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Patrick Elliott

In these two talks we will prove (finally) that the category Sh(C) sheaves of sets on a site
(C, τ) is a topos. We will begin in this talk by showing that the category PSh(C) of presheaves
of sets on a small category C is a topos. From here, we will show how we can canonically
upgrade a presheaf on a site (C, τ) to a sheaf, using the sheafification functor. In our second
talk we will use these results to show that categories of sheaves are topoi.

Recall that a topos is a cartesian closed category which has all finite limits and also possesses
a subobject classifier.

1 PSh(C) is a topos

Let C be a small category, and write PSh(C) for the functor category SetC
op

of presheaves of
sets on C. Let us recall a few notions from the talk Sheaves of Sets Part One:

Recall 1.1. The category C embeds into PSh(C) via the Yoneda embedding: an object C is
sent to the representable presheaf hC .

To describe the subobjects of hC , we found it useful to introduce the following notion: a
sieve S on C is a set of morphisms with codomain C such that if f ∈ S then f ◦h ∈ S whenever
the composition is defined. We showed that we can identify sieves on C with subfunctors of
hC , and hence with isomorphism classes of subobjects of hC in PSh(C).

With these notions in hand, we arrive at a natural candidate for a subobject classifier in
PSh(C), namely the presheaf defined on objects by

Ω(C) := {S | S is a sieve on C in C}.

and on arrows g : C → D by

Ω(g) : Ω(D)→ Ω(C), Ω(g)(S) =: S|g = {h | g ◦ h ∈ S}.

For any object C ∈ ob C, the set t(C) of all arrows into C is a sieve, called the maximal sieve
on C. We can therefore define a natural transformation

true : 1→ Ω

by trueC : 1→ Ω(C), ∗ 7→ t(C).

Lemma 1.1. The monomorphism true : 1→ Ω defined above is a subobject classifier in PSh(C).

Proof. Suppose we are given a presheaf F on C, and a sub-presheaf G of F . For each morphism
f : C → D in C, we obtain a function F(f) : F(D) → F(C), x 7→ x|f in Set which may or
may not take an element x ∈ F(D) into G(C) ⊆ F(D). Given x ∈ F(D), we write

φD(x) = {g | cod(g) = D, x|g ∈ G(dom(g))}
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Then φD(x) is a sieve on D, and φ : F → Ω is a natural transformation of presheaves. Moreover,
φD(x) is the maximal sieve t(D) iff x ∈ G(D), so the subfunctor G is the pullback along φ of
the map true : 1→ Ω:

G

F

1

Ω

true

φ

This shows that φ is a candidate for the characteristic map for the sub-presheaf G of F .
What remains is to show that it is unique among such natural transformations making the
diagram above into a pullback.

Suppose θ : F → Ω is another natural transformation with this property. Then, with f and
x as above, the pullback condition implies that x|f ∈ G(C) iff

θC(x|f ) = trueC(1) = t(C).

By the naturality of θ, this is equivalent to

θD(x)|f = t(C),

and this in turn means that f ∈ θD(x). But this implies that θD(x) = φD(x) for all D and all
x ∈ F(D). Thus φ is the unique natural transformation satisfying the pullback condition, and
the monomorphism true : 1→ Ω is a subobject classifier for PSh(C).

Next we will construct exponentials in PSh(C). Recall first that the product of two presheaves
is defined object-wise, so

(F × G)(C) = F(C)× G(C),

where C ∈ ob C, F and G are presheaves of sets on C, and the ”×” on the right hand side is the
usual cartesian product in Set. Unfortunately it is not so straightforward to define exponentials
in presheaves, namely because the naive element-wise definition GF(C) = Hom(F(C),G(C)) is
not a functor of C.

To find a the right notion of the exponential in presheaves, we will first assume one exists
and then unwind the characterising adjunction to obtain a candidate definition.

Let F and G be presheaves of sets on a small category C. If the exponential GF exists it
must satisfy the adjunction condition

Hom(H×F ,G) ∼= Hom(H,GF),

for every presheaf H. In particular, when H is a representable functor hC for some C ∈ ob C,
this isomorphism composed with the Yoneda embedding gives

GF(C) ∼= Hom(hC ×F ,G).

This is a well-defined presheaf, with restriction map inherited from the restriction map of hC ,
so we will take it as a definition of the exponential GF . The next lemma proves that this is not
crazy.
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Lemma 1.2. The presheaf GF is an exponential in PSh(C).

