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The results in this note are all from [Nee01] or [BN93]. For necessary background on cardinals
(particularly regular and singular cardinals) see our notes on Basic Set Theory (BST). In our
BST notes there is no mention of grothendieck universes, whereas all our notes on category theory
(including this one) are implicitly working inside a fixed grothendieck universe U using the con-
glomerate convention for U (FCT,Definition 5). So some explanation of how these two situations
interact is in order.

Definition 1. The expression ordinal has the meaning given in (BST,Definition 2), and a cardinal
is a special type of ordinal (BST,Definition 7). Under the conglomerate convention, ordinals and
cardinals are a priori conglomerates, not necessarily sets. We say an ordinal α is small if it is a
small conglomerate. We make the following observations

• If α ≺ β are ordinals with β small, then α is also small.

• If an ordinal α is small, so is α+ = α ∪ {α}.

• The first infinite cardinal ω = ℵ0 is always small, by our convention that grothendieck
universes are always infinite (FCT,Definition 4). Therefore every finite cardinal is small.

Remark 1. Although in our BST notes we consider the finite cardinals 0, 1 to be regular, it is
our convention throughout this note that all regular cardinals are infinite. This just saves us from
writing expressions like “small infinite regular cardinal” repeatedly.

Remark 2. Recall that when we say a category C is complete, or even just has coproducts, we mean
that all set-indexed colimits (resp. coproducts) exist in C (we are working under the conglomerate
convention, so a set is an element of our universe U). If β is a small cardinal, we say that C
has β-coproducts if any family of objects {Xi}i∈I in C indexed by a set I of cardinality < β has
a coproduct. For example, C has finite coproducts iff. it has ℵ0-coproducts and has countable
coproducts iff. it has ℵ1-coproducts.
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Lemma 1. If a cardinal κ is small, then so is the successor cardinal of κ. In particular for any
ordinal α if the cardinal ℵα is small, so is ℵα+ .

Proof. See (BST,Definition 15) for the definition of the cardinal successor (not to be confused with
the ordinal successor). Let κ be a small cardinal, so that κ is in bijection with some x ∈ U and
therefore satisfies κ < c(U) by (BST,Lemma 43). Since the cardinal c(U) is strongly inaccessible
(BST,Proposition 44) it follows that κ < 2κ < c(U). If δ is the cardinal successor of κ then we
must have δ ≤ 2κ and therefore δ < c(U). From (BST,Lemma 43) we conclude that δ is also
small.

1 Finer Localising Subcategories

Definition 2. Let T be a triangulated category with coproducts, β a small infinite cardinal and
S a nonempty class of objects of T . Then 〈S〉β denotes the smallest triangulated subcategory S
of T satisfying the following conditions

(i) The objects of S belong to S.

(ii) Any coproduct in T of fewer than β objects of S belongs to S. That is, if {Xi}i∈I is a family
of objects of S indexed by a nonempty set I of cardinality < β then any coproduct of this
family in T belongs to S.

(iii) The subcategory S ⊆ T is thick.

Remark 3. The triangulated subcategory 〈S〉β exists, because we can take the intersection of all
the triangulated subcategories of T satisfying conditions (i), (ii), (iii) (observe that this collection
is going to be a conglomerate, not a set).

In this section we want to show that provided S is a set, the subcategory 〈S〉β is essentially
small. The first observation is

Lemma 2. Let T be a triangulated category with coproducts, β ≤ γ small infinite cardinals and
S a nonempty class of objects of T . Then 〈S〉β ⊆ 〈S〉γ .

Definition 3. Let T be a triangulated category and S a nonempty class of objects of T . We let
T (S) denote the smallest triangulated subcategory of T containing the objects of S (that is, the
intersection of all such subcategories).

Lemma 3. Let S be a nonempty set of objects in a triangulated category T . Then the category
T (S) is essentially small.

Proof. Define T1(S) to be the full subcategory of T whose objects are the objects of S. The
category T1(S) is certainly small. We define a small full subcategory Tn+1(S) for n > 0 inductively
as follows: suppose Tn(S) has been defined and is small. Choose for every morphism f : X −→ Y
in Tn(S) a particular triangle in T

X
f // Y // Cf // ΣX (1)

Let Tn+1(S) be the full subcategory of T whose objects are the objects of Tn(S) together with
the following objects:

(i) The object Cf for every morphism f : X −→ Y in Tn(S).

(ii) The object Σ−1X for every X ∈ Tn(S).

