
Recall the following definitions.

Definition 1.1. A category C consists of a collection ob C of objects, and for each
pair of objects A,B a collection HomC (A,B) of morphisms f : A→ B, such that

• for each object A ∈ ob C , there exists a morphism idA : A → A called the
identity morphism for A,

• for each pair of morphisms f : A → B and g : B → C, there exists a morphism
g ◦ f : A→ C called the composition of f and g,

• for each morphism f : A→ B, we have idB ◦ f = f = f ◦ idA, and

• for each triple of morphisms f : A → B, g : B → C, h : C → D, we have
(h ◦ g) ◦ f = h ◦ (g ◦ f).

Definition 1.2. Let C and D be categories. A covariant functor F : C → D consists
of a function ob C → ob D , written A 7→ FA, and for each pair of objects A,B ∈ ob C
a function HomC (A,B)→ HomD(FA, FB), written f 7→ Ff such that:

• for each A ∈ ob C we have F idA = idFA, and

• for each f : A→ B and each g : B → C in C , we have F (g ◦ f) = Fg ◦ Ff .

A contravariant functor F : C → D is a covariant functor C op → D . In other
words, F reverses morphisms.

Definition 1.3. Let C and D be categories, and let F,G : C → D be functors. A
natural transformation α : F ⇒ G consists of, for each object A ∈ ob C , a morphism
αA : FA→ GA, such that for any f : A→ B in C , the following diagram commutes.

FA GA

FB GB

Ff

αA

Gf

αB

1.1 Limits and colimits

Recall that the cartesian product of two sets A,B is defined as the set of ordered pairs
of an element from A and an element from B:

A×B = {(a, b) | a ∈ A, b ∈ B} .

However, the definition of a category does not assume any kind of internal structure
of its objects, and so one cannot define products in category theory by referring to the
‘elements’ of objects. Instead, one must frame the definition only in terms of objects
and morphisms. This can be achieved as follows. Let C be a category.
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Definition 1.4. Let A,B ∈ ob C . The product of A and B, if it exists, is the data of
an object A× B together with two morphisms πA : A× B → A and πB : A× B → B
satisfying the following universal property : If we are given X ∈ ob C and ρA : X →
A, ρB : X → B, then there exists a unique map θ such that the following diagram
commutes.

X

A A×B B

ρA ρB∃! θ

πA πB

If products exist, they will be unique up to unique isomorphism. In Set, products
exist between any pair of objects; the morphisms πA and πB are the projection maps.

Through the language of universal properties, many other constructions from math-
ematics can be realised in category theory:

Definition 1.5. Let f : A→ C, g : B → C be morphisms. The pullback of f and g, if
it exists, is the data of an object A×CB together with two morphisms πA : A×CB → A
and πB : A×C B → B such that

(1) The following diagram commutes:

A×C B A

B C

πA

πB f

g

(2) We have the following universal property : If we are given X ∈ ob C and ρA :
X → A, ρB : X → B such that g ◦ ρB = f ◦ ρA, then there exists a unique map θ such
that the following diagram commutes.

X

A×C B A

B C

∃! θ

ρA

ρB

πA

πB f

g

This is also sometimes called the fiber product. In Set, the pullback of f and g
always exists; it is the set

A×C B = {(a, b) ∈ A×B | f(a) = g(b)} .
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Of particular interest is the special case where A ⊆ C, with f the inclusion. We then
have

A×C B ∼= g−1(A).

Definition 1.6. The terminal object of C , if it exists, is an object 1 such that if
A ∈ ob C then there exists a unique map A→ 1.

In Set, this is the singleton set {∗}.
The common feature of each of these constructions is that:

1. We begin with some small diagram.

2. We ask for the existence of some object C, together with maps from C into each
of the each of the nodes in the diagram.

3. We assert that C should satisfy a universal property: any other object C ′ with
maps into the diagram should factor uniquely through C.

We would like to generalise this. To do this, we need to formalise the notion of a
diagram in a category.

Definition 1.7. Let C be a category, and J a small ‘index category’. A diagram in
C of shape J is a functor J : J → C .

The condition that J is a functor ensures that any commuting triangles in the category
J are sent to commuting triangles in C .

