
Distributed consensus for models of logic

Daniel Murfet

June 6, 2019

Abstract

Using proof-of-work as a distributed consensus algorithm we propose a practical
method for implementing a network which maintains a distributed and evolving
model of an arbitrary first-order logical theory, in a way compatible with a certain
class of changes in the underlying theory. The network which maintains the model
also maintains a list of conjectures about the model, the state of knowledge about
which is encoded in a prediction market.

1 Introduction

Distributed consensus is the cryptographic process that members of a cryptocurrency
network use to synchronise their individual copies of the complete history of transactions.
This globally coherent history is usually referred to as the blockchain [2]. The fact of this
global coherence, together with the verification of the lack of double-spending at the time
of incorporation of transactions into the blockchain, has an emergent consequence: the
existence of a unit of cryptocurrency (Bitcoin, say) with certain logical properties.

In this sense the Bitcoin network is a logical community : the energy expended in the
proof-of-work protocol can be viewed as the cost of instantiating an emergent logical order
with desirable properties (scarcity) on top of more fundamental computational degrees of
freedom (the bits of the computers in the network) which do not possess those properties.1

This note explores the general case of this idea, where the logical order is described by an
arbitrary first-order theory, and the analogue of the blockchain maintains a distributed
globally coherent model of that theory, which may be modified locally by any participant
in the network according to a prescribed set of incremental transformations. We call this
globally coherent history of transformations the proofchain. We hope that proofchains can
help to enable new forms of cooperation, by creating logical communities with economic
incentives that are more productive than the prevailing ones.

1Much as models of topological order based on surface codes [10] expend considerable time and classical
computation in order to engineer emergent topological order on top of lattices of qubits.

1

The details of the proposal are given in the next section. To motivate the definitions,
let us first imagine a decentralised community maintaining a shared repository of formally
verified software components. To explain how novel kinds of markets could help incentivise
the activity of such communities, we provide the following cartoon:

Example 1.1. Suppose a user wishes to commission software with specification T con-
sisting of minimal requirements S plus security constraints S 0, so that T = S + S 0. This
request is posted to the proofchain network together with cryptocurrency bounties funding
the work, and the following activity ensues:

• Users survey the existing library {(Ti,Mi)}i2I of software maintained in a tamper-
evident and distributed way by the proofchain. The library consists of specifications
Ti together with softwareMi fulfilling the specification. If necessary new components
are commissioned with their own bounties. Once the work is complete and code M
satisfying S has been synthesised, users receive the bounty associated to S.

• To determine whether M satisfies the security constraints S 0 a prediction market
is opened, capitalised by the bounty, where users buy and sell shares in the payo↵
from a successful proof of the conjectures S 0 about the code M . We refer to this
as a conjecture market. The price of these shares gives an objective measure of the
knowledge of the community about whether M satisfies S 0 [15].

A user who possesses a proof ⇡ of S 0 can buy all open shares in the market, and then
broadcast ⇡ onto the network, at which point the network protocol automatically
closes the market and distributes the payo↵s. To produce a proof ⇡ means, generally
speaking, to first prove properties 1, . . . , k of the components N1, . . . , Nk used to
assemble M . The market value of ⇡ determined by the bounty implies a market
value for 1, . . . , k, by arbitrage between conjecture markets, in a recursive process.
Users react to the market incentive by proving the fine-grained conjectures, and the
results are collected into a proof ⇡ of S 0 for M .

The integrity of this process is guaranteed by the distributed consensus mechanism.

2 First-order logic

2.1 Languages, theories and models

Our main reference is [1, §X.1]. A first-order language L is given by a collection of “sorts”
(or “types”) X, Y, . . . collections of relation symbols R, S, . . . and of function symbols
f, g, . . . and possibly some constants c, d, The relation symbols may include properties
(unary relations). Each relation symbol is given together with the sorts of its arguments.
For instance, R could be a binary relation taking an argument x of sortX and an argument
y of sort Y , in which case we write R ✓ X ⇥ Y . Similarly each function symbol f of the

2

language is given with the sorts of its arguments, and the sort of its output. We write

f : X1 ⇥ · · ·⇥Xn �! Y

if f takes n arguments of sorts X1, . . . , Xn respectively to a value of sort Y . Each constant
c of the language is given with a specified sort X, and we write c 2 X. We also assume
that for each sort X the language has infinitely many variables x1, x2, x3, . . . of that sort.
With such a language L one can build up terms and formulas in the usual way, and define
an interpretation of the language in sets or in an arbitrary topos [1, §X.2]. A first-order
theory T in the language L is just a set of formulas, then called the axioms of T . A model
of T is an interpretation M of L in which all the axioms of T are valid.

Remark 2.1.For the application we have in mind, the relevant kind of topoi (besides the
topos of sets Sets and of finite sets FinSets) are those obtained as the category of types
and terms in a higher-order logic; see [4, §II.1] and [3, Lecture 9].

Example 2.2.The theory of abelian groups can be formulated in the language L con-
taining one sort X, no relation symbols, two function symbols + : X ⇥ X �! X and
� : X �! X and one constant 0 2 X, with axioms including (x + y) + z = x + (y + z).
A model of this theory in the topos of sets is simply an abelian group, in the usual sense.

