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Lecture 15 : Abstraction and adjunction 2717118

In
my

last lecture I explained the idea of "
non . additive tensor product

"

and

how to view geometric realisation as an example . This was motivated by
the desire to understand move generally the inverse image part ft : PCT) → E

of a geometric morphism E → BIT ) corresponding to a model of a geometric

theory T in a w complete topos E
.

This in turn was motivated by a desire to

understand in some effective computational way how we might use classifying
to poi to organise mathematical knowledge .

This lecture directly addresses the question of organising mathematical

knowledge ,
with a focus on formal is ing the idea of abstraction ( or hiding )

.

We begin with an informal example .

A mathematician M is working in some

underlying logical system ( say
ZF set theory or a type theory in the sense of

Lambda & Scott
,

as treated in Lecture 9) associated to which is a topos E

( e.g . Sets or the topos TCL ) associated to a type theory )
.

Consider a

piece of knowledge of the following kind :

-

① M defines a set A -

F--

② redefines a function f : * → A
, #-)a function -

i
. A  → A and O E A

-

- -

③ M proves ( A
,

f
,

-

,
O ) is an abelian

group

#
-

④ M uses some general theorem about groups - [

⑤
Tpe:*:*::see;:
;ns¥ I

-
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We imagine that the above is a completely formal proof ,
so that the

"
usage

"

in

step ④ actually consist of an explicit specialisation of the proof of the

general theorem about groups ,
with the generic group a replaced everywhere

by the particular group A
.

In actual practice , of course ,
we do not do this

( or at least we often do not do this ) .
Instead the formal proof has the following shape :

⑦ d
'

proves a theorem about

an abstract group
a

-

-

① M defines a set A -

F-② names among :* ,

a function -
i

. A  → A and O E A
-

- -

③ M proves ( A
,

f
,

-

,
O ) is an abelian

g w up

#
-

④
'

M invokes the theorem proved by M
'

I

with a ← A

⑤

ns.eii#:ii.::::::.:me.m.i.ns-k--=I
-

Where " invocation
"

involves
,

in part , reuniting the abstract a to the

concrete A
,

the abstract t on A to the concrete f on A
,

and so on .

We now proceed to formalise this picture in terms of adjoint function

between to pod,
and then discuss the relationship to monads

.
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Categories of models in a topos

~

Let t be a type theory in the sense of Lam bek & Scott ,
as discussed in Lecture 9

of this seminar series ,
and let E be the associated topos .

We recall that the

objects of E are
" sets

"

ie . equivalence classes of closed terms a : PA

where A is a type and PA  is to be understood as the
"

powers et
"

of A
,

and the

morphisms from a : PA to P : PB are equivalence classes of closed terms

F : P ( A  x B ) which provably
" send

"
a into p and are functions .

The equivalence

relation says F ~ F
'

iff .
t F  = F

'

where the entailment t is part of

the data of the type theory .

! we take E as the underlying logical system of the mathematician M?

The languageLabhas one
"

sort
"

X
,

no relation symbols ,
two function

symbols t : XX → X ( a function symbol is given together with

an ordered nonempty list of sort
,

to be interpreted as inputs ,
and a single

sort to be interpreted as the output ) and - : X → X and one constant O : X
.

The terms : there is a countable list of variables a
, y

,
z

,
. . . of sort X

,

which are terms of sort X
,

and O is a term of sort X. ( Note that there

is no construction of sorts
,

i. e . Xx X is not a sort and L x
, y > : Xx X is not

a term
.) .

If ti
,

tz are terms ( all terms are of sort X ! ) then t ( ti
,

t a )
,

written titta
,

is a term
,

and - t
,

is a term
.
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The formulas : if ti
,

tz are terms then t
,

= t is an atomic formula
,

and

the symbols T ( true ) and L ( false ) are atomic formulas .