Definition 1.8. Let J be a diagram in C of shape J . A cone over J consists of

• an object C ∈ C ,

• for each object X ∈ J a morphism αX : C → JX in C , such that for each
morphism f : X → Y in J , the following triangle commutes.

JX

C

JY

Jf

αX

αY

Definition 1.9. We say that a cone (C, {αX}X∈obJ ) over J is the limit of J if any
other cone (C ′, {α′X}X∈obJ ) over J factors uniquely through C. Spelt out concretely,
this means that there exists a unique morphism θ : C ′ → C such that the following
diagram commutes for each X ∈ ob J .

C ′ JX

C

α′
X

θ αX

If J has a limit, it is unique up to unique isomorphism.
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Colimits also deserve mention. The notion of a cocone is the same as that of a
cone, except that the morphisms αX are reversed; that is, αX : JX → C. A cocone C
is called a colimit if any other cocone over J factors uniquely through C.

Example 1.10. Let J be the category with three objects X, Y, Z, and two non-

identity morphisms X
f−→ Z

g←− Y , let C be a category, and let J : J → C be a
diagram in C of shape J . A cone over J is the data of an object C ∈ C and two1

morphisms αX : C → JX, αY : C → JY such that the following diagram commutes:

C JX

JY JZ

αX

αY Jf

Jg

The cone C is a limit if for any other cone C ′, there exists a unique morphism θ : C ′ → C
such that the following diagram commutes.

C ′

C JX

JY JZ

∃! θ

α′
X

α′
Y

αX

αY Jf

Jg

In other words, the limit of diagram J is precisely the pullback of Jf and Jg.

In much the same way:

• The binary product is the limit of the diagram with two objects X, Y , and no
morphisms except identities.

• The terminal object is the limit of the empty diagram.

• The equaliser is the limit of the diagram with two objects X, Y and two morphisms
X → Y .

The definition of a topos requires that the category in question has all finite limits;
that is, limits of finite diagrams. The following lemma gives us sufficient conditions for
this.

1Note that specifying the morphism αZ : C → JZ is superfluous; it is fixed by the choices of αX

and αY .
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Lemma 1.11. For a category C , the following are equivalent:
(1) C has all finite limits.
(2) C has all equalisers, binary products and a terminal object.
(3) C has pullbacks and a terminal object.

1.2 Exponentials

Let C be a category which has all binary products, and let X ∈ ob C .

Definition 1.12. An exponential for X is a family of objects {ZX}Z∈obC such that
there exists a family of bijections (for Y, Z ∈ ob C )

HomC (Y ×X,Z) ∼= HomC (Y, ZX), (†)

which is natural in Y and Z.

Remark 1.13. In category theory, a family of bijections as above is called an adjunc-
tion between the functors −×X : C → C and −X : C → C .

The motivating example is that seen in Set, where ZX is defined as the set of all
functions f : X → Z. The bijection (†) then sends a function f : Y ×X → Z in two
variables to the function f : Y → ZX given by f(y) = f(y,−). Note that in fact ZX

unique set (up to bijection) for which there exists a family of bijections (†), for we have:

ZX ∼= HomSet(1, Z
X) ∼= HomSet(1×X,Z) ∼= HomSet(X,Z)

One can equivalently define exponentials via the counit of the above adjunction.
This is a family of morphisms

evZ,X : ZX ×X → Z

called the evaluation map, obtained by applying the inverse of the bijection (†) with
Y = ZX to the identity map idZX : ZX → ZX .

Lemma 1.14. Let X ∈ ob C . A family of objects {ZX}Z∈obC is an exponential for X
if and only if for each function f : Y ×X → Z, there exists a unique map f : Y → ZX

such that the following diagram commutes

Y ×X

ZX ×X Z

f
f×idX

evZ,X

Proof. (Sketch): Let ΘX,Y,Z denote the bijection in (†). Given f : Y × X → Z,
define f = ΘX,Y,Z(f). Then evZ,X ◦(f × idX) = Θ−1

X,ZX ,Z
(idZX ) ◦ (ΘX,Y,Z(f) × idX) =

Θ−1X,Y,Z(idZX ◦ ΘX,Y,Z(f)) = f by naturality of (†). The converse is similar; define

ΘX,Y,Z(f) = f . This is natural in Y and Z by uniqueness of f .
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Definition 1.15. We say that C is cartesian closed if it has all binary products, a
terminal object, and all exponentials.

