the free abelian 
group generated by e:, i E I,, and define the differential by the formula 

By the condition a) above, this sum is finite. 
Cochains, as well as chains and cochains with coefficients, can be defined 

similarly. 

2.13.1. Theorem. (Co)homology of a cell decomposztzon computedfrom cell 
(co)chazns zs canonzcally isomorphzc to szngular (co)homology. 

)fa Spectral Sequence. Together with the cohomology exact 
sequence (Theorem 1.5.1), the spectral sequence is one of the most powerful 
computational tools in homological algebra. 

A spectral sequence of abelian groups is a family of abelian groups E = 
(Epq, En),  p,q,r E Z, T 2 1, and a family of homomorphisms with some 
properties that we will describe shortly. 

But first we say a few words about a convenient way to represent all these 
data. 

The reader can imagine a stack of square-lined paper sheets, each square 
being numbered by a pair of integers (p,q) E Z2. An object Epq is assumed 
to live in the (p,q)-th square at the T-th sheet. Objects En live in the last, 
"transfinite" sheet, and occupy the entire diagonal p + q = n. 

Now we describe homomorphisms and the conditions they satisfy. 
a. On the T-th sheet we have homomorphisms dpq : E,P.4 _t EF+T,4-T+1. 

For T = 1 they act from a square to its right neighbor, for T = 2 they act by 
a chess springer move (one square down and two squares to  the right). For 
T 2 3 we get a generalized springer move. 

Condition: dz = 0; more explicitly, d$+T,q-T+' o dpq = 0 for all pi q, T. 
Using ( E p ,  dp4) we can construct cohomology of the r-th sheet: 

The following data are included into the definition of E: 
b. Isomorphisms ap9 : Hp,q(E,) + E::'. 
Usually we will assume that on the (r+l)-th sheet we have just cohomology 

of the r-th sheet and a29 are identities. 
The main condition to isomorphisms apq is the existence of limit objects 

Egg. The simplest way to guarantee this, which usually suffices in applica- 
tions, is the following: 

c. For any pair (p, q) there exists TO such that $'4 = 0, dF+434-T+1 = 0 for 
T 2 TO. In this case isomorphisms aP4 identify all EF9 for T 2 TO and we will 
denote this object by Egq. 

At this moment on the transfinite sheet (T = co) we have objects Egg and 
objects En along the diagonal p + q = n. The last collection of data relates 
these two classes of objects. 

d. A decreasing regular filtmtzon . . . 3 FPEn 3 Fp+lEn 3 . . . (i.e. 
nFPEn = {0}, U F P E n  = En) on each En and isomorphisms Pp34 : Egg + 

FpEp+q/Fp+ ' Ep+%re given. 
If these conditions are satisfied we say that the spectral sequence (Ep4) 

converges to (En) or that (En) zs the lzmzt of (Epq). 
Let us emphasize once more that the components of one spectral sequence 

E are all objects (E,P34,En), all homomorphisms (dp4, a94, Ep,q), and all 
filtrations on En. 