Atomic

formulas are formulas and if p , 9 are formulas then so are

¢
infinity

disjunction
I conjunction

I

P Aq , pxq , p ⇒ q ,

-

p ,
Voce Xp ,

Fae Xp ,
V Pi

,

A pi
i C- I i EI

where x is any variable .
Occurrences of variables are declared free and bound

in the usual way ( see e. g- Lecture 9 )
,

and we identify formulas up to

a - equivalence as defined there ( we do not impose a - equivalence on terms
,

only on formulas
,

in any case all variables in t
,

= tz are free and so there

are only trivial instances of = a between terms )
.

So far what we have defined is a first - order language

LAB
.

The they

of abelian groups
Ab defined over

LAB
consists of a set of formulas

( called axioms ) .

Fora general theory this set could be empty ,
or infinite .

The axioms are :

§ ,

: ( x ty ) t Z =  x t ly t Z )
.

4h :
x ty

=

y t x
.

03
'

- K t O = a
.

0/4 : x t C - x ) = O
.

A  model of Ab in the topos E is an object XM of E
, say the equivalence

class of a closed term a : PA
,

a pair of morphisms in E

+
M

: XM x XM → XM ( rep  r
. by Ft : P ( A  x AXA ) )

-

M
: XM → XM I vepr . by F- : P ( AXA ) )

and a morphism OM : I  → XM ( represented by to : A )
.

'
use 63 - 4)

,

+
exercise : why not PCI x A) ? def

"

of
morphism



⑤

such that the axioms are valid
,

which means that certain sub objects in E

associated canonically to 01,0/2,0/3,0/4 ( by the model ) are improper .

The def his recursive
,

with for example the sub object

{ C x , y ,
z ) I 0 ,

3M E X
"

x X
"

x XM

being defined to be the equaliser of the two ways
around the usual

associativity square

t
"

x I

XM x XM x XM - XM x X
"

1 x TM I I TM

- ,
X

XM x XM - XM

+
M

Note that in E this equaliser is the sub object

( informally ) fue XM xx
"

x X
"

I CtMo ( thx I ) ) ( u )
= ( tho I Ix th ) ) ( u ) }

.

More formally ,
X

"
x X

"
x XM is the equivalence class of the term 43 : PIA Ax A)

,

43 :  = { u EA  x AXA I ( Fx ,
,

Xz
, Xz EA ) ( U = Lxi

,
Lxz

, XD

A KI E X A  da E L A x
3 C- d) }

and the equaliser of the above diagram is the term e : P ( Ax AXA ) defined

as follows ( recall the composition fwm Lecture 9 p .
⑧

,
where we use

If I as there to refer to a closed term representing f
,

so for example HM I = Ft )
.



⑥

e = { u e Ax Ax A I u C- 43 a I. ( u ) )

I
, ( u ) is V ( x

, y ,
Z EA ) I

t
x

,

Cy
,

z D= u

⇒ (

ft
e A) [ ⇐x

,
L y ,

z 77 ,
t > E It "

o C thx 1) I

⇒ K x
,Cy, z 77

,

t > E I tho I Ix TM ) I ] )

The inclusion t e Ed induces a morphism [ e : PCA 3 ) ) → ( a : PCA 3 ) ) = ( XM )
3

which is the equaliser in E
.

So to say the sub object I ( KY ,
Z ) lol , }

"

is improper is therefore equivalent to

saying e is equivalent to { ut Ax At A IT } which means provability
+ e = fue AXAXA IT }

,
or equivalently

( 6 . 1)

Axiom I holds ⇒ t

Valued
'

⇒ I
,

tu ) ) in the type theory J

which is what we expect . Similarly for the other axioms . So we have a

notion of a model M of Ab in E
,

and a natural notion of amorphism

of models in E ( as in Lecture 14 ) and hence a category MoodAb
,

E )
.

These definitions general is e in a straightforward way to general theories
,

and to arbitrary to poi E
.

The type theories in Lambe k - Scott are sufficiently rich that they give rise

immediately to to poi C e . g. they contain powers et types ) .