Unsurprisingly, the category Set is cartesian closed. For a simple non-example,
consider the category Ab of abelian groups. Given two abelian groups G and H, it is
easily verified that HomAb(G,H) can be given the structure of an abelian group, by
defining (ϕ + ψ)(g) = ϕ(g) + ψ(g). However, Ab does not possess an exponential for
any nontrivial group G. To see this, recall that the terminal object in Ab is the zero
group. If HG existed, we would therefore have

HomAb(G,H) ∼= HomAb(0×G,H) ∼= HomAb(0, HG) = {0}

for any group H, a contradiction.

1.3 Subobject classifiers

Let C be a category with all finite limits.

Definition 1.16. A morphism f : X → Y in C is a monomorphism if for all
morphisms g, h : W → X such that fg = fh, we have g = h.

Definition 1.17. A subobject of X ∈ ob C is an equivalence class of monomorphisms
m : S � X, where m : S � X and m′ : S ′ � X are equivalent if there exists an
isomorphism f : S → S ′ such that m′ ◦ f = m. We write SubC (X) to mean the set of
all subobjects of X.

Definition 1.18. A subobject classifier for C consists of an object Ω and a monomor-
phism true : 1 � Ω, such that for each monomorphism m : S � X, there exists a
unique morphism charm : X → Ω such that the following square is a pullback square.

S 1

X Ω

m true

∃! charm

If a subobject classifier exists, it is unique up to unique isomorphism.

A subobject classifier can also be characterised in terms of subobjects of an object
X ∈ ob C .

Proposition 1.19. Let C have all finite limits and small Hom-sets. Then C has a
subobject classifier if and only if there exists an object Ω ∈ ob C and a family of
isomorphisms

SubC (X) ∼= HomC (X,Ω),

which is natural in X.
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We now work through some examples of subobject classifiers.

Example 1.20. Let C = Set, in which the terminal object is the one element set
1 = {∗}. The subobject classifier is

Ω = {0, 1} true(∗) = 1.

Suppose that we are given a monomorphism m : S � X. For simplicity, assume
without loss of generality that S ⊆ X and m is the inclusion. Define charm as the
characteristic function χS of S in X:

χS(x) =

{
0 x /∈ S
1 x ∈ S

.

Claim 1: The diagram of Definition 1.18 is a pullback square.

Proof. It is easy to see that the diagram commutes; we need to show that it is universal.
Suppose we are given a set T and a function f : T → X such that the following diagram
commutes:

T

S 1

X Ω

f
m true

χS

For any t ∈ T , we therefore have χS ◦ f(t) = true(∗) = 1, and hence the image of f is
a subset of S. It follows that T factors (uniquely) through S, via the map θ : T → S
given by θ(t) = f(t).

Claim 2: The map charm = χS is the unique map which makes the diagram of
Definition 1.18 a pullback square.

Proof. Suppose we are given a map ϕ : X → Ω such that the following diagram is a
pullback square:

S 1

X Ω

m true

ϕ

The fact that the square commutes tells us that for any s ∈ S ⊆ X, we must have
ϕ(s) = true(∗) = 1. Now suppose that x ∈ X. If one has ϕ(x) = 1, then it follows that
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the diagram

{x}

S 1

X Ω

ιx
m true

ϕ

commutes, where ιx : {x} → X is the inclusion. By the universal property of the
pullback it follows that ιx factors through m, but clearly this is only possible if x ∈ S,
since m is the inclusion. It therefore follows that ϕ(x) = 0 for each x ∈ X \ S, and
hence ϕ = χS.

Example 1.21. Let SetN denote the category whose objects are infinite sequences of
functions2

X0 X1 X2 X3 . . .
σ0 σ1 σ2 σ3

A morphism f : S → X in SetN is a sequence of morphisms fi : Si → Xi in Set such
that the following diagram commutes.

S0 S1 S2 S3 . . .

X0 X1 X2 X3 . . .

f0 f1 f2 f3

In particular, such a morphism f : S → X gives a subobject of Y if each fi in the above
diagram is a monomorphism. In particular, if these monomorphisms are inclusions then
commutativity of the diagram says that σSi ⊆ Si+1.