Example 2.3.The theory of standard Bitcoin can be formulated in the language L con-
taining two sorts C, P (representing the set of coins and public keys, respectively) and a
single function f : C �! P . A model M in Sets is just a function assigning public keys
to coins. Such a function represents the state of the allocation of cryptocurrency at any
given time.2 Then, roughly speaking, the Bitcoin blockchain is a sequence

M1,M2,M3, . . . ,Mn,Mn+1, . . .

of models where Mn+1 is obtained from Mn by an allowed operation (a transaction).

3 The proofchain

Throughout this section we fix a topos E where we take models. We assume that there is
an e↵ective computational means of describing models in E by binary strings (for example,
models in the topos of finite sets have such a description, as do models in the topos of
types and terms in a higher-order logic as in [4, §II.1], so this is not a strong restriction).
We call such strings codes and write c(M) for the code of a model M in E .

Definition 3.1.A logical order is the data of

2In Bitcoin coins are defined to be chains of transactions starting from either the genesis block or
blocks where the coins were “mined” but given that the blockchain is a linear chain of hashes and there
are ultimately only finitely many satoshis, there is e↵ectively an enumeration of satoshis according to
which we may take C = {1, . . . , N} for some large integer N .

3

• A first-order geometric theory T ,

• A finite set of conjectures, which are formulas in the language of T , and which are
associated to particular versions of the model identified by transaction identifier,

• A set of allowed transactions on models of T .

The allowed transactions are represented by a polynomial time boolean-valued com-
putable function A(p, c(M), c(M 0), ⌧) of a public key p, a pairM,M 0 of models represented
by their codes, and an algorithm ⌧ which represents the change, that is, which computes
M 0 from M . The function A evaluates to true if and only if the user with public key p is
allowed to transition the model from M to M 0 via the transaction ⌧ . For more details on
the nature of the algorithms ⌧ that we allow as transactions, see Section 5.3.

We restrict to geometric theories [1, §X.3] so that we have a good theory of “transfer”
of models along change of logical order (see Section 5.2 and Section A). This may not
be necessary. The restriction to geometric theories is a real restriction, but Vickers has
argued for why it is reasonable in the setting of software specification [5, 6].

In the remainder of this section we give a preliminary sketch of the proofchain protocol,
with minimal detail about the role of conjectures or the language in which the transactions
⌧ are to be written. For more information see Section 5 below.

Example 3.2. In the case of TBitcoin the function A(p, c(M), c(M 0), ⌧) would evaluate to
true if and only if the function f 0 : C �! P giving the data of M 0 is obtained from the
function f : C �! P giving the data of M by replacing a pair (c, ps) consisting of a single
coin c and a public key ps (the source) with a pair (c, pt) (the target), p = ps and ⌧ is the
algorithm which performs that rewrite of f to f 0.

Example 3.3.Let T be the theory of linear orders in the sense of [1, §VIII.8] so that the
category of models Mod(T) in the topos Sets is equivalent to the category of simplicial
sets [1, Theorem VIII.5]. Let the set of allowed transactions be the addition or deletion
of a single vertex in the model M , that is, in the simplicial set encoded by the model,
together with the necessary modifications to the face and degeneracy maps so that the
constraints of being a simplicial set remain satisfied. Moreover by using the input p the
function A could e↵ectively allow public keys to own subsets of vertices, in the sense that
only a given user is allowed to initiate transactions that remove those vertices.

The proofchain, specified below, solves the problem of distributed and decentralised
consensus about a single model M of the theory T , whose evolution in time is constrained
by the set of allowed transactions described by A. That is, the proofchain instantiates
the given logical order. The details are the obvious modifications of [2]. The proofchain
is, roughly speaking, a crytographically secured sequence

c(M1), (p1, c(M1), c(M2), ⌧1), c(M2), (p2, c(M2), c(M3), ⌧2), . . . , c(Mn) (1)

where Mi are models for i � 1, the pi are public keys, and for all i � 1

A(pi, c(Mi), c(Mi+1), ⌧i) = true .

4

In order that the ith transaction is authenticated as being initiated by the user with public
key pi, and in order that this user cannot deny having sent the transaction, we require as
in the Bitcoin blockchain that the user digitally signs the pair

c(Mi), (pi, c(Mi), c(Mi+1), ⌧i)

with their private key. A block consists of a sequence (1) satisfying the given constraints,
together with the digital signatures and the hash of another block (the parent block) and
a nonce. The proof-of-work consists of incrementing the nonce until a value is found that
gives the block’s hash some required number of zero bits.

The steps to run the network are as follows [2, §5]:

(1) New transactions are broadcast to all nodes

(2) Each node collects new transactions into a block

(3) Each node works on finding a di�cult proof-of-work for its block

(4) When a node finds a proof-of-work, it broadcasts the block to all nodes

(5) Nodes accept the block only if all transactions in it are valid

(6) Nodes express their acceptance of the block by working on creating the next block
in the chain, using the hash of the accepted block as the previous hash

The only di↵erence to the Bitcoin blockchain protocol lies in step (5) where we use a more
general notion of validity, based on the function A. Nodes always consider the longest
chain to be the correct one and will keep working on extending it, and in this way the
energy expended in proof-of-work creates a distributed consensus on a model M . The
other details (such as the block verification protocol) follow Bitcoin.

