
Hopfield Networks

Thomas Quella (Thomas.Quella@unimelb.edu.au)

1 Overview and Summary

In this note we sketch a simple class of neural networks that was proposed by Hopfield in 1982 [1] and
that received a lot of attention since then.1 This note is mainly based on Chapter 42 of Ref. [2] and
Chapter 13 of Ref. [3].

Hopfield networks can be thought of as “ensembles of computing units” [3] with complex bidirec-
tional interactions and this makes them amenable to methods of statistical physics. This connection
leads to the technically and conceptually important use of an energy function in describing the be-
haviour of Hopfield networks. From a biological perspective, Hopfield networks realize the paradigm
that no global synchronization of computing elements is required. The Hopfield network still fulfills its
task if the individual units perform their calculations asynchronously (i.e. one by one in random order)
like in the brain. This also makes the model attractive from the perspective of massive parallelization.
From a conceptual perspective, Hopfield networks are interesting since they are examples of feedback
networks, i.e. the output feeds back again as inputs. For pedagogical reasons, we will mostly restrict
ourselves to what is called the binary case (with two possibilities for every input/output) in this talk
and simply state results for the continuous case where appropriate.

Hopfield networks are early examples of associative (content-addressable) memories according to
the following

Informal Definition. An associative memory is a function that takes a pattern as an input and
returns a pattern. Memories are patterns that are stable, i.e. attractive fixed points under iteration of
the function. This means that memories that are slightly corrupted can still be retrieved correctly.

Remarks.

• Note the difference to an address-based memory (in ordinary computers) where all information
is lost if the storage location of the memory is lost.

• Due to the stability property, associative memories may be used for pattern completion and error
correction, provided the missing/wrong part is sufficiently small.

A schematic view of an associative memory explaining these properties is provided in Figure 1.
Hopfield networks can also be used to solve certain types of optimization problems.

2 From single neurons to a neural network

General aspects. In every neural network there are four basic points to consider, namely

1. the architecture, i.e. how neurons are connected

2. the activity rule, i.e. how neurons respond to activation (stimuli)

3. the learning rule, i.e. how the neural network adapts its behaviour over time

An illustration of some basic networks can be found in Figure 2.

1The paper is cited more than 20 000 times.

1

moscow--------russia
lima------------peru
london-------england
tokyo----------japan
paris---------france
berlin-------germany
canberra---australia

Memories to be stored

Input Output

berlin-:::::::::::::
::::::::::-australia

tokio----------yapan
london------scotland

berlin-------germany
canberra---australia

tokyo----------japan
london-------england

Pattern completion and error correction

Figure 1: The basic working of an associative memory: Storage of memories, pattern completion and
error correction. Examples adapted from [2].

a = w · x

y = y(a) = y(x|w)

x1

w1

xn

wn

Output

Input

Output

Input

Figure 2: The mathematical model for a single neuron, a feedforward network, a feedback network
(here: a Hopfield network).

2

Single neurons. A single neuron can be modelled as a function taking a number of inputs x =
(x1, . . . , xn) to a single output y = y(x|w), also known as the activity. The function y(x|w) is
generally non-linear (in both x and w) and depends on weights w = (w1, . . . , wn) that are used to
weight the importance of different inputs. It is custom to assume that all the variables xi and the
function y take values in {±1} for a discrete model and the interval [−1, 1] for a continuous model.
Alternatively, one may work with the set {0, 1} and the interval [0, 1]. The first choice is inspired by
physics (spin up/down), the second by computer science (bit on/off).

The architecture of a single neuron is displayed in Figure 2. The activity rule for a single neuron
consists of two steps

1. Calculate the neuron’s activation a =
∑

iwixi = w · x.

2. Calculate the neuron’s activity y = y(a) = y(x|w) as a function of the activation a.

Sometimes a special weight w0 is included which is known as the bias (since it is, by definition,
associated with a constant activity x0 = 1). In practice, the activity function y is taken from one
of the classes depicted in Figure 3, depending on the precise nature of the neuron’s possible activity
values.

Remark. It is essential that the activity function y(a) is non-linear since this is what enables networks
of several layers to be more powerful than a single layer.

Remark. Single neurons have a capacity of two bits per weight. This corresponds to the number of
patterns that can be stored in a single neuron (by adjusting the weights w).