Proof. We need to verify the adjoint condition. First, we write an evaluation map e : GF×F →
G with components

ec(θ, y) := θC(1C , y) ∈ G(C)

for C ∈ ob C, θ : hC × F → G, and y ∈ F(C). It follows that e is a natural transforma-
tion. Moreover, to any natural transformation φ : H × F → G we can find a unique natural
transformation φ′ : H → GF such that the following diagram of natural transformations is
commutative:

H×F

GF ×F G

φ′ × 1

e

φ

In detail, for C ∈ ob C and u ∈ H(C), we define a natural transformation φ′C(u) : hC×F → G
with components

(φ′C(u))D : HomC(D,C)×F(D)→ G(D), (f, x) 7→ φD (H(f)(u), x)

It is clear that φ′ is a natural transformation, and moreover by the definition of the evaluation
e, we have

eC(φ′C(u), y) = (φ′C(u))C (1C , y) = φC(u, y),

so the triangle above does indeed commute. Therefore our candidate exponential is a bona fide
adjoint, as required.

Example 1.1. Consider the case when the category C = M is a monoid or one-object category,
Then an object of PSh(M) is just a set X together with a right action of M on X, and a
morphism from X to another object Y is a function f : X → Y such that

f(xm) = f(x)m, x ∈ X, m ∈M.

Unpacking the definitions, we see that a natural transformation φ : hM×X → Y gives a functor
φM : M×X → Y and that the action of M is only on M . Hence, XY is the set Hom(M×X, Y )
with action

(fm)(m′, x) = f(mm′, x), m,m′ ∈M,x ∈ X.

Putting lemmas 1.1 and 1.2 together we arrive at our first theorem:

Theorem 1.1. If C is a small category then the category PSh(C) of presheaves of sets on C is
a topos.
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2 Sheafification

Recall that a site is a pair (C, τ) consisting of a small category C and a Grothendieck topology τ
on C. We saw in Sheaves of Sets Part 2 that the notion of a presheaf on a site can be refined to
that of a sheaf, which is essentially a presheaf which respects the local data of the Grothendieck
topology. In this section we will show that the canonical inclusion functor

ι : Shτ (C)→ PSh(C)

has a right adjoint, namely the sheafification functor which canonically upgrades a presheaf to
a sheaf.

Before we proceed we will introduce some new terminology.

Definition 2.1. Let F be a presheaf on C, and let S ∈ τ(C) be a covering sieve of some object
C ∈ C.

1. A matching family for D of elements of F is a function which assigns to each f : D → C
in S an element xf ∈ F(D) such that

xf |g = xfg

for all morphisms g : D′ → D in C.

2. An amalgamation of a matching family is an element c ∈ F(C) such that

x|f = xf

for all f ∈ S.

Remark 2.1. When (C, τ) is a site corresponding to a topological space, a matching family of
a cover is simply a collection of sections which agree on intersections, and an amalgamation is
global section which realises every local section via restriction.

With the above remark in mind, we arrive at yet another definition (or rephrasing of the
definition) of a sheaf on a site:

Definition 2.2. A presheaf F on a site (C, τ) is a sheaf when every matching family for every
cover of any object of C has as unique amalgamation.

Remark 2.2. As a sanity check, observe that since a sieve S on C is the same thing as a subfunc-
tor of hC , a matching family f 7→ xf for f ∈ S is the same thing as a natural transformation
S → F . Likewise, using the Yoneda lemma, an amalgamation of a matching family {xf}f∈S is
a natural transformation hC → F such that the associated element x ∈ F(C) satisfies x|f = xf
for ever f ∈ S.

It follows that F is a sheaf iff, for every covering sieve of objects C ∈ ob C, any natural
transformation S → F lifts uniquely to a natural transformation hC → F . This precisely
means that the inclusion S → hC induces an isomorphism

Hom(S,F) ∼= Hom(hC ,F),

meaning that Definition 2.2 agrees with the definition of a sheaf given in previous talks.
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Aside from being another interesting and useful rephrasing of the sheaf condition, the lan-
guage of matching families and amalgamations shine a light on how we can upgrade a presheaf
to a sheaf on a site: we must adjoin unique amalgamations to every matching family. This is
done using a functor called the plus construction.

