1 Organisation and interference

We are interested in creating programs which we are not able to write by hand.
Many useful tasks fall into this category, such as image recognition, playing perfect
Go, proof synthesis, and translation of natural language. In this paper (Intelligent
Machinery, 1948) [1], Turing proposes a possible method by which this could be done,
with a simple model of reinforcement learning.

Definition 1.1. Consider a class of machines built from some kind of standard com-
ponents. Machines which are constructed in a systematic way to achieve some purpose
are called organised. Otherwise, machines which are constructed in largely random
way are called unorganised.

It is worth emphasising that this refers to the way in which the machine is con-
structed. It is also of course subjective; a construction could be regarded as organised
by one person and unorganised by another.

We will be interested in modifying machines to make them more adept at performing
a particular task. One way in which we could do this would be to rebuild or reprogram
the machine entirely; we will call this screwdriver modification. In the language of
Turing machines, this would be analogous to replacing the transition function of a
TM by another. Another type is paper modification, which is modification of the
machine’s behaviour merely by communicating information to the machine. This is
analogous to changing the code string which is fed to a universal Turing machine.
We will mainly be interested in paper modification. In the context of modern neural
networks, screwdriver modification is analogous to changing the neural net architecture,
while paper modification is tuning the weights.

2 A-type and B-type machines

Informally speaking, a node is a memory unit which stores a single bit, and has
two input terminals and zero or more output terminals. Each node is connected to a
central clock which emits pulses at regular intervals; we write N; € {0, 1} for the state
of a node N at time ¢t € N. If the input terminals of a node N are connected to the
output terminals of nodes A and B, then the update rule is

Nt+1 =1—-AB; = ADB,.

Definition 2.1. An A-type machine consists of a finite set N of nodes, a subset
Z C N of input nodes, a nonempty subset @ C N of output nodes, a function s, :
N\Z — {0,1}, and a function i : N\ Z - N x N.

We draw A-type machines as a directed graph of nodes, where each non-input node
has exactly two incoming edges, specified by the function .

Definition 2.2. A state of an A-type machine is a function s : N' — {0,1}. The
time evolution of an A-type machine on input h : Z — {0,1} is a sequence of states
S0, S1, S92, ... Where

So(x) _ {Sinit(az) T ¢ z s 1(1_) _ {1 - St(il(ﬂf))st(ig(l’)) X g_ﬁ v
h(l‘) rel * h,(x) reT

where i1, 7o denote projection of 7 onto the first and second coordinate. As above, we
will usually write x; := s;(x) to be the state of the node x at time ¢. The output of
the machine at time ¢ is s;|o : O — {0, 1}.

Example 2.3. Consider the following A-type machine:

The update rules are

At+1 =1- B,C;
By =1—CiEy
Ct+1 =1— D F;
Dy =1—CiDy
Eio1 = 1— B,E,.

A possible run of such a machine (starting from a random initial configuration) is

time |1 2 3 4 5 6
Al 1 0 0 1 0
B|{1 1 1 0 1 0
cjio 1 1111
D0 1 01 0 1
E|{1l1 01 0 1 0

Behaviour after this point is clearly periodic (as must be true of a deterministic machine
with finitely many states).

Definition 2.4. A B-type connection! is

The nodes marked X and Y are called the weight nodes.
A B-type machine is any machine which is obtained by replacing every edge in
an A-type machine by a B-type connection.

The behaviour of a B-type connection depends on the initial configuration of the
two weight nodes.

o If Xy # Y, then Y, =Y, for all t.

Yy teven

o If Xog=Y,, thenY, =<¢__
Yy todd.

It follows that the output at time ¢ of a B-type connection whose input node is A is

1 Xo=1land Y5 =0
_ 1 }/;_1 = 0
Ao Y = =4 A Xo=0and Yy =1
Ay Y =1
alternates X, = Yj.

Note that there is an additional delay of two moments in passing through a B-type
connection. So with appropriate initial conditions of the weight nodes, the B-type
connection can be made to act as either a normal A-type connection (ignoring the
delay), or a constant signal 1, or to alternate between the two behaviours in consecutive
timesteps.