Next we consider

a similar but different construction of syntactic categories fwm first - order

logics .

such as LAB ,
which only become to poi once we pass to sheaves

.
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The syntactic site

Next we describe the classifying topos 13 ( Ab )
,

and the geometric morphism

E → 131A b) induced by a model M
. Unfortunately MacLane & Moerdijk 's

treatment in f X. 5 is hopeless :

• The definition of the topology on the syntactic site is wrong ( arguably

a typo ,
but it is in a crucial definition : Zi does not appear

! )

• All their definitions involve quantifiers HE over all to poi E ! In the

philosophical context of  constructive mathematics and foundations ,
this

is an embarrassment .

Nor is the fig leaf provided on p .
558 sufficient .

We therefore follow Johnstone
"

Sketches of an elephant
"

f Di . 4 .

We retain the setting

of the languageLab( with X
,

t
,

-

,
O ) and theory Ab

,
with its model M in

the topos E = Tl T )
,

where J is a type theory .
To the pair (Lab,

Ab ) we

associate a site ( 8
,

J )
,

the syntactic site
,

whole category of sheaves

I see Lectures 6,7, 10,11 ) denoted

13 ( Ab ) i = Sh
,

- I f ) E Sets
8 "

has the right universal property to be the classifying topos of Ab
.

In particular

the geometric morphism E → 13 C Ab ) is completely determined by a functor

8 → Shot E ) E

which we will describe in syntactic terms
.
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The syntactic site ( E
,

J ) of the theory Ab has for its objects equivalence

classes of geometric

formulas
.

A formula of L ( which recall had one sort

X
,

function symbols t
,

- and a constant O :X ) is called geometric according
to the following recursive definition :

• The atomic formulas t  

= t 's T
,

t are geometric
• If 4,4 are geometric so are 4^4 ,

Viet & i

• If 4 is geometric then so is F x EX of is geometric .

A context is a finite list E = ( ay . .  . pen ) of distinct variables
.

The empty context

is allowed and is denoted CT
.

A formula - in - context is a pair consisting of

a formula 0 and a context I such that FV 10 ) E { xy . .

, an }
.

We denote the

pair by ¢ (E) or { E. 03
.

We say two formulas in context { xy . . .

, an . 43 and

{ ya ,
. .

.

, yn . Y } are

A-equivale.int
if X can be obtained fwm ¢ by ( possibly

renaming bound variables in of in the usual way ,
and ) replacing every free

occurrence of Xi in ¢ by yi ,
for Isis n ( read

"
A

"

as a variant of
"

d
' ' )

.

DI The objects of Cave A - equivalence classes of geometric formulas - in - context

denoted C E. to ]
. Amorphism [ 87 : I E

. 4) → LET ] is an equivalence

class of geometric formulas 6 with FV ( 3) E { xx . .  pen , y ,
. . .

, ym } such that

"
we  may and do assume Lxi ,

. .
.

 pen }n{ y , . .

, y m ) =  ¢,

T

• 3 t.ie ¢ A Y says Kay )l3 } Else lol ) x { y 143
,

+
another way of expressing

• 6 AbC Elk ] to
,

±
,

± I = Z the F ! part of Lecture 9 p .
8

.

Note y
-

- I means
, y i

 = Zi
,

• of t.FI 3
t

Fy = Fy , Fyi - - Fym
,

The equivalence relation is 3 ~ 3
'

iff . Gtx ie
3

'
and 3

'

tie b
,

and composition is

defined as in Lecture 9 for the topos of  a type theory .
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Remain Here t means provability or entailment of a sequent in an associated logic ,

as defined in Johnstone I D I - 3 ( see also Caramel to "
Theories

,
sites

,
to

poses
" 51.2 )

which includes the axioms of the theory Ab (e.g .

txt y = ytx may upper at  a leaf )
.

This  is similar to entailment  in Lam heh - Scott with some key differences :

it is much simpler owing to the fact first - order logics are simpler than type
theories

,
and in Johnstone t involves rules for infinite disjunctions

C e . g . Oi I - Vi Gi )
.

Example The formula - in - context { l x , Y ) .

x = - Y } which determines an object
F- of 8

,
should be viewed as the syntactic antecedent of the object in E

which is the equaliser of the twoarrows

XM x X
" XM

,
Xmx XM x

" XM

Def
"

A basis for the topology J is given at an object

C.
I. Y ]

,
where

I = ( y is .
. .