Summary: the proofchain secures the fact that the data M is (in the same approxi-
mate sense as in the usual blockchain) guaranteed to both be a model of the given logical
theory, and also to have evolved from its initial state according to the allowed set of
possible transactions as described by the logical order.

Remark 3.4.The computational cost of verifying the constraint on transactions in the
Bitcoin blockchain (of no double spending) is low and does not scale with the number
of coins or available public keys. In principle, however, our proofchain has an arbitrarily
high computational cost per transaction: the cost of evaluating the function A must be
paid both by nodes forming blocks, and also in the block verification stage by other nodes
before they accept and retransmit blocks. This cost involves verifying the axioms of the
theory T for the new state of the model, and these axioms may involve quantification over
a large set (say of vertices in a simplicial set, in the case of the theory of linear orders).

On the one hand this cost can be compensated by either mining (as in Bitcoin) or by
transaction fees, and on the other hand one should design the set of allowed transactions

5

so that A has a time complexity which is as low as possible. Ideally, it should be possible
to infer cheaply from the hypothesis that M is a model and that ⌧ belongs to an allowed
set of transactions that M 0 is also a model without directly checking that M 0 is a model
(i.e. independent of this knowledge of how it was constructed). For more see Section 5.4.

4 Examples

Just as proof-of-work in the Bitcoin network secures the existence of Bitcoins that can be
exchanged between network participants, proof-of-work in our setting could for example
secure the decentralised existence of a finite simplicial set (which is a model of the theory
of linear orders) to which network participants can add and destroy vertices, edges and
faces. Perhaps more usefully: a user who wishes a program authored to some specification
could encode the specification as a first-order theory and then initialise a proofchain
(incentivised by cryptocurrency) implementing the logical order described by that theory:
the analogue of transactions on this proofchain would be formally verified steps towards
the implementation of the specification, so that users can collaborate in a decentralised
and trustless way in the authoring of a complicated codebase; see Section 4.1.

First, we make a general comment. Let (T,A) be a logical order in the sense of the
previous section. It is good to keep in mind that the computational cost of instantiat-
ing this logical order, via the proofchain, means that there must be a strong rationale
(economic, aesthetic or otherwise) for the existence of this logical order. Ultimately this
means that there must be value in

(a) every member of the network having the same data M , and in

(b) every member of the network being confident that the data M does in fact obey the
axioms of T , that is, that M is a model of the logical theory.

In the case of T = TBitcoin the economic rationale is clear: obviously a currency is only
valuable if (a) everybody agrees on who owns what, and (b) if the currency is scarce, in
the sense that it cannot be double-spent.

4.1 Trustworthy software

Models of software are often formalised logically as a set of entities (sorts) and functions
or relations between these entities, subject to some contraints (axioms). This specification
is then given to a software engineer whose job it is to implement the specification, which
means to write a program which implements the specified behaviour. The problem here
is obvious: how do you trust that the program in fact implements the specification?

One of the popular specification languages is Z [7] which is based on first-order logic
and Zermelo-Fraenkel set theory. It is an international standard widely used in industry.
From the point of view of this note a specification is a first-order theory T and an im-
plementation of the specification is a model M of T in a topos E which is the syntactic

6

category of the implementation programming language [4]. From this point of view the
natural class of implementation languages are functional languages, obtained as extensions
fo the pure simply-typed lambda calculus, but see Section 5.3.

One of the central problems of modern software engineering is trust : how can the
author of the specification be sure that the software engineer has delivered an implemen-
tation that actually obeys the constraints of the specification? In most parts of software
engineering there is no practical cost-e↵ective solution to this problem and the guarantee
is merely a social contract (if your code has a bug you will be fired). In industrial and
military settings there are sometimes enough resources that the programmer or a third
party will be paid to prepare a proof of correctness, which is then presented to the relevant
stakeholders; an important modern example is seL4 [8]. But this proof only guarantees
correctness of a particular current state of the model, and may be worthless as soon as
the model is changed [9], see Section 5.2 below.

In practice the authority of the proof claim of the verification agent is also partly de-
pendent on the reputation of the agent, because the party who generates the specification
may not have the necessary understanding to fully check a proof that a given implemen-
tation is correct. This problem becomes even more serious when a third party3 wishes to
assess the reliability of the correctness claim of the implementation of the specification.
Let us suppose that some set of third parties wishes both to have high confidence in the
correctness of an implementation without relying on the authority of a central party and

further these parties wish to collaboratively extend the implementation over time.
Under these conditions there is economic value in

(a) every member of the network having the same implementation M , and

(b) in every member being confident that the implementation M is correct

and so this is valid use-case for a proofchain. In summary:

Example 4.1 (Specification).The first-order theory T is the specification of the desired
software system. The set of allowed transactions A are an allowed set of atomic changes
to the codebase. In its initial state the proofchain is a “trivial” solution to the constraints,
which is then extended by allowed transactions to a nontrivial solution. Some thought
is required to allow for “partial” specifications which are compatible with this kind of
approach based on extensions from a trivial solution (but this is a standard research topic
in specification languages and trustworthy computing).