Neural networks. If neurons are connected to each other, with outputs of individual neurons used
again as inputs for others (or themselves), one speaks about a neural network. Neural networks come
in various forms and architectures, depending on the precise problems they are meant to address. In
what follows, we first give a brief outline of some of the basic characteristics and then focus on the
exploration of a special type of network, the Hopfield network.

Definition. A feedforward network is a network whose underlying graph is directed and acyclic. A
feedback network is a network that is not a feedforward network.

A feedback network thus has cycles. These may occur in the form of cycles of directed connections
(including self-connections) or undirected (bidirectional) connections.

Definition. A Hopfield network is a neural network which is fully connected through symmetric,
bidirectional connections described by weights wij = wji (where i and j refer to the neurons). Self-
connections are forbidden, i.e. wii = 0.

As we will explain in the following, Hopfield networks can be used as an associative memory and
in optimization problems. There are close relationships to the physics of the Ising model and, in fact,
one of the most important notions in the context of a Hopfield model is that of an energy function.
For later convenience we define the weight matrix W = (wij) consisting of row vectors wi = (wij).

In order to analyze the dynamics of a Hopfield network we need to specify an activity rule which
evolves a current state x of activities to a new one after one unit of time. There are essentially two
possibilities, synchronous or asynchronous updates.2

2One could also consider models with continuous time but these are beyond the scope of this introduction.

3

Asynchronous updates

1. Choose a neuron i

2. Compute its activation ai =
∑

j wijxj = wi · x
3. Determine its (new) activity xi = sgn(ai) (discrete case) or xi = tanh(ai) (continuous case)

4. Repeat

The neuron may be chosen at random or following a fixed sequence.3 Asynchronous updates only
change a single component of x at a time.

Synchronous updates

1. Compute all activations ai =
∑

j wijxj = wi · x
2. Determine all (new) activities xi = sgn(ai) (discrete case) or xi = tanh(ai) (continuous case)

3. Repeat

In this case all components of x are updated at the same time.
Besides the updates used above, one could use various types of stochastic updates that are based

on Monte-Carlo ideas.

Remark. If the diagonal is not fully zero there is not necessarily a stable state (fixed point), e.g.
W = −I generates all possible states (in the asynchronous case) since at each time step one (random)
component is flipped. Similarly, there may be non-trivial orbits if W is not symmetric.

Remark. A sequence of asynchronous updates of neurons 1, . . . , N is generally not equivalent to one
synchronous update.

In the presence of non-trivial bias, it is convenient to treat the weights w0i and wi0 on a different
footing since the associated activities x0 = 1 are never updated. We set w00 = 0 as well as w0 = θ
use this to write the matrix W in block form

W =

w00 w01 · · · w0n

w10 w11 · · · w1n

wn0 wn1 · · · wnn

 =

(
0 θ
θT W

)
. (1)

The update rules now read (by abuse of notation)

ai = wi · x− θi . (2)

When calculating the activity y(ai) we see that the (negative of the) bias essentially functions as a
threshold value for the neuron to trigger. We call θ the threshold vector.

3 The energy function and convergence

Definition. Consider a discrete Hopfield network with weight matrix W and threshold vector θ. The
energy functional associated with this network is

E(x|W, θ) = −1

2
xTWx + θ · x . (3)

3In both cases it needs to be made sure that all neurons are chosen an infinite number of times to ensure convergence
(of pme).

4

−10 −5 0 5 10

−1

0

1

Activation a

A
ct

iv
it

y
y
(a

)

−10 −5 0 5 10

0

0.5

1

Activation a

A
ct

iv
it

y
y
(a

)

Figure 3: Different types of deterministic activity functions for individual neurons: (a) Sigmoid func-
tion y(a) = tanh(a) and sign function y(a) = sgn(a). (b) Sigmoid function y(a) = 1/(1 − e−a) and
step function y(a) = H(a).

Proposition. A Hopfield network with n units and asynchronous dynamics, which starts from any
given network state, eventually reaches a stable state at a local minimum of the energy function.

