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①

Introduction to Reinforcement Learning
1219119

This lecture introduces the basic reinforcement
learning setup of a finite

Markov decision
process

( MDP )
,

the concepts of policies and value functions

the
"

duality
"

between them
,

and the proof that
 "

optimal
"

policies
and

value functions exist provided future rewards are discounted
.

There is substantial

overlap between this lecture and Lecture 14 of
my

class MAST 30026 C see

) which
you

can consult for some details omitted here
.

The standard references include :

•

S
. Russell

,

P
. Norvig

"

Artificial intelligence : a modern approach

"

3rd ed
.

517-2.3

• R
.

s . Sutton
,

A. G. Barto
"

Reinforcement learning
"

DEI A finite MDP is a finite set S of states
,

a finite set A of actions
,

for each SES a subset A C s ) Et of allowed actions in state s
,

a

reward function R : S → IR and for each
pair

SES
,

a EA I s )

a probability distribution Pls
'

Is
,

a ) overstates s
'

ES
.

The interpretation is that an agent interacts with an environment
,

which

has state
space

S
,

via actions which cause the environment to
undergo

transitions according to the distribution P
,

and in each I discrete ) time step

the agent receives rewards
.

The goat of the agent is to act in such a
way

to obtain

the maximal reward
,

in a sense to be specified more carefully in a moment
.
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For simplicity we assume there is a special initial state Sin it E S and a subset

of terminal states Stern E S
.

Assume R ( sin  it )
= O

.

DEI An episode e is a finite sequence

n

ro
,

So
,

ao
,

ri
,

Si
,

91
,

ra
,

Sz
,

92
,

. . .

,

rn
,

Sn i. e
.

e = { ( ri
,

Si
,

ai ) }
i

 
= ,

satisfying the following conditions :

( i ) So
=

Sin it
,

Sn E S term

Iii ) Si ES and ai EA ( si ) for all O E ish

I iii ) ri
 = R ( Si ) for OE is n

.

The set of all episodes is denoted E
.

( it
may

be infinite ! )

The discounted reward ( with fixed discount factor 0<84 ) of a sequence

s
= ( si ) o of states is

RIE
,

r ) It
> o

Tt R I se ) .

The problem of optimal control is to determine how an agent should behave ( that is
,

what actions it should choose ) so as to maximise the expected value of the

discounted reward over all episodes . More precisely ,

with DX E R×
denoting the

space
of probability distributions on a finite set X

,

with the subspace topology :

DEI A policy is a function IT : S → DA such that for all SES
,

the distribution Tls ) ( which we write as IT ( at s ) :  =

Tls ) ( a ) ) satisfies

If at s ) = O whenever a ¢ Als )
.

( sometimes called a stochastic policy )
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Giving
S the discrete topology ,

let 7 E Cts ( S
,

SA ) be the set of all

policies with the subspace topology ( giving
Cts IS

,
SA )

=D
AT the

compact
-

open topology
,

or equivalently the product topology ) .

This topology

is determined
by

the metric do on 7
,

where ( we can use
any Lipschitz equiv .

metric on

IRIS
'

z DA )

do ( T
,

IT
'

) = s

ups es Supa eats ,
I Flats ) - IT

'

I at s ) I
.

For the reader 's convenience I will refer to proofs of various facts below given

in
my

MAST 30026 class
,

but this is standard material which can be found in

many places .

DEI Given an episode e
= { ( ri

,
si

,

ai ) ) It and
policy

TIE P the probability

of e occurring if the agent acts according to IT is

Pa ( e ) : = IT !I
'

Thai Isi ) .o P ( sit ,
I si

,
ai )

.

The expected discounted reward of IT is

E ( Rx ) :  = I Pale ) . Rts
,

r )

e =

LEE
,
E)

Lemma There exists a policy
# which is optimal ,

in the sense that for all PEP
,

E ( Rt ) > El Rp )
.

Proof E ( Ra ) : 7 → R is continuous
,

and we claim P is compact,
so that

the claim follows from the extreme value theorem ( Corollary Lol -

4)
.

Note

that ( At )
s

= Tls
c. s

AA is a finite product of compact spaces
( At EIR

' At

is closed and bounded ) hence compact .
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For each se S
,

A Cs ) EA
means

A Als ) is a closed subset of DA
,

hence

7 = Thes SAIS ) E Thes DA

is a closed subset
,

hence compact . D

Of course there
may

be more than one optimal policy .

However
,

the above argument

is not constructive
,

so it is not clear how to find such a policy .

However there is

a general trick :
 if

you
want to optimise a function f

, rephrase the optimisation

problem as a fixed point
problem for a different function

g
Cree Lecture 14

for examples of this ) .

This leads us to value functions .

DEI Set rmax
=

sups

est
Rls ) I and H = ,m .

DEI The
space of value functions is U = Cts ( S

,

EH
,

HI ) =L
-

H
,
HIS with the

compact
-

open topology ( i. e. the
sup

metric ) .

This is a complete metric
space ,

which is also compact .

Lemme Let
 

IT ED be a policy .

Then

Ioa
: U → U defined by

Ffv) l s ) = Rls ) t

V¥g¥
,

,X(
at s ) Pls

'

Is
,
a) Us

'

)

is a contraction mapping ,with contraction factor 8
.

Boot Set E- Ex . First we should check this is well - defined
,

ie .  if

Hls
)

K
H for all SE S

then I Iou ) l s ) I E H for all SES
.

