Minimal models for MFs 34 (checked)

For some time we erroneously believed that we needed the base ring k to be noetherian for some of our perturbation arguments, especially for the relation between matrix factorisations over R, \tilde{R}, where $R = k[x]$ and the completion is I-adic for $I = (\partial x, W, \ldots, \partial x, W)$. But this is not necessary, as we explain in this note (offending files such as ainfmf28, ainfmf29 will have been corrected, but our older written notes may still have unnecessary noetherianeness hypotheses). The references are:

[CM] Carqueville, Murfet “Computing Khovanov–Rozansky homology and defect fusion”

[DM] Dyckerhoff, Murfet “Pushing forward matrix factorisations”

[AM] Atiyah, Macdonald “Commutative algebra”

[M] Matsumura “Commutative algebra”

[L] Lipman “Residues and traces of differential forms via HH”

Throughout all rings are commutative, k is a ring and R a k-algebra, and t_1, \ldots, t_n is a quasi-regular sequence in R. We write \tilde{R} for the I-adic completion, where $I = (t_1, \ldots, t_n) \subseteq R$.
Lemma l, \ldots, l_n is quasi-regular in $\hat{\mathcal{R}}$.

Proof As recalled in [AM, Prop 10.13] if M is a f.g. R-module, the canonical map

$$\hat{\mathcal{R}} \otimes_R M \longrightarrow \hat{M}$$

is surjective, and so in particular for a f.g. ideal $J \subseteq R$,

$$J \hat{R} = \text{Im}(\hat{J} \longrightarrow \hat{R}).$$

(2.1)

Applying $\hat{\mathcal{R}} \otimes -$ to $0 \longrightarrow J \longrightarrow R \longrightarrow R/J \longrightarrow 0$ of course shows that

$$\hat{\mathcal{R}} \otimes_R R/J \cong \hat{R}/J\hat{R}.$$

First claim The canonical map $R/I \longrightarrow \hat{R}/IR$ is an isomorphism.

Proof of claim Writing elements $r \in \hat{R}$ as $r = (r_n)_{n \geq 1}$, $r_n \in R/I^n$, define an R-bilinear map

$$\hat{R} \times R/I \longrightarrow R/I$$

$$(r, s) \longmapsto rs.$$

This induces an R-linear map $\phi: \hat{\mathcal{R}} \otimes R/I \longrightarrow R/I$, and then $\hat{R}/IR \longrightarrow R/I$ by simply sending \hat{r} to \overline{r}. Now clearly $R/I \longrightarrow \hat{R}/IR \longrightarrow R/I$ is the identity, and $\hat{R}/IR \longrightarrow R/I \longrightarrow \hat{R}/IR$ sends \overline{r} to the residue class of (\ldots, r_i, r_i), but in \hat{R}^r,

$$r = (\ldots, r_i, r_i) = (\ldots, r_3 - r_i, r_2 - r_i, 0) \in \hat{I}.$$

Since $\text{Im}(\hat{I} \rightarrow \hat{R}) = \hat{R}$, we're done. \Box
Consider the diagram

\[
\begin{array}{ccc}
R/I [x_1, \ldots, x_n] & \xrightarrow{\phi} & R/I \oplus I/I^2 \oplus \cdots \\
\alpha \downarrow \cong & & \downarrow \beta \\
\hat{R}/I\hat{R} [x_1, \ldots, x_n] & \xrightarrow{\phi'} & \hat{R}/I\hat{R} \oplus I\hat{R}/I^2\hat{R} \oplus \cdots
\end{array}
\]

where \(\phi(x_i) = ti, \ \phi'(x_i) = ti\), \(\alpha, \beta\) are canonical. By hypothesis \(\phi\) is an iso and we have just shown \(\alpha\) is an iso. We need to show that the canonical map

\[\mathcal{O} : I^{k}/I^{k+1} \longrightarrow I^{k}/I^{k+1}\hat{R}\]

is an isomorphism also. An element \(r \in I^{k}\hat{R}\) has \(r_n \in I^{k}(R/I^n)\) for \(n > 1\), and thus has the form

\[
\begin{pmatrix}
\ldots & r_{k+1} & 0 & \ldots & 0 & 0
\end{pmatrix}
\]

with \(r_{k+1} \in I^{k}/I^{k+1}\). We define \(\mathcal{V} : I^{k}\hat{R}/I^{k+1}\hat{R} \longrightarrow I^{k}/I^{k+1}\) by \(\mathcal{V}(r) = r_{k+1}\).

This is clearly well-defined. Moreover, \(\mathcal{V}\mathcal{O}(\overline{r}) = \overline{r}\) and as above, (choosing a rep in \(I^{k}/I^{k+1}\))

\[
r - \overline{\mathcal{V}(r)} = (\ldots, r_{k+2}, r_{k+1}, 0, \ldots, 0) - (\ldots, r_{k+1}, r_{k+1}, 0, \ldots, 0)
\]

\[
= (\ldots, r_{k+2} - r_{k+1}, 0, 0, \ldots, 0) \in I^{k+1}/I^{k+2}
\]

Since \(I^{k+1}\) is a f.g. ideal, we deduce this element lies in \(I^{k+1}\hat{R}\), as required.