This is a small full subcategory of T .
Now put T (S) =

⋃∞
n=1 Tn(S), which is a small full subcategory of T . Given any morphism

f : X −→ Y in T (S), it lies in some Tn(S). But then Tn+1(S) contains an object Cf fitting
into a triangle (1). It is clear that T (S) is closed under Σ−1, so by (TRC,Lemma 33) the replete
closure T (S) of T (S) is a triangulated subcategory of T (and is therefore the smallest triangulated
subcategory containing S). Since the inclusion T (S) −→ T (S) is an equivalence, we see that T (S)
is essentially small.
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For use in the proof of the next result, we make some technical definitions.

Definition 4. Let T be a triangulated category with coproducts and β a small infinite cardinal.
Let Q be the conglomerate of all families of objects of T indexed by cardinals < β (to be precise,
elements of Q are functions f : α −→ T where α < β is a cardinal). Simultaneously choose a
coproduct in T for every family in Q, and denote this assignment by Q. We call Q an assignment
of canonical coproducts of size < β.

Let S be a nonempty set of objects of T . Let CPβ,Q(S) denote the set of objects of T consisting
of the objects of S together with the canonical coproduct (i.e. the one chosen by Q) for every
family of objects of S indexed by a cardinal < β. The intuitive meaning of this construction is
clear: we start with S, and add a coproduct for every family of objects of S smaller than β.

Definition 5. Let T be a triangulated category. An assignment of mapping cones is a function
C which assigns to every morphism f : X −→ Y in T an object Cf which occurs in a triangle of
the form

X
f // Y // Cf // ΣX

Such assignments certainly exist.

Remark 4. For the duration of this remark we drop the conglomerate convention (FCT,Definition
5). In the proof of Proposition 4 we are going to use a construction by transfinite recursion. To
do this carefully we have to define two “constructions” τ(x), µ(x) on all sets x (BST,Remark 3).
We define the construction τ as follows

(i) If x = (U, T , β,Q, C, S) is a tuple consisting of a universe U, a triangulated category T
with coproducts, a small infinite cardinal β, an assignment Q of canonical coproducts of
size < β, an assignment C of mapping cones, and a nonempty set of objects S ⊆ T (here
the meaning of “category” and “set” are relative to U) then τ(x) is defined in the following
way: first form the set CPβ,Q(S). Then, using the mapping cones selected by C, we can
canonically form the set ϕ(x) = TC(CPβ,Q(S)) defined in the proof of Lemma 3. Then
τ(x) = (U, T , β,Q, C, ϕ(x)).

(ii) If x is not of this form, then τ(x) is the empty set.

We define the construction µ as follows

(a) If x is nonempty and consists of tuples of the form given in (i) above, all of which are equal to
each other in the first five places {(U, T , β,Q,S, Sk)}k∈K , then µ(x) is constructed from the
union over all the tuples of the sets in the last position. That is, µ(x) = (U, T , β,Q,

⋃
k Sk).

(b) If x does not have the form described in (a), then µ(x) is the empty set.

We remark that the “output” in case (a) need not be a tuple of the form given in (i), since the
union set may not be small if K is too large. But in our application, this will not concern us.

Proposition 4. Let T be a triangulated category with coproducts, β a small infinite cardinal and
S a nonempty set of objects of T . Then the category 〈S〉β is essentially small.

Proof. Let our infinite cardinal β be given, and let γ be the successor cardinal (BST,Definition
15). Then by Lemma 2 we have 〈S〉β ⊆ 〈S〉γ and to show the former category is essentially small
it suffices to show that the latter category is essentially small. So we may reduce to the case where
β > ℵ0 is an infinite successor cardinal, and therefore regular (BST,Proposition 38).

First observe that any triangulated subcategory S ⊆ T satisfying condition (ii) of Definition
2 for β is automatically thick, since β > ℵ0 and (TRC,Corollary 85) implies that a triangulated
subcategory closed under countable coproducts is thick. Therefore 〈S〉β is the smallest triangulated
subcategory satisfying conditions (i), (ii) of Definition 2.