But

I Iolxlls ) I E rmax t TH = H



⑤

To
prove

I is a contraction observe that

I Iou ) l s )
- Iof

wks
) I =

81€
I Hats ) Pls

'

Is
,
at ( vlsi ) -

way
) )

at ACS )

E

8¥s€q
,

Thats ) Pls
'

Is
, all vlsi ) - w Is 'll

E 8 do ( Yw )
.

D

Recall that by the Banach fixed point theorem
any

contraction
mapping

It
.

- U → U

on a complete metric
space

U has a unique fixed point fix ( Io ) which
may

be computed from
any

initial to EU by iterating I
.

In the situation of

the lemma
, beginning with Yo = O we obtain Vo

,

V
,

= Tex ( Vo )
,

K
= Etf ( to )

,
. .

.

v
,

I s ) = Tea ( xo ) ( s ) = Rls )

Vals ) = Ioa ( v. ) I s ) = Rls ) tT¥€f,T(
als ) Pls

'

Is
,
a) Rls

'

)

Vs ( s ) = Tea ( " 2) I s ) = Rls ) t T÷g ¥
,
,T

lats ) Pls
'

Is
, a) Rls

'

)

+

8÷E ,

I Thats ) Pls
'

Is
,

a ) .

a e AH
IT ( alls 1) Pls

"

1st
,

a
'
) Rls

"

)
at C- Als

'

)

DEI Letta EV denote the unique fixed point of Ex
.

We call Va the

evaluation of the policy IT
.

The above shows that Vals ) contains contributions fwm all paths in stale
space

beginning at s .
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If Ion → Io is a sequence of contraction mappings with the same contraction factor 8

converging uniformly to Io
,

then fix ( Ion ) → fix I Io ) since ( writing an
= fix I En )

and u = fix I Io ) )

du ( un
,

u ) = do ( En ( an )
,

Iola ) )

E do ( En I un )
,

Ion I u ) ) t du ( Tenth
,

Iola ) )

⇐ 8 do ( un
,

a ) t do ( En
,

Io )

and hence du I un
,

u ) E ( I - H

' '

do ( Ten
,

Io )
.

Remarks Since U is compact
,

the compact
-

open topology on Cts 140 )
agrees

with the topology associated to the
sup

- metic do
.

Let Ctrl U
,

O ) Ects 10,0 ) denote the set of 8- contraction mappings

with the
subspace topology .

Deff Policy evaluation is the continuous function

Iot , fix

7 > Ctr ( 0,0 ) > U

TL 1-7 Tea 1-7 fix ( Ioa )

which sends a policy IT to the
unique

solution in Ucf the equation

VCs )
= Rls ) t

V¥g¥
,

,X(
als ) Pls

'

Is
,
a) VCs

'

)

It is traditional to denote this value function by VE
.



⑦

Remark To see Ect is continuous
,

note that

do I Ex
, Ep ) =

jyp
du I Ext )

, Eph ) )

=

III gyps
I Ex Hls )

-

Eph Ks ) I

⇐LEE SEE Es ¥
,

I Hats ) -

plats) I Pls
'
Is

,
a) Ivey I

⇐

LEE SEE Is ¥
,

I Hats ) -

plats) I Pls
'
Is

,
a) H

±stfu !EPs fans
,

dad The ) .

H

E htt . H . do ( Tl
, p )

To briefly summarise : associated to
any finite MDP we have a compact space

7 of policies ,
a compact space

U of value functions
,

a continuous function

El Rts ) : P → R
assigning to each policy the expected discounted reward

,

and a continuous policy evaluation 7 → U sending
TL to Va .



⑧

Theorem There is a unique solution v*EU of the Bellman equation

VCs )
= Rls ) t T

sup ¥g
Pls

'

Is
,
a) VCs

'

)
.

( * )

a C- Acs )

This v* is the evaluation of an optimal policy
It

,

and

we call v

*

the optimal
value

function .

Proof The Bellman equation gives
a contraction

map
E : U → U which has

a unique fixed point
,

i. e. a unique solution to ft ) exists .

If we define

IT
*

to be the deterministic policy

IT
*

( s ) =

argmaxae Afs , ¥
,

Pls
'

Is
,

a ) # ( s
'

)

then it is
easy

to check Htt
 = Vt

,
so it only remains to show It

is optimal .

Let v be a value function and
suppose

Vls
) E VHS )

for all SES
.

Then for any policy
IT

¥
v ) C s ) = Rls ) t T I If als ) I Pls

'

Is
,
a)

vest
)

a EA I s ) s
'

E S

⇐ Rls ) to Flats )
as:#

,

{ ⇐
Pls

'

Is, a) Hs
'

) )

= Rls ) t T sup I Pls
'

Is ,
a ) v I s

'

)

a C- Als ) s
'

E S

⇐ R ( s ) t T sup I Pl s
'

Is
,

a ) ut 1st ) = v
*

I s )

af A ( s )
s

'

C- S

Hence next implies Io
# I v ) E v*

.

But
taking the limit we obtain

that Va E Vt ( since we
may

start with x =
- M )

,
and in particular

E ( Ra ) = Va ( s init ) E V

't

( sin  it ) = E ( Rax ) so that TH is optimal . D
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Remark A
policy is

"

implicit
"

in the sense that it dictates the immediate

behaviour in a given
state

,
whereas a value function is

"

explicit
"

in the sense that it contains global information about the long
- run

consequences
of a behaviour .

It seems reasonable to
compare

the policy
TL to an algorithm and YT to the function that

this algorithm computes,
with the fixed point iteration being

analogous to the
process of computation itself

.