Hence \(\mathcal{O}\) is an iso and the proof of quasi-regularity is complete. \(\square\)
Lemma Suppose that

(i) R, R/I are projective k-modules

(ii) the Koszul complex of E over R is exact in nonzero degrees.

Then, if $\beta: R/I \to R$ is any k-linear section of the quotient $\pi: R \to R/I$, $(K, dk) = \left(\bigwedge (k\Theta, \Theta \otimes k\Theta) \otimes_k R, \Sigma; i; i^* \right)$ is the Koszul complex, π is viewed as a morphism of complexes $\pi: (K, dk) \to (R/I, 0)$, there is a degree -1 k-linear operator h as in the diagram

$$h \subseteq (K, dk) \xrightarrow{\pi} (R/I, 0)$$

such that

- $\pi \beta = 1$,
- $\beta \pi = 1_k - [dk, h]$ (graded commutator)
- $h^2 = 0$, $h\beta = 0$, $\pi h = 0$.

Proof Let $Z^i = \text{Ker}(d_k^i : K^i \to K^{i+1})$, and $Z^0 = I$ so that we have a diagram in which the top row is exact:

$$\cdots \to K^{-2} \xrightarrow{dk^{-2}} K^{-1} \xrightarrow{dk^{-1}} K^0 \xrightarrow{\pi} R/I \to 0$$

Define a^i, b^i as shown. Since $K^i, R/I$ are all projective, there are k-linear c^i, d^i as indicated such that $a^i c^i = 1$, $d^i b^i = 1$, $c^i a^i + b^i d^i = 1$ for all i.
We set $h^i := d^i \cdot c^i$. Then

- $\mathcal{B} \pi = 1_k - [d_k, h]$

This holds since $\mathcal{B} \pi = 1_k - d^i \cdot h^o$, and for $i > 0$

$$[d_k, h]^i = d_k^{i-1} h^i + h^{i-1} d_k^i$$

$$= a^i b^i d^i c^i + d^{i-1} c^{i-1} a^{i+1} b^{i+1}$$

$$= a^i c^i + d^{i-1} b^{i+1} = 1_k c.$$

- $h^2 = 0, \ h^3 = 0, \ \pi h = 0.$

Since $(h^2)^i = h^{i-1} h^i = d^{i-1} c^{i-1} d^i c^i = 0, \ h^2 = 0$.

Clearly $h^3 = 0$ and $\pi h = 0$. \square
Remark on [DM]

Firstly, in the context of [DM, 57] suppose \(X \) is not necessarily finite rank (but still free). Then all the arguments of that section go through, with the possible exception of Remark 7.5 (I did not check). Moreover Remark 7.7 there holds under weaker hypotheses: as in [DM, 57] let \(\gamma : S \to R \) be a ring morphism, \(W \) and \((X, d)\) a matrix factorisation of \(W \) over \(R \) (not nec. finite rank), \(t \), \(\ldots \), \(t_n \) a quasi-regular sequence in \(R \) with \(t_i \cdot l_x \cong 0 \), with homotopies \(\lambda_i \).

We assume there is a deformation retract (of \(\mathbb{Z} \)-graded cpxs) over \(S \)

\[
\begin{array}{c}
(R \oplus R, 0) \xrightarrow{\pi} (K_X, d_X), h
\end{array}
\]

satisfying \(h^2 = 0, h \delta = 0, \pi h = 0 \), where \(\pi \) is the canonical map.

Let \(\alpha : R \to R' \) be a ring morphism such that

(i) \(\alpha(t_1), \ldots, \alpha(t_n) \) is quasi-regular in \(R' \) (we write \(t_i \) for \(\alpha(t_i) \))

(ii) the induced map \(R \oplus R \to R' \oplus R' \) is an isomorphism,

(iii) there is a deformation retract (of \(\mathbb{Z} \)-graded cpxs over \(S \))

\[
\begin{array}{c}
(R' \oplus R', 0) \xrightarrow{\pi'} (K_{R'}, d_{K'}, h')
\end{array}
\]

satisfying \(h'^2 = 0, h' \delta' = 0, \pi' h' = 0 \).