Since each transaction may be attributed to a public key, in addition to transaction
fees and mining fees for rewarding nodes in the network, it is possible to incentivise the
extension of the implementation by cryptocurrency bounties to individual programmers.

3By which we mean a party which is not necessarily the originator of the specification nor the author
of the proposed implementation.

7

5 Further details

As mentioned in the introduction, proofchains may enable new forms of cooperation, by
creating logical communities with strong economic incentives. In order that the result-
ing patterns of cooperation are stable across time, we view the following problems as
fundamental obstacles that a successful design must overcome:

• Stability to changes in the logical order. It is an empirical fact that successful
long term patterns of cooperation involve institutions which evolve (in a controlled
way) with time. We therefore introduce the notion of change of logical order (Section
5.2) and the transformation of the proofchain under such changes Examples : chang-
ing specification for a programming project (Section 4.1), modularity and re-use of
programs in large projects (Section 5.2.1).

• Stability to uncertainty. A model of a first-order theory is a mathematical object
which involves certainty about properties of the data in the model. However, in
practice there are useful intermediate degrees of belief, and to avoid discontinuous
barriers to entry it seems important to capture these degrees of belief in a market
mechanism. We therefore introduce conjecture markets (Section 5.1).

5.1 Conjecture markets

A logical order consists of a first-order language together some formulas called axioms and
some formulas called conjectures. The proofchain protocol verifies that the data of the
model satisfies the axioms at all times. However, the conjectures are “soft” constraints
in the sense that they are not required to hold. Instead, the state of belief about each
conjecture is encoded in a prediction market which is maintained as part of the proofchain
protocol. Prediction markets are a simple and elegant distributed method of incentivising
the sharing of information [15]. Given a proposition P , the market trades in shares of a
fixed payo↵ in the event that P is proven to be true. The more certain the market is that
P is true, the higher the price of each share will be to acquire.4

Ideally, a user of the network can query this prediction market to obtain an estimation
of the likelihood of the truth of conjecture which accurately represents the state of the
knowledge of the participants in the network. The key to the prediction market reflecting
the true state of knowledge of the participants is that each user is incentivised economically
to contribute whatever knowledge they possess about the conjecture, and indeed, that
users are incentivised to invest whatever computational or cognitive resources are required
to determine the truth of the conjecture.

It is desirable that there is no hard boundary between axioms and conjectures: instead,
there should be a mechanism in the protocol for conjectures to be converted into axioms,

4Parties wishing to incentivise the resolution of a conjecture can donate funds to increase the payo↵.

8

when a proof (or disproof) of the conjecture is found by the market mechanism. In this
way an initially modest set of axioms can evolve into a stronger theory over time.5

The problem with conjecture markets. A conjecture is a formula that is either
true or false for any given modelM of the theory T . There are various propositions derived
from a conjecture that could be the objects of a prediction market, for example:

• A proof of will be found at some future time for the current model at that time.

• A proof of will be produced for a particular model already on-chain.

In both cases the payo↵ is triggered when a proof is broadcast over the network. While the
second kind of conjecture has many complexities, the first kind of conjecture su↵ers from
a fatal flaw: why pay for someone to prove properties of a model you haven’t seen? There
could exist a model which trivially satisfies the constraints, or satisfies the constraints
but has other undesirable properties. For this reason we focus in this document on the
second kind of conjecture, about known versions of the model.

The primary problem with such conjectures is fragmentation of the market and the
consequent illiquidity. If a conjecture is posed about model M , and then the proofchain
evolves to a new state of the model M 0, the truth of for M,M 0 may be logically indepen-
dent. In general the proofchain may contain thousands of a priori unrelated conjecture
markets, all involving the same formula but di↵erent versions of the model.

Market liquidity. We hope to solve the liquidity problem in conjecture markets with
a combination of market making algorithms provided by the platform itself, and trader
logicians who make money by arbitrage between markets. In the limit of infinitely many
well-capitalised traders interested in each state of the model, the second source of liquidity
will be su�cient. However, this is not a realistic assumption, especially at the beginning.
Automatic market making algorithms can make prices consistent across many conjecture
markets which involve trivial di↵erences of the model, and with more research this role
can be extended gradually to handle less trivial di↵erences. However, such market makers
will have to be carefully designed to mitigate the risk of large losses.

Here is an example of market making performed by human traders. In the context of
Example 1.1, suppose a trader figures out a proof ⇣ of the conjecture ⇡ on the hypothesis
of propositions 1, . . . , k about sub-components N1, . . . , Nk of the program M , but they
do not yet know how to prove these propositions. They keep to themselves the proof ⇣ of

�
 1 ^ · · · ^ k

�
=) ⇡

while fronting their own funds to establish conjecture markets i with bounties c1, . . . , ck.
Other users see the open conjectures about the i and provide proofs. The original trader
collects these proofs, combines them with ⇣, and broadcasts the resulting proof ⇡ of S 0 in

5This potentially one way to avoid the problem of a high barrier of entry to the authoring of formally
verified software.

9

order to claim the bounty bS0 . As a result of this activity, they make a profit bS0 �
P

i ci.
This reward does not come without risk: the conjectures i may be false, or another
user may know ⇣ and claim the bounty bS0 without having to pay for the proofs of the
 i. This risk-taking is a form of market making that hopefully works to spread liquidity
from highly capitalised conjecture markets (valuable properties of important programs)
to other markets, in a recursive fashion.