, Ym )
, by those collections of arrows

{

Csi
] :

⇐
i.

pig
→ I e. Y ] II

,
Heil -

- ni )

for which we have the following entailment holds :

I - Hy . ,
. . .

, ym ( Yle ) ⇒ Fact
,

. . .

, xin. ( file ) a

sickie
) ) )

Theorem The pair ( 8
,

J ) is a site
,

and the associated sheaf topos

13 ( Ab ) :  = Shs ( 8 )

is a classifying topos for Ab .



⑥

Moreover the same construction works for any geometric theory ,
for instance

the theory of linear orders Lin
,

which arose in Lecture 12 and which we will

revisit next lecture
.

The proof of the Theorem is quite involved and I have not

fully understood it
,

so I won't try to explain it except to elaborate some of the

details in the particular case of the model ( XM
,

TM
,

-

M
,

OM ) of Ab in the topos E
.

The universal model For 131A b) to be a classifying topos it must possess a universal

model ( U
,

t
,

-

,
O ) of the theory .

It is ( all variables of type X )

U :  = ( x. T ]
,

t  : [ I x.
, .

T ] → ( y .

T ] is [ { Xi
,

Xz
, y )

.
tlxyxz

, y ) ]
-  i [ x. T ) → [ y .

T ] is [ I x. y }
.

- ( x , y ) ]

O : [ y . y=o] → [ x. T ] is [ I x
, y )

. y=oxx=y ]

Geometric morphisms The universal property of Bl Ab ) means the model

( XM
,

TM ,
OM ) in E must induce a unique Cup to isomorphism ) geometric functor

ft
E <

> 131 Ab )
f- *

with f
*

( U
,

t
,

-

,
o ) = ( X

"

,
TM

,
O

" )
.

That is
,

as objects f*( U ) = XM

in such a way that all relevant diagrams commute
. Now consider the composite

*

inc

E - SHH 8) =P C Ab ) £-7 E

This functor sends formulas - in - context C I. of ] to objects in E
,

which are

themselves equivalence classes of terms
. We next consider these objects

ft CI . 4 ] in a concrete example ,
which will also serve to return us

to the context at the beginning of the talk C i . e
. invocation of a theorem

about abelian groups ) .
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DEI An element x in an abelian gwup
A is torsion if nx=O for some n > I

.

Define the following formula in Lab :

a

The ) : Y nx= O
. ( me =  

xtxt-i.tt )
n  = I

This is a geometric formula and in the syntactic category 8 there is a morphism

4

U ton
:  = ( y . Tty ) ] → [ x

.
T ] = U

where Y is the geometric formula Tl 9) ^ 4=9
. This is a sub object ( see Johnstone

Dl . 4 . 4 Civ ) ) in B and thus also in 13 ( Ab )
,

as 8 ↳ [ COP
, Sets ] preserves

limits
,

and Sh too ) is closed under limits
.

theorem Let A bean abelian group ,
Aton E A the set of torsion elements

.

Then

Aton is a subgroup .

The internalised version of this theorem is the statement that in 8 ( hence in 13 ( Ab ) )

there exist morphisms fi
,

fz making the diagrams below commute

4x4 O

Uto is
× U tons - Ux U I - U

I
'

-
, T 4 ( I I

. I )
f

,

i
,

I t
fz

'

-

→

t ,
x Uto is

Uton - U
x

Remake [ y - y
-

- 03=1  in 131 Ab ) since if [ 3) E E ( I I . 47
,

Cy . 5-
o ] ) then

3 is provably equivalent to y
= O

.
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Unravelling the definitions
,

the existence of f , is equivalent to the provability ( from

the axioms of Ab ) of the sequent

Tty , ) ATL Yz ) ty , ,y ,

T ( Yi t 42 )
. ( 12.1 )

Such a proof establishes that ( b ] : KY . ,
Yz ) .