Definition 2.3. Let (C, τ) be a site, and F a presheaf on C. We write

F+(C) := colimS∈τ(C)Match(S,F),

where Match(S,F) is the set of matching families for the cover S of C, and the colimit is taken
over all covering sieves of C, ordered by reverse inclusion.

Unwinding this definition, an element of F+(C) is an equivalence class of families

x = {xf | f : D → C ∈ S}, xf ∈ F(D), xf |k = xfk

for all l : E → D, where two such families x = {xf | f ∈ S} and y = {yg | g ∈ R} are
equivalent when there is a common refinement T ⊆ R∩S with T ∈ τ(C) such that xh = yh for
every h ∈ T . It is not hard to check that F+ so defined is a presheaf with restriction along a
morphism h : D → C given by

{xf | f ∈ R}|h := {xhf ′ | f ′ ∈ h∗(R)},

and that for x ∈ F(C) the map

ηC(x) = {x|f | f ∈ t(C)}

defines a canonical morphism of presheaves F → F+.
Unfortunately, the plus construction does not give us a sheaf. But it does make a step in

the right direction:

Lemma 2.1. If F is a presheaf then F+ is a separated presheaf: all matching families have at
most one amalgamation.

Heuristically this is because the equivalence relation on F+(C) identifies all amalgamations
of a given matching family.

It may come as a surprise then that applying the plus construction twice does in fact give
a sheaf with respect to a given Grothendieck topology τ .

Theorem 2.1. If F is a separated presheaf on a site (C, τ), then F+ is a sheaf.

This shows that we can functorially enhance a presheaf to a sheaf via F 7→ (F+)
+

. The
next lemma shows that this is in fact universal:

Lemma 2.2. If G is a sheaf and F is a presheaf, then any morphism φ : F → G factors
uniquely as

F F+

G

∃! φ̃

η

φ
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Proof. An element if F+(C) is represented by a matching family {xf | f ∈ S} of F for some
covering sieve S of C. For any h : D → C in S, we have

ηD(xh) = {xh|k | k ∈ t(D)}.

By the matching property we have {xf | f ∈ S}|h = {xhf ′ | f ′ ∈ h∗S}. But h∗(S) is the
maximal sieve t(D) so

{xf | f ∈ S}|h = ηD(xh), D = dom(h).

It follows that if φ̃ were to exist, it would have to map a matching family x = {xf | f ∈ S} to
the unique element y ∈ G(C) with

y|f = φ̃(x)|f = φ̃(x|f ) = φ(xf ), ∀f ∈ S.

But G is a sheaf, so the matching family {φ(xf ) | f ∈ S} amalgamates uniquely to such an

element y ∈ G(C), and so φ̃ exists and is unique.

We are now ready to assemble these facts into the main theorem of the section:

Theorem 2.2. The inclusion functor ι : Sh(C, τ)→ PSh(C) has a left adjoint

a : PSh(C)→ Shτ (C),

called sheafification, or the associated sheaf functor. Moreover, this functor commutes with
finite limits.

Proof. Clearly a(F) = (F+)
+

is well defined as above. Now we have a composite morphism

F ηF−−→ F+ ηF+−−−→
(
F+
)+
,

so be two applications of Lemma 2.2, this composite is universal among morphisms of F to a
sheaf. Thus a is indeed the required left adjoint to the inclusion ι, and ηF+ ◦ ηF is the unit of
the adjunction.

It remains to show that a preserves finite limits. To do this, it suffices to show that the
plus construction preserves finite limits. To this end, observe first that for any C ∈ ob C, any
covering sieve S ∈ τ(C), and any presheaf F on C, there is a natural isomorphism

MatchC(S,F) ∼= Hom(S,F),

where on the right we regard S as a presheaf. Clearly Hom preserves all limits, so the functor
F 7→ MatchC(S,F) also preserves all limits. Finally, it is a general fact that finite limits
commute with filtered colimits, so for any finite index category I we have

(limi∈IFi)+ = colimS∈τ(C)MatchC

(
S, lim

i∈I
Fi
)

= colimS∈τ(C) lim
i∈I

MatchC(S,Fi)

= lim
i∈I

colimS∈τ(C)MatchC(S,Fi)

= lim
i∈I

(Fi)+ .

Therefore the sheafification functor preserves finite limits.
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