It is easily seen that the terminal object 1 in SetN is the sequence of singletons
{∗} → {∗} → · · · . In order to describe the subobject classifier, let N = N ∪ {∞} and
define Ω as the sequence

N N N . . .ω ω ω , ω(n) =


0 n = 0

∞ n =∞
n− 1 otherwise.

The morphism true : 1→ Ω is the map which sends ∗ to 0 ∈ N in each factor.

2We consider 0 to be a natural number.
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Suppose we are given a subobject m : S � X, and assume for simplicity that each
mi : Si → Xi is the inclusion of a subset Si ⊆ Xi. We define the characteristic map
χ : X → Ω as the map with components

χi : Xi → N, χi(xi) =

{
min {n ∈ N | σn(xi) ∈ Si+n} if such n exists

∞ otherwise.

The maps χi can be understood as measuring the ‘time’ before the element xi becomes
included in S under the action of the horizontal maps σ. Note that χ is indeed a
morphism in SetN, since for any si ∈ Si, we have

χi+1 ◦ σ(si) = 0 = ω ◦ χi(si)

since σSi ⊆ Si+1, and for any xi ∈ Xi \ Si we have

χi+1 ◦ σ(xi) = min
{
n | σn+1(xi) ∈ Si+n+1

}
= min {n | σn(xi) ∈ Si+n} − 1 = ω ◦ χi(xi).

Claim 1: The diagram of Definition 1.18 is a pullback square.

Proof. The square clearly commutes, since for any i ∈ N and any si ∈ Si, we have
χi(si) = 0 by definition. To see it is universal, suppose that we are given a commuting
diagram

T

S 1

X Ω

f
m true

χ

Then for each i ∈ N and each ti ∈ Ti, we have χi ◦fi(ti) = 0, and thus fi(ti) ∈ Si. Thus
im fi ⊆ Si for each i, and hence one can define the factorisation θ : T → S as having
components θi = fi.

Claim 2: The map χ is the unique map which makes the diagram of Definition
1.18 a pullback square.

Proof. Suppose ϕ : X → Ω also gave a pullback square. Note first that any si ∈ Si must
necessarily have ϕi(si) = 0 by virtue of the fact that the pullback square commutes.
Let xi ∈ Xi, and let n be minimal such that σnxi ∈ Si+n. Since ϕ is a morphism in
SetN, we therefore have ωn ◦ ϕi(xi) = ϕi+n(σnxi) = 0, so ϕi(xi) ≤ n by definition of ω.

Now suppose ϕi(xi) = k < ∞, so that ϕi+k(σ
kxi) = ωk ◦ ϕi(xi) = ωk(k) = 0. In

order to show that k ≥ n, consider the sequence T given by

∅ ∅ . . . ∅ {σkxi} {σk+1xi} . . .
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where there are i+k copies of ∅. There is an obvious inclusion T ↪→ X, and furthermore
the following diagram commutes precisely because ϕi+k(σ

kxi) = 0:

T

S 1

X Ω

m true

ϕ

So by the universal property of the pullback we have a unique factorisation θ : T → S.
In particular, we have a map θi+k : {σkxi} → Si+k satisfying θi(σ

kxi) = σkxi, which is
of course only possible if σkxi ∈ Si+k, and thus k ≥ n by minimality. It follows that
ϕ = χ.

Example 1.22. The category Ab of abelian groups does not admit a subobject classi-
fier. Suppose for a contradiction that (Ω, true) were a subobject classifier for Ab. Since
the terminal object in Ab is the zero group, the map true : 0 → Ω must be the zero
homomorphism. Let G be an abelian group, and let χ be the characteristic map of the
zero map 0 � G.

0 0

X Ω

0 0

∃!χ

We therefore have kerχ ∼= 0, and hence χ is injective. But this is impossible, as it
implies that every group G embeds into Ω.

1.4 Topoi

Definition 1.23. An (elementary) topos is a cartesian closed category which has all
finite limits and a subobject classifier.

One can equivalently define an elementary topos as a category with finite limits and
a power object, which is a family of objects {PX}X∈obC such that there exist bijections

HomC (Y, PX) ∼= SubC (X × Y )

natural in Y .
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