Thi ) MHz ) ] → [ y . Tty ) ] given

by taking 3 to be the formula y
=

y ,

tyzx
Tty , ) I ' JI Yz ) satisfies the first axiom

of amorphism ( i.e . 3 t 4^4 )
, and is therefore an arrow Utonx U ton → U ton

,

and it is then immediate that the diagram commutes
.

Note that the proof of C 12 .
I )

involves the rules for infinite disjunctions .
Similar observations apply to the other

diagram .

The upshot is that

• The provability of the theorem
"

torsion elements form a subgroup
"

is encoded

in the existence of facto ri satins fi
,

E in the category 13 ( Ab )
.

The model of Abin E induces f
*

which sends these commuting diagrams

to commuting diagrams in E ( note f
*

sends U to XM and preserves finite

limits ) and picks out a sub object X You :  = f ( Oton ) E f ( U ) = X ? as in

*

if Shh 8) =P ( Ab ) E
.

4x4

Utonyuhon→ UN f
't

xmtonxxtfo
,

→ X
" xx

"

-

I  → U OM
'

TY
I - XM

'
-

→
'

- T£ Uto  is
-

-  
→ X'Ion



④

Moreover when we unravel the categorical structure of Uto is
E U in Pl Ab )

we see that as sub objects it is a union C a w limit ) of

Uto  is

= Un
, ,

[ x . na = O ]

and hence ( since f
*

preserves finite limits and all co limit
. )

X'Ion -

- ft ( U ion ) = Un > ,
ft L x. nx=0 ]

= ¥ Equaliser ( XM → Its XM
,

XML, cxmj in )

which if we look inside the type theory underlying E
says what we expect

( as on p . ⑤ ) .

So the functional approach is constructing the " right thing
"

from a logical point of view

,
and the existence of the factors 's a ti onsf

* ( f
, )

,

f-
*

the ) say precisely that in the particular model of Ab within the type theory
( think of X

"
as a concrete set ) the torsion elements form a subgroup .

In summary ,
we have realised the promised formal is ah -

on of abstraction via adjunction :

• We
prove a theorem in the theory Ab of abelian groups

• we construct an abelian group in
" sets

"

,
ie . a model of Ab in E

.

• This induces a geometric morphism f : E → 131 Ab ) consisting of an

adjoint pair C ft
,

fix ) whose inverse image part ft -

- 13 ( Ab ) → E

s ,ends that general theorem Cexpressed
in

categorical terms ) to a

theorem about our particular model
.
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Actually ,
if we define the theory Tors Ab to have the same language as Ab but

the additional axiom Tlx ) : knew me = O
,

then Tors Ab is geometric and

the Sanae construction produces 3) ( Ton Ab )
,

and Oton ED ( Ab ) induces a

geometric morphism g : 131 Ab ) → B L Ton Ab ) with g
* ( V ) = Ufos

,

where V E BIT on Ab ) is the universal torsion abelian group .

So we actually
have constructed a chain of adjunctions

f* gt
< L

E
> 13 ( Ab ) , 13 ( Ton Ab ) C 14.1 )

[
fix

f
g*

associated topos classifying topos / f
't

I U ) = X
"

ofatypetheoy ,
objects  are  equiv . g*H ) ± Uto 's

objects are equiv .

classes of geometric
classes of  closed formulas
terms lie .

" sets " )

where the function ft
, g* take objects ( formulas ) and " incarnate " them

in the target -

language .
In the case of ft we view E and it type theory as

being more expressive and low - level
,

and the first - order theory Ab and B ( Ab )

as being a restricted and more abstract domain of mathematical knowledge .

At least for geometric theories
, classifying to poi and geometric morphisms

( whole left adjoint parts have a strong algorithmic character ) seem to be an

effective means of formal ising abstraction as a relation between logics . Ultimately
this is a formal isalion of abstraction in terms of adjoint pain .