Automatic market makers. It turns out that similar problems have been studied
in the special case of propositional logic under the name combinatorial prediction markets,
where Hanson’s logarithmic market scoring rule (LSMR) [19] provides a market maker
with bounded losses. However LSMR pricing is #P-hard, and so in practice one needs to
be use some kind of approximation; see also [18, 17, 20]. From [17] we quote:

Operating a combinatorial exchange, beyond the daunting computational chal-
lenge [Fortnow et al. 2004], is impractical for a more pedestrian reason: it is
hard to imagine how any given trade, selected from the unimaginably large
sea of choices, would happen to have a matching counter trade waiting to ex-
ecute against it. For this reason, an automated market maker, which always
o↵ers a price for any security no matter how complex, is better suited for
combinatorial prediction markets.

This is partly a machine learning problem related to probabilistic relaxations of inference
algorithms; variational inference in the context of graphical models are mentioned in [17].
This seems related to the proposal in [21].

Open problem 5.1.Design low computational complexity market makers for conjecture
markets in higher-order logic with some kind of approximate bounds on losses.

Initially conjecture markets should be as simple as possible, with easily understandable
market making algorithms. Over time the tools and trading strategies of users will evolve
to become more complex, as the markets mature. In defense of the idea, it is worth noting
that the alternatives to conjecture markets also have liquidity close to zero (where can you
currently go and buy a proof?). At least the above proposal gives a plausible mechanism
for getting such markets o↵ the ground.

5.2 Change of logical order

As explained in the introduction, we view the energy expended by the proof-of-work proto-
col in a proofchain as instantiating an emergent logical order. We adopt as a fundamental
aspect of our design the possibility of changes in this logical order.

For example, during a large software engineering project it is natural that the initial
specification will evolve. If such evolution is forbidden, the probability of project failure is
increased and the initial cost and di�culty of authoring the specification is also increased.
Some other examples of desirable changes in a logical order include:

10

• The conversion of proven/disproven conjectures to axioms.

• Re-use and modularity (see Section 5.2.1)

• Blockchain governance

The economic value in a proofchain lies in the trust that the users of the network have
in the fact that they share the same model data, and that this model is both correct (in
the sense that it is truly a model of the theory) and that it was constructed from an initial
state by a sequence of allowed transactions. The knowledge about the model encoded in
the conjecture market also has economic value. It is important that changes in the logical
order preserve this economic value.

We therefore require a notion change of logical order which is both weak enough
that it contains the natural examples, but strong enough that we can e↵ectively transfer
models and their associated conjecture markets along such changes. Fortunately topos
theory provides a natural solution: it is always possible to transfer models along geometric
morphisms of topoi [1, Corollary §X.6]. Associated to a first-order geometric theory T is
the classifying topos B(T) which itself has a purely syntactic description [11, §D1.4], [3,
Lecture 15], see also [1, §X.5]. The geometric morphisms [1, Ch. VII] provide the correct
notion of morphisms between topoi and the universal property of the classifying topos [1,
§VIII.3] is a natural equivalence of categories

Hom(E ,B(T)) ⇠= Mod(T, E)

for any cocomplete topos E , where Hom denotes the category of geometric morphisms and
natural transformations. A geometric morphism f ⇤ : B(T) �! B(T 0) induces a functor

f ⇤ : Mod(T, E) �! Mod(T 0, E)

between the categories of models of T and T 0 in a topos E . By the universal property of
classifying topoi, a geometric morphism B(T) �! B(T 0) is the same data (up to canonical
isomorphism) as a model M of the theory T in the topos B(T 0).

Definition 5.2.A change of logical order T �! T 0 is a geometric morphism

f ⇤ : B(T) �! B(T 0)

for which the associated model M of T in B(T 0) is of finite type. Moreover, we require
that the induced functor on models is compatible with the predicates A,A0 of the logical
orders T, T 0 in the following sense: for any public key p and models M,M 0 of T , and term
⌧ in the transaction language, we have

A(p, c(M), c(M 0), ⌧) =) A0(p, c(f ⇤M), c(f ⇤M 0), ⌧) . (2)

As a consequence of the condition (2) we may apply a change of logical order to the
proofchain for a logical order (T,A) to generate a proofchain for the logical order (T 0, A0).

11

Open problem 5.3.How should changes of logical order interact with conjecture mar-
kets? A geometric morphism preserves the truth of propositions about the model, but
there will be examples where it is easier to guess the truth of a conjecture in the image
(for example if the geometric morphism is a degenerate translation) and so one should
not expect the market price of a conjecture to be stable across a change of logical order.
We hope that for some changes of logical order a simple market making algorithm can es-
tablish consistent prices, and in the remaining cases we rely on human traders to perform
the market making.

6 Further directions

6.1 Networks of proofchains

Suppose a first-order geometric theory T represents the specification of a piece of software.
The proofchain is a distributed model of this theory, that is, an implementation of the
specification, in a particular target language represented by the choice of topos E . Given
that software is generally constructed in a hierarchical fashion, the most natural way to
author such an implementation is to re-use components that have been previously specified
and implemented. This requires interactions between proofchains, and should be based
on the 2-category of Grothendieck topoi and its 2-limits and colimits.