3 Education of machinery

Our goal is to convert an unorganised machine into an organised machine by appro-
priate training.

In Turing’s paper, he defines a B-type connection as one which does not have the additional
node in the top left. It turns out that in this case, the resulting class of B-type machines is too
computationally weak to be useful. The B-type node (an A-type node with two incoming B-type
connections) is essentially an OR gate. It is well known that OR gates are not functionally complete,
so B-type machines are not capable of expressing all boolean functions. The fix we describe was
proposed by Teuscher; see [2].

Turing’s idea is to regularly provide a machine with reward and punishment sig-
nals. The description of a machine contains some uncertain information, and tentative
choices are made for the value of nodes. Whenever a reward signal is received, the
tentative choices are made permanent, and whenever a punishment signal is received,
the tentative choices are randomly reassigned.

This has the advantage in that it allows a teacher to provide feedback without being
able to write the program themselves. However there is a significant flaw in that it does
not allow any ‘fine-tuning’; a reward signal locks too much in place. It would of course
be possible that only some of the tentative choices were actually correct, but the reward
signal makes all of them permanent.

We will instead present a variant of Turing’s idea which provides a greater degree
of control, by including uncertainty in the nodes. The teacher can then provide graded
feedback so that the distributions may converge towards the correct behaviour.

For a finite set X, let AX denote the set of probability distributions over X.

Definition 3.1. A state of a probabilistic A-type machine is a function s : N —
A{0,1}. The time evolution on input h : Z — A{0,1} is a sequence of states
S0, 51,52, ... where

so(x) = {Simt('”) v ¢l sea(2) = {AﬁaND(st(il(x)),st<z'2(x))) v ¢7T
i) el h(x) rel

where 73,1 are projection and AY\np is the map making the following commute.

A{0,1} x A{0,1} — R{0,1} x R{0,1} (po -0+ py - 1_,_q0 0+q-1)
R{O,1}<§>R{o, 1} Zaﬁpa%ﬁ ra® B
ANAND RA
R{(\): 1} (Poqo + poq1 + pjlj(lo) 0+ piqu -
R—
A{0.1] - R{0.1) (oo + Pos + prao) - 1+ s -

Note that if there is no uncertainty then this is simply an ordinary A-type machine.
We define a probabilistic B-type machine in the obvious way.

For the remainder of this section, let n = |O| be the number of output bits of a fixed
probabilistic B-type machine. Suppose that an external teacher has a way of assigning

4

a real number to each possible output string; that is, a function
c:{0,1}" = R.

A higher value ¢(x) corresponds to the teacher being less satisfied with the output x.
Given a probabilistic B-type machine, let WV denote the set of weight nodes. Assume
that we run the machine for ¢ timesteps, at which time the teacher looks at the output
bits p = slo : O — A{0,1}. How should we adjust these input weights — more
precisely, the distributions {so(w)},ew — in response to the feedback given by ¢?
It is convenient to reparametrise the weight distributions by defining? a = (a% al),ew

w? w
where

a9

e’w n e
ea% + e%lu ea% + eaqlu

as this will ensure that we remain inside the probability simplex after each adjustment.

ay,

so(w) =

Y

Definition 3.2. Define the loss function of as the expected value of ¢ over all possible
output strings x:

L(p) = Z pi(@1) ... pa(zn)c(x).

xe{0,1}n

Since p is a function of the weight vector a, so is L; we define the update rule for the
weights of the B-type Turing machine as

a'=a—(VL(a),

where ¢ is the learning rate. We update the weights using this rule for some number of
steps after each reinforcement.

Example 3.3. Say that n = |O| = 1. The weight vector a = (a%, al),ew is updated
according to the rules

o)

(a®) = a” _Eﬁp_(()) ¢(0) Bk

w

c(1).

a

4 References

1. A.M. Turing, Intelligent Machinery, 1948.
2. C. Teuscher, Turing’s Connectionism, Springer 2002.

3. J. Clift, D. Murfet, Derivatives of Turing Machines in Linear Logic, arXiv:1805.11813

2Note that the a® are not uniquely determined.

https://arxiv.org/abs/1805.11813

	Organisation and interference
	A-type and B-type machines
	Education of machinery
	References