Proof. We will show that the energy strictly dicreases under each non-trivial update. Since the energy
is bounded from below and there are only a finite number of configuration this process will end in a
local minimum at some point where no flip of a single neuron’s state leads to a lower energy. Let us
imagine that neuron k is chosen for an update. If the activation ak = wkx− θk has the same sign as
xk there is no non-trivial update. Otherwise the neuron will flip to x′k = −xk (while all others retain
their value) and we may assume that ak, x

′
k and −xk all have the same sign. We then calculate (using

the symmetry wij = wji)

∆E = E(x′|W, θ)− E(x|W, θ)

= −1

2

∑
i,j

x′iwijx
′
j +

∑
i

θix
′
i +

1

2

∑
i,j

xiwijxj −
∑
i

θixi

= −
∑
j

x′kwkjx
′
j +

∑
j

xkwkjxj + θk(x
′
k − xk) . (4)

With wkk = 0 and x′j = xj for j 6= k this simplifies to

∆E = −(x′k − xk)
[∑

j

wkjxj − θk
]

= −2x′kak < 0 . (5)

Hence the energy decreases and this decrease is strict whenever ak 6= 0.

Remark. We are safe to assume ak 6= 0 in the previous proof by assuming that the neuron keeps its
current state if ak = 0 (even though this is not quite what is expressed by the sign function originally).

Remark. The previous Proposition relies on the asynchronicity of updates, the absence of self-
connections and the fact that weights are symmetric. If any of these conditions is violated, convergence
will not hold for general starting states.

Remark. A similar statement holds for the continuous case. In this case the energy function is more
complicated and reads

E(x|W, θ) = −1

2
xTWx−

∑
i

H
(e)
2

(1

2
(1 + xi)

)
, (6)

5

x1

x2

Figure 4: Schematic picture of the dynamics of a Hopfield network. Depicted is the space of possible
states, together with fixed points (stable and unstable) and regions of attraction.

where the extra term is given by

H
(e)
2 (q) = −q log q − (1− q) log(1− q) . (7)

It is an amusing fact that this is just the mean field free energy for the associated Z2 Ising spin model.
In that case xi is not the fundamental spin variable but rather interpreted as the expected magnetization
which can take arbitrary values in the interval [−1, 1].

In the theory of general dynamical systems a real-valued function defined on the space of states
that is bounded below and always decreases (or stays constant) under the time evolution is called
Lyapunov function.

Proposition. If a dynamical system has a Lyapunov function then its dynamics are bound to settle
down to a fixed point (which is a local minimum) or a limit cycle (on which the function is constant).

Remark. A Lyapunov function divides the state space into different basins of attraction, one for each
attractive fixed point.

4 Learning and stability

Training a neural network amounts to finding the values of w that approximate a desired function
best. From a general perspective this can be interpreted as a search in weight space with a suitable
value function, e.g. through fixed point iteration using gradients.

In the case of a Hopfield network, the goal of the learning process is to make a set of given states
x(σ) stable states of the network (i.e. fixed points under iteration). Instead of using more sophisticated
methods, it is common to simply set

wij = η
∑
σ

x
(σ)
i x

(σ)
j , (8)

where η is an arbitrary constant. This is known as Hebbian learning [4]. We will discuss below in
which sense this is a good or bad choice. It should be noted though that there are other methods that
have a higher degree of reliability. Hebbian learning works best if the memory states that are meant
to be learned are nearly orthogonal.

Remark. One can set η = 1/N to prevent the weights from growing with the number of memories.

Let us briefly discuss possible reasons for failure to store the desired memories:

6

• Memories are corrupted, i.e. the stable state of the network is slightly off

• Memories might be missing, either because there is no stable fixed point for them or the region
of attraction is too small to be useful

• There may be additional fixed points, either corresponding to undesired memories or to variations
thereof (mixes, reflections, ...)

Let us consider the problem of how many randomly chosen binary patterns can be stored in a
Hopfield network with n neurons. The weights have been described in Eq. (8). Choosing a memory
x(l) as the start configuration we can express the weights (for i 6= j) as

wij = x
(l)
i x

(l)
j +

∑
m(6=l)

x
(m)
i x

(m)
j (9)

and this gives rise to the activations (since x
(l)
j x

(l)
j = 1)

ai =
∑
j(6=i)

wijx
(l)
j =

∑
j(6=i)

x
(l)
i x

(l)
j x

(l)
j +

∑
j(6=i)

∑
m(6=l)

x
(m)
i x

(m)
j x

(l)
j = (n− 1)x

(l)
i + noise . (10)

The bit i is stable if ai has the same sign as x
(l)
i , i.e. if the noise term is sufficiently small. A closer

inspection shows that, for large n and N , ai is a Gaussian random variable with mean Ix
(l)
i and

variance IN . If we try to store N ≈ 0.18n patterns in the Hopfield network there is a 1% chance
that a specified bit is flipped. Using methods of statistical physics it has been analyzed under which
conditions the memories are stable under multiple iterations [5]. In this case one can store up to
0.138n patterns, each with an error rate of 1.6%. Generally, there will be competition with random
stable states that have lower energies. This ceases to be the case for N < 0.05n, i.e. then the desired
memories are the lowest energy states.