Proposition The canonical morphism of linear factorisations of \(W \) over \(S \),

\(f \ast X \to (f \ast \alpha) \ast X \) is an \(S \)-linear homotopy equivalence.
Proof As explained in [DM, Remark 7.7], the results there show that we have homotopy equivalences \((X' = X \oplus R')\) over \(S\):

\[
\pi : X \oplus_R K_R (t) \longrightarrow X/\pm X
\]

\[
\pi' : X' \oplus_{R'} K_{R'} (t) \longrightarrow X'/\pm X'
\]

and the canonical \(R\)-linear map \(X/\pm X \longrightarrow X'/\pm X'\) is an isomorphism, by hypothesis \((ii)\). It is clear that the canonical \(R\)-linear map \(X \rightarrow X'\) induces a commutative diagram of linear factorisations

\[
\begin{array}{ccc}
X \oplus_R K_R (t) & \xrightarrow{\pi} & X/\pm X \\
\downarrow & & \downarrow \cong \\
X' \oplus_{R'} K_{R'} (t) & \xrightarrow{\pi'} & X'/\pm X'
\end{array}
\]

Hence a homotopy commutative diagram \((\Psi := \varepsilon \pi^{-1}, \Psi' := \varepsilon \circ (\pi')^{-1})\)

\[
\begin{array}{ccc}
X/\pm X & \xrightarrow{\pi^{-1}} & X \oplus_R K_R (t) & \xrightarrow{\varepsilon} & X \{\eta\} \\
\Downarrow & & \Downarrow & & \Downarrow \\
X'/\pm X' & \xrightarrow{(\pi')^{-1}} & X \oplus_{R'} K_{R'} (t) & \xrightarrow{\varepsilon} & X' \{\eta\}
\end{array}
\]

If we produce \(\mathcal{U}, \mathcal{U}'\) using \(\lambda_i\) and \(\lambda_i^{'} := \lambda_i \oplus_R R'\) then it is also clear that the following diagram commutes:
So in summary both squares in the following diagram commute in $HF(S,W)$

$$
\begin{array}{ccc}
X[n] & \xrightarrow{\psi} & X/\pm X \\
\downarrow & & \downarrow
d \sigma & \quad \text{can} & \quad \downarrow
dx'[n] & \xrightarrow{\psi'} & X'/\pm X' \\
\end{array}
$$

Now $\psi \psi' \cong 1$, $\psi' \psi \cong 1$, and the above shows (identifying $X(\pm X, X'/\pm X')$) that $\psi \psi' \cong \psi' \psi'$. Since they split the same idempotent, X, X' must be isomorphic in $HF(S,W)$, and the middle column is a homotopy equivalence. \(\square\)
Remarks on \([M\text{-}Cut]\)

In the current version of the cut paper we assume the ground ring \(k\) is noetherian, purely so that \(k[y] \rightarrow k[y]^\wedge\) will be flat, which allows us to use \([DM, \text{Remark } 7.7]\) to infer that the canonical map

\[
E : \gamma \otimes_{k[y]} X \longrightarrow \gamma \otimes_{k[y]} k[y] \otimes k[y] X
\]

is a homotopy equivalence, in section 4.3. Using the above, we explain why everything in \([M\text{-}Cut]\) holds for any commutative \(\mathbb{Q}\)-algebra.

- Set \(t_i = \partial y_i V\) for \(1 \leq i \leq m\). By hypothesis this is a quasi-regular sequence in \(R = k[y]\), and \(R/\mathfrak{I} R\) is a.f.g. projective \(k\)-module, and \(K_R(\mathfrak{I})\) is exact outside degree zero. Let \(I = (\mathfrak{I})\) and \(\hat{R}\) the I-adic completion.

- By p. 12, \(t\) is quasi-regular in \(\hat{R}\), and \(R/\mathfrak{I} R \xrightarrow{=} \hat{R}/\mathfrak{I} \hat{R}\). Then \([DM, \text{Appendix } B]\) applies to the tuple \((k, \hat{R}, \mathfrak{I})\) to give an isomorphism of \(k[y]\)-modules \((P = \hat{R}/\mathfrak{I} \hat{R})\)

\[
\mathcal{Z}^* : P \otimes_k k[y] \longrightarrow \hat{R}.
\]

Observe that \(P \otimes_k K_k(\mathbb{Z}) \cong K_R(\mathfrak{I})\) as complexes of \(k[y]\)-modules, and in particular \(K_R(\mathfrak{I})\) is exact outside degree zero. Moreover using connections (as recalled in \([M\text{-}Cut]\) itself) we may produce a deformation retract of the form (6.2).

- By p. 11 since \(R, R/I\) are projective \(k\)-modules and \(K_R(\mathfrak{I})\) is exact outside degree zero, we have a deformation retract (6.1).
Hence the Proposition on p. 6 applies to the data (notation of [M-Cut])

\[k[\bar{z}, \bar{z}] \xrightarrow{\gamma} k[\bar{z}, \bar{z}, \bar{z}], \quad (\gamma \otimes k[\bar{z}] X, \, d_{\gamma} \otimes 1 + 1 \otimes d_{\bar{z}}). \]

\[k[\bar{z}, \bar{z}, \bar{z}] \cong k[\bar{z}, \bar{z}] \otimes k[\bar{y}] \rightarrow k[\bar{z}, \bar{z}] \otimes k[\bar{z}]^\wedge \]

and we conclude that in HF(k[\bar{z}, \bar{z}], U - W) the canonical map is an isomorphism

\[\gamma \otimes k[\bar{z}] X \rightarrow \gamma \otimes k[\bar{z}] k[\bar{y}] \otimes k[\bar{z}] X. \]

This completes the removal of the noetherian hypotheses from [M-Cut].