A related but distinct concept is that of a monad
. However monads are a

coarser notion than adjunctions ,
and atleast from the topos - theoretic

perspective there is no reason to believe in a fundamental connection between

monads and abstraction
.
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To make this point concretely ,
consider the monads and co monads arising

naturally from ( 14 . 1)

Mf =f*f* 115.1 )

fix A gt
< L

*

Cf=f*f*GE
, 13 ( Ab ) , 13 ( Ton Ab )214g =3 * g

f *

U
g *

Cg =g*g*

t
*

2ft

where C indicates a monad ( e . g .
Cf = f*f* → f*f*f*f* = Cfcf ) and

Ma monad
. Nous thedeep connections between higher . order logic and to poi

( as developed in Lambeth - Scott and ex posited in Lecture 9 of this seminar )

together with the deep theorems about the existence of classifying to poi and

their syntactic construction ( sketched at least in one example this lecture )

means ( it seems to me ) that any credible general story formal is ing abstraction

in terms of monads has to grapple with the simple example presented above :

J Ab Too Ab ( 15.2 )

where J is a type theory ( higher - order logic) rich enough to contain a model

of Ab ( which it does
,

as soon as it has a natural numbers object )
,

and since

E
, 13 ( Ab )

, 3) ( Toes Ab ) are constructed out of the syntax , any monadic

picture of 115.2 ) must interact with 114 . I ) in some way ( e.g .
the only

obvious way to combine
"

monad "
and

"

higher-order logic
"

is a ( w ) monad on T
,

as in Mogg i 's original paper )
,

and the only obvious candidates are the

( w ) monads in ( 15.1 )
.

But these obvious candidates contain less information

than ( 14.1 )
,

as we will explain .
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For co algebras over a w monad see MacLane & Moe rdijk ( henceforth ( MM ] )
Ch .

V
. Section 8

.
Given a monad C co monad ) T on a category b we write

ET for the category of algebras ( co algebras ) over T and 8T for the category

of free ( co free ) algebras ( w algebras ) . Often ET is called the Eilenberg - Moore

category of ( e
,

T ) and 8T the Kleist i category . By Pwp . 4.2 .
I of Bo rceux 's

"
Handbook of categorical algebra I

"

any adjoint pair giving rise to T
, which

let us now fix to be a

to
monad

, say

L

if
'

>
A T = Lo R

R

induces a pair of J
,

K making the diagram

K T

& T
> A > f

T

commute up to natural isomorphism where U
,

V are forgetful functors
,

with To K

the fully faithful inclusion ET E E
T

and J is full while K is full and faithful .

In the situation of ( 15.1 ) this means that we have a diagram I set T = Cf )

K J
T

ET > 13 I Ab ) > E
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and the information of the geometric morphism f is recoverable from

the pair ( E
,

T ) C ie .

" the monadic story about abstraction subsumes the

adjunction story
" ) if and only if either Et =D ( Ab ) = 13 ( Ab ) = ET .

Now by [ MM
,

Lemma VII. 3 ] we have

13 ( Ab ) = ET Er B ( Ab ) = ET ⇒ f
*

is faithful ( as U is faithful )

⇒ for each E E 13 ( Ab ) the map

Sub ( E ) → Sub ( f
*

E ) is injective .

Now in 13 I Ab ) we have the proper sub object U ton → U ( since non - torsion

groups exist ! ) but if the model XM in E happens to have X'Ton = X
"

( for

example it the type theory has a natural numbers object and XM = 74mL )

then f
't

U ton =X' Ion = XM= f
*

U so the map

Sub ( U ) → Sub ( XM )

is not injective ,
hence ft is not faithful and so 13 ( Ab ) FET

,
13 f Ab ) # ET

.

In this precise sense the diagram of adjunctions I 14 .

I ) cannot be recovered

fwm ( co ) monads alone
.

Since adjunctions have ( via the theory of classifying to poi ) a strong claim to

the role of "

organising mathematical knowledge
"

categorically ,
this counter - example

raises doubt about any . fundamental connection between monads and abstraction
.

Instead
,

the 2 - category of Grothendieck to poi ,
as developed in Johnstone 's

"

sketches of an elephant
"

and Caramel to 's
"

Theories
,

sites
,

to poses
"

seems like

the " correct
"

realisation of the underlying ideas C perhaps even in the

programming context discussed by Mogg i )
.