A statistical analysis concerning the storage of N randomly distributed patterns [2, Exercise 42.7]
gives the following

Proposition. Let us assume that the desired patterns are completely stable (no bit-flip occurs), with
a total error probability of less than ε� 1. In this case the maximum number of patterns that can be
stored in a Hopfield network with n neurons and Hebbian learning is

Nmax ∼
n

4 ln(n) + 2 ln(1/ε)
(11)

The number increases if we allow a small amount of corruption of individual memories to occur.

5 Selected applications of Hopfield networks

N rooks problem

Problem. Place N rooks on a N ×N chessboard such that no figure can take another.

We label the positions on the board by a pair (i, j) and define xij = 1 if a rook is located at
(i, j) and xij = −1 if not. A solution will need to have precisely one rook per row and column. The
formulation is more transparent when working with binary numbers nij = 1

2(1 + xij). The number of
rooks in row i and the number of rooks in column i is

N r
i =

∑
j

nij and N c
i =

∑
j

nji (12)

7

The idea is to give configurations that do not satisfy the desired conditions a high energy compared
to the desired ones and hence a natural energy function for this problem is

Erooks =
∑
i

(N r
i − 1)2 +

∑
i

(N c
i − 1)2 . (13)

The energy vanishes if and only if N r
i = N c

i = 1 for all i. Since E ≥ 0, this function thus has global
minima at the desired locations. Obviously, one can easily determine the associated matrix W and
threshold vector θ (thresholds are all −1 and weights are −2 along rows and columns and 0 otherwise).

Traveling salesman problem (TSP)

Problem. Given a set of N cities together with their mutual distances dij find the shortest tour that
visits each city precisely once.

We use one index for the city and one for its position in the tour. In other words, nij = 1 if
city i is the jth destination visited and nij = 0 if not (where nij = 1

2(1 + xij) as previously). This
interpretation relies on having a “valid configuration” with the matrix (nij) only having a single 1 in
each row and column and the other entries being 0. This can be enforced in the same way as in the
N rooks problem.

On the other hand, the weights also need to encode the cost function that we try to minimize. We
thus need to have another term in the energy function which, for a valid tour, is proportional to the
total distance. This can be achieved by

ETSP = Erooks + ξ
∑
i 6=j

dij
∑
l

nilnjl+1 (14)

The parameter ξ may be used to tune the relative importance of “having a valid tour” and “minimizing
the distance”. For large problems there tend to be local minima that do not correspond to valid tours.
This can be rectified but the presentation of the corresponding methods is beyond the scope of this
introduction. A detailed analysis of the performance of the Hopfield network approach to the Travelling
Salesman Problem can be found in [6].

The Traveling Salesman Problem illustrates a general issue faced in optimization: Complex com-
binatorial problems produce an energy function with an exponentially large number of local minima.
In the physics literature such systems are known under the name “spin glass”.

References

[1] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the National Academy of Sciences 79 (1982) 2554–2558,
https://www.pnas.org/content/79/8/2554.full.pdf.

[2] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms. Cambridge University
Press, New York, NY, USA, 2002.

[3] R. Rojas, Neural Networks: A Systematic Introduction. Springer-Verlag, Berlin, Heidelberg, 1996.

[4] D. Hebb, The organization of behavior: A neuropsycholocigal theory. John Wiley & Sons Inc,
1949.

[5] D. J. Amit, H. Gutfreund, and H. Sompolinsky, “Storing infinite numbers of patterns in a
spin-glass model of neural networks,” Phys. Rev. Lett. 55 (1985) 1530–1533.

[6] S. V. Aiyer, M. Niranjan, and F. Fallside, “A theoretical investigation into the performance of
the hopfield model,” IEEE transactions on neural networks 1 (1990) 204–215.

8

http://dx.doi.org/10.1073/pnas.79.8.2554
http://arxiv.org/abs/https://www.pnas.org/content/79/8/2554.full.pdf
http://dx.doi.org/10.1103/PhysRevLett.55.1530

	Overview and Summary
	From single neurons to a neural network
	The energy function and convergence
	Learning and stability
	Selected applications of Hopfield networks