For example, a pair of specifications T, T 0 containing a common subset S is associated
to a pair of changes of logical order S �! T, S �! T 0 and the union of the specifications
along this subset has for its classifying topos the pushout of B(T),B(T 0) along B(S). It is
therefore reasonable to imagine a higher-level network of proofchains, transitions between
which are mediated by software-encoded geometric morphisms.

To design a network of proofchains the primary question seems to be how to interlink
their conjecture markets. If the market prices a conjecture C about a component M at a
certain value, how should this influence the price of a conjecture C 0 about an implementa-
tion which uses the component M? In some cases this is trivial: if C 0 is logically entailed
by C and everyone knows the proof, the price of C 0 should be higher than the price of C
(assuming the fixed payout is the same for both conjectures). However, if the truth of C 0

also involves a series of other conjectures about other components, each with their own
market price, it is unclear how to rigorously determine an optimum price. However, if
we design the markets correctly, we should be able to rely on arbitrage across conjecture
markets to determine these prices dynamically; see Section 5.1.

This arbitrage will serve to price mathematical knowledge, since if the market does
not know that C 0 is entailed by C, any user who possesses a proof can make a successful
trade. In this way a user of the network who proves a conjecture C about a fundamental
component, can use that knowledge to trade against the markets for conjectures C 0

1, C
0
2, . . .

about higher-level implementations. This provides an economic model for some kinds of
mathematical activity which benefit the users of the network. This proposal is a more

12

finely grained version of some of Hanson’s suggested reforms of science [13, 14].

6.2 Implementation language

The models in a given proofchain are all in a fixed topos E , which represents the target
language of the models. For simple combinatorial models the natural topos is FinSets.
However, for examples where the implementation consists of a piece of software, the most
natural examples are the topoi associated to type theories with natural numbers objects,
which while not Turing complete are arguably su�ciently expressive for practical pro-
gramming [4, §III.3]. Recall that there is a correspondence between simply-typed lambda
calculi and Cartesian closed categories [4, Part I] and similarly between intuitionistic
type theories (also called higher-order logics) and topoi [4, Part II]. Roughly speaking,
an intuitionstic type theory is a simply-typed lambda calculus together with facilities for
reasoning about properties of programs; for an introduction see [3, Lecture 9].

For many problems the appropriate language for implementation will be finite-state
machines, Turing machines, instruction sets of CPU architectures, or even imperative pro-
gramming languages such as C, etc., but many of these have well-understood translations
into lambda calculi; see [16].

6.3 Transactions

The definition of a logical order involves a predicate A which determines the set of allowed
transactions. The design of this predicate is by far the most intricate part of constructing
a logical order, since

• A change T �! T 0 in logical order must be compatible with the predicates A,A0.

• In order for conjecture markets to function across time, most conjectures should be
stable with respect to most changes in the model allowed by the predicate A.

I do not currently understand how to design transactions. However, here are some obser-
vations. We restrict to the examples of E = FinSets and E = C(T) the topos associated
to a intuitionstic type theory T as in Lambek-Scott [4, §II.12].

Example 6.1. In the case of T = TBitcoin we take E = FinSets and the allowed transac-
tions change a pair (c, ps) in the graph of f to a pair (c, pt). Neither changes in logical
order nor conjecture markets seem particularly relevant, but it is worth noting that the
set of allowed changes is “local” in the sense that it a↵ects only the value of the function
a single coin.

In the case E = C(T) the sorts X, Y, . . . relations R, S, . . . functions f, g, . . . and con-
stants c, d, . . . of the theory are interpreted by objects, subobjects of Cartesian products
and morphisms of E respectively. However, these structures are in turn represented by
closed terms in the language T. This is explained in some detail in [3, Lecture 15]. One

13

should think of T as a kind of set theory and, just as in ordinary set theory, “sets” are
actually closed terms in a certain language. For example, the objects of E are equivalence
classes of closed terms ↵ : PA for some type A of T where P stands for the power set
operation, and morphisms are also equivalence classes of closed terms.

Suppose the theory consists of a single sort X and function symbol f , together with
an axiom f � f = f . Let M be the model which interprets the sort X as [↵] 2 E with
closed term ↵ : PA, so that the function symbol f : X �! X must be interpreted by
an equivalence class [F] for a closed term F : P (A ⇥ A) which is provably functional.
Moreover, for this to be a model of the theory, we must have provability of

` F � F = F

in the type theory T, where � here denotes the usual construction of composition of graphs
in set theory. Let M 0 be another model with data (↵0, F 0). To describe an allowed set of
transactions of the form

⌧ : (↵, F) 99K (↵0, F 0)

is to describe an allowed set of transformations of terms ↵ 99K ↵0, F 99K F 0 in the language
of T. We leave the precise description of such allowed kinds of transformations for later,
but ideally each allowed transaction ⌧ would come with a proof in T of the sequent

F � F = F ` F 0 � F 0 = F 0 .

In this case the computational cost to miners of verifying transactions on the proofchain
should be reasonable (see Remark 3.4). Moreover, using the internal language of topoi
and its compatibility with geometric morphisms, the problem of understanding which
geometric morphisms are compatible with a given set of transactions (specified in this
way as transformations of terms) seems like a tractable problem.

Let us address the second concern, about conjecture markets. Given an allowed trans-
action ⌧ we define the support of ⌧ to be the symbols in the model (i.e. sorts, relations,
functions and constants) whose interpreting term in the language of T is modified by ⌧ .
A conjecture C in the theory which does not involve any of the symbols in the support
of ⌧ is true for M if and only if it is true for M 0, and so its market price should remain
unchanged under the transaction ⌧ . It is possible by inspecting ⌧ to say more on a case-
by-case basis, but again this is probably a role best left to parties performing arbitrage
on conjecture markets (see Section 5.1).

7 Further questions

Open problem 7.1.What are concrete use-cases? See e.g. [12]. For example, what is a
class of short, simple programs for which formal verification is economically valuable, and
moreover there is value in distributed agreement on a library of software components?
The obvious example is smart contracts.

14

One reason to insist on the framework of first-order logic is that it has been extensively
studied, and has a good categorical incarnation in the form of topos theory. Moreover,
there is a mature library of tools in the areas of formal verification and automated theorem
proving most of which target first-order logic.

Remark 7.2.Hedging is an example of self-insurance and a widely discussed use case for
prediction markets. Anyone can use prediction markets to hedge their positions and limit
their downside. Software companies insuring themselves against bugs in their software
might be a source of capital for conjecture markets.

•

•

•

•

•

A Geometric theories

A formula � in a first-order theory language is geometric if it can be obtained from atomic
formulas by conjunction, disjunction and existential quantification; the name originates
from the fact that geometric morphisms f : E �! F have the property that the left
adjoint f ⇤ is compatible with the interpretation of the “set comprehension” {x |�} as an
object of E ,F [1, Theorem X.5]. A theory T is geometric if all the axioms are of the form

8x1 . . . 8xn(�(x1, . . . , xn) =) (x1, . . . , xn))

where �, are geometric. In the category theory literature, geometric formulas are some-
times called positive existential formulas [22, p.45] and there is a well-understood connec-

15

tion between geometric theories, sketches and accessible categories.6 For the reader with a
computer science background, we mention that geometric logic extends Horn clause logic,
on which the programming language Prolog is based [24].

According to Johnstone “It is remarkable how few of the first-order theories encoun-
tered in the practice of mathematics fail to be (at least classically equivalent to) coherent
theories” [11, §D.1.1]. All algebraic theories, such as group theory and ring theory, are
geometric, as are all essentially algebraic theories, such as category theory, the theory of
fields, local rings, lattice theory, projective geometry, separably closed local rings. If we
allow infinite disjunctions then the infinitary theory of torsion abelian groups is geometric.
However it is certainly not true that every first-order theory of mathematical interest is
geometric: for example, an infinitary first-order theory which is not geometric is given by
the theory of metric spaces [11, Example 1.1.7(l)].

Further, it is not clear that every natural software specification can be written down
as a geometric theory. It is therefore an important fact that every first-order theory T has
a conservative geometric extension T 0 [26, Theorem 7.7]. This extension is finite and can
be implemented on a computer, and the models of T, T 0 are essentially the same (although
the notion of morphism is changed, so the categories are not equivalent).7 The feasibility
of a proof assistant based around geometric theories hinges, therefore, on a close analysis
of how cumbersome it is to deal with this geometric extension in practice.

The good news is that e↵ective theorem-proving for geometric theories can be auto-
mated [23, 24, 25, 27, 31, 30, 28]. For recent practical applications of geometric logic
based automatic theorem provers see [32, 33] which use the ArgoCLP system described
in [28]. Moreover proofs in geometric logic are “more readable”, according to [29]:

Our proof representation is developed also with readable proofs in mind. Read-
able proofs (e.g., textbook-like proofs), are very important in mathematical
practice. For mathematicians, the main goal is often, not only a trusted, but
also a clear and intuitive proof. We believe that coherent logic is very well
suited for automated theorem proving with a simple production of readable
proofs.

It remains unclear to how appropriate geometric theories are in the context of software
specifications, however Vickers has argued in favour of such an approach [5, 6].

6Note that many authors refer to such theories as coherent and use the term geometric for more
general theories which allow infinite disjunctions. Since [1] was the main reference for our seminar, we
prefer to stick to this terminology.

7A related construction, referred to as the Morleyization of T in [11, D1.5.13], produces a geometric
theory T 0 whose category of models in Sets (or more generally in any Boolean coherent category) is the
same as that of T . This involves adding infinitely many new symbols to the language of T , and is hardly
reasonable from the point of view of automating reasoning in a proof assistant.

16

References

[1] S. MacLane and I. Moerdijk, Sheaves in geometry and logic: A first introduc-
tion to topos theory, Springer-Verlag 1992.

[2] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008.

[3] D. Murfet, The Rising Sea seminar on topos theory and higher-order logic,
http://therisingsea.org/post/seminar-ch/.

[4] J. Lambek and P. J. Scott, Introduction to higher-order categorical logic, Vol.
7. Cambridge University Press, 1988.

[5] S. Vickers, Geometric logic in computer science, Theory and Formal Methods
1993. Springer, London, 1993. pp.37–54.

[6] S. Vickers, Geometric logic as a Specification Language, Theory and Formal
Methods, 1994.

[7] B. Potter, D. Till and J. Sinclair, An introduction to formal specification and
Z , Prentice Hall PTR, 1996.

[8] G. Klein et al. seL4: Formal verification of an OS kernel, Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 2009.

[9] T. Murray and P .C‘.van Oorschot, BP: Formal Proofs, the Fine Print and
Side E↵ects, IEEE SecDev 2018.

[10] E. Dennis, A. Kitaev, A. Landahl and J. Preskill, Topological quantum mem-
ory, Journal of Mathematical Physics 43.9 (2002): 4452–4505.

[11] P. T. Johnstone, Sketches of an elephant: A topos theory compendium Vol. 1.
Oxford University Press, 2002.

[12] K. Claessen, R. Hähnle, and J.Mortensson, Verification of hardware systems
with first-order logic, Proceedings of the CADE-18 Workshop-Problem and
Problem Sets for ATP. No. 02/10. 2002.

[13] R. Hanson, Bets As Signals of Article Quality, October 26, 2018,
http://www.overcomingbias.com/2018/10/bets-as-signals-of-article-
quality.html

[14] R. Hanson, How to fund prestige science, November 10, 2018,
http://www.overcomingbias.com/2018/11/how-to-fund-prestige-
science.html#more-31927.

[15] R. Hanson, Idea Futures, http://mason.gmu.edu/ rhanson/ideafutures.html.

17

[16] P. Zadarnowski, C, Lambda Calculus and Compiler Verification - a study in
Haskell of purely-functional techniques for a formal specification of imperative
programming languages and an epistemically-sound verification of their com-
pilers, PhD dissertation, University of New South Wales, Sydney, Australia,
2011.

[17] M. Dudik, S. Lahaie, M. D. Pennock, A tractable combinatorial market maker
using constraint generation, In Proceedings of the 13th ACM Conference on
Electronic Commerce (pp. 459-476). ACM, 2012.

[18] Y. Chen and D. M. Pennock, A utility framework for bounded-loss market
makers, In Proc. of UAI, pages 349358, 2007.

[19] R. Hanson, Logarithmic markets coring rules for modular combinatorial infor-
mation aggregation, The Journal of Prediction Markets, 1(1), 3-15, 2012.

[20] D. M. Pennock and L. Xia, Price updating in combinatorial prediction markets
with Bayesian networks, arXiv preprint arXiv:1202.3756.

[21] S. Garrabrant, T. Benson-Tilsen, A. Critch, N. Soares and J. Taylor, Logical
induction, arXiv preprint arXiv:1609.03543, 2016.

[22] M. Makkai and R. Paré, Accessible categories: the foundations of categorical
model theory (Vol. 104). American Mathematical Soc., 1989.

[23] M. Bezem, T. Coquand, Automating coherent logic, Proceedings of LPAR
2005, LNCS 3835, pp. 246–260, Springer, 2005.

[24] M. Bezem, T. Coquand and A. Waaler, Research proposal: automating coher-
ent logic, , 2006.

[25] M. Bezem, T. Hendricks, On the mechanization of the proof of Hessenbergs
theorem in coherent logic, Journal of Automated Reasoning 40, pp 61–85,
2008.

[26] R. Dyckho↵ and S. Negri, Geometrisation of first-order logic, Bulletin of Sym-
bolic Logic 21.2 (2015): 123-163.

[27] J. Fisher and M. Bezem, Skolem machines, Fundamenta Informaticae 91, pp
79-103, 2009.

[28] S. Stojanović, V. Pavlović and P. Janičić, A coherent logic based geometry
theorem prover capable of producing formal and readable proofs, Proceedings
of Automated Deduction in Geometry 2010, LNAI 6877, pp 201220, Springer,
2011.

18

http://www.ii.uib.no/acl/description.pdf

[29] S. Stojanović, J. Narboux, M. Bezem and P. Janičić, A vernacular for coherent
logic, In Intelligent Computer Mathematics (pp. 388-403). Springer, Cham.,
2014.

[30] H. de Nivelle, J. Meng, Geometric Resolution: a proof procedure based on finite
model search, Proceedings of IJCAR 2006, LNAI 4130, pp 303-317, Springer,
2006.

[31] B. Holen, D. Hovland and M. Giese, E�cient rule-matching for hyper-tableaux,
9th International Workshop on Implementation of Logics Proceedings, Easy-
Chair Proceedings in Computing Series 22, Easy-Chair, pp 417, 2013.

[32] V. Marinković, Proof simplification in the framework of coherent logic, Com-
puting and Informatics, 34(2), 337-366, 2015.

[33] S.Durdević, J.Narboux and P. Janičić, Automated generation of machine veri-
fiable and readable proofs: A case study of Tarskis geometry, Annals of Math-
ematics and Artificial Intelligence, 74(3-4), 249-269, 2015.

Department of Mathematics, University of Melbourne
E-mail address: d.murfet@unimelb.edu.au

19

	Introduction
	First-order logic
	Languages, theories and models

	The proofchain
	Examples
	Trustworthy software

	Further details
	Conjecture markets
	Change of logical order
	Re-use and modularity

	Implementation language
	Transactions

	Further questions
	Geometric theories