Choose an assignment Q of canonical coproducts of size < β to the objects of T , and also an as-
signment C of mapping cones. Using the constructions τ, µ defined in Remark 4 and (BST,Theorem

3

file:"FoundationsForCategoryTheory.pdf"
file:"BasicSetTheory.pdf"
file:"BasicSetTheory.pdf"
file:"BasicSetTheory.pdf"
file:"TriangulatedCategories.pdf"
file:"BasicSetTheory.pdf"


17) with initial conglomerate z = (U, T , β,Q, C, TC(S)) we define a function fα on α+ for every
ordinal α. For any ordinal α � β one checks that

fα(α) = (U, T , β,Q, C, Sα)

for some set Sα of objects of T . These sets Sα for α � β have the following properties

S0 = TC(S)
Sα+ = TC(CPβ,Q(Sα))

Sα =
⋃

γ≺α

Sγ for any limit ordinal α

By construction we have Sγ ⊆ Sα for any ordinals γ ≺ α � β, and in particular S is contained
in every Sα. Let Sα denote full replete subcategory of T whose objects are those isomorphic to
an object of Sα. It is straightforward using (TRC,Lemma 33) to check that Sα is a triangulated
subcategory of T which contains S, for every ordinal α � β. In particular this is true of Sβ .

Next we claim that the triangulated subcategory Sβ , which certainly satisfies condition (i) of
Definition 2, also satisfies the condition (ii). Suppose {Xi}i∈I is a nonempty family of objects of
Sβ indexed by a nonempty set I with |I| < β. We can assume that I = |I| is a cardinal < β and
also that every Xi belongs to Sβ .

Any infinite cardinal is a limit ordinal, so Sβ =
⋃

γ≺β Sγ . For each i ∈ I choose an ordinal
γi ≺ β with Xi ∈ Sγi . Let γ be the ordinal γ =

⋃
i γi. Since it is a union of I < β cardinals all of

size < β it follows from (BST,Proposition 42) and regularity of β that γ ≺ β. Therefore Sγ contains
every Xi, and by construction Sγ+ ⊆ Sβ contains some coproduct in T of the family {Xi}i∈I .
This shows that Sβ satisfies the conditions of Definition 2, from which we deduce 〈S〉β ⊆ Sβ . But
Sβ is an essentially small category, so the smaller category 〈S〉β is also essentially small, which is
what we wanted to show.

Definition 6. Let T be a triangulated category, S a triangulated subcategory and β a small
infinite cardinal. We say that S is β-localising if it is closed under coproducts in T indexed by
sets of cardinality < β. Dually we say that S is β-colocalising if it is closed under products indexed
by sets of cardinality < β.

Remark 5. Let T be a triangulated category with coproducts, β a small infinite cardinal and
S a nonempty class of objects of T . Then by definition the triangulated subcategory 〈S〉β is
β-localising.

The following result may seem obvious, but a careful proof requires some subtle set theory.

Lemma 5. Let T be a triangulated category, S a triangulated subcategory. Then S is localising
if and only if it is β-localising for every small infinite cardinal β.

Proof. See (TRC,Definition 37) for the definition of a localising subcategory. The condition is
clearly necessary, so suppose that S is a triangulated subcategory which is β-localising for every
small infinite cardinal β. If {Si}i∈I is any nonempty family of objects of S, by which we mean
that I is a set and each Si ∈ S, then the cardinal κ = |I| is small. If this cardinal is finite, then
since S is additive it trivially contains any coproduct of the Si. So we may assume κ is a small
infinite cardinal. By Lemma 1 the successor cardinal β of κ is also small, and κ < β so since S is
assumed to be β-localising any coproduct

⊕
i∈I Si in T must belong to S.

Remark 6. If T is a triangulated category with coproducts, and S a β-localising subcategory
for any small infinite cardinal β > ℵ0, then S contains countable coproducts of its objects and is
therefore thick (TRC,Corollary 85).

Lemma 6. Let T be a triangulated category, S a triangulated subcategory and β a small infinite
cardinal. If S is β-localising then so is its thick closure Ŝ.
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Proof. Suppose we are given a family of objects {Xi}i∈I of Ŝ indexed by a set I of cardinality
< β. By definition for each i ∈ I there exists an object Yi with Xi ⊕ Yi ∈ S. Then

(
⊕

i

Xi)⊕ (
⊕

i

Yi) =
⊕

i

(Xi ⊕ Yi)

which by assumption belongs to S. Therefore Ŝ is β-localising.

Proposition 7. Let T be a triangulated category with coproducts and S a nonempty class of
objects of T . Then the triangulated subcategory 〈S〉 =

⋃
β〈S〉β is localising, and is the smallest

localising subcategory containing S.

Proof. Observe that since every small infinite cardinal is in bijection with an element of our
universe U, we can form the conglomerate of all small infinite cardinals. So the union

⋃
β〈S〉β

of the class 〈S〉β , as β ranges over all small infinite cardinals, makes sense. Using (TRC,Lemma
33) one checks easily that 〈S〉 is a triangulated subcategory of T . To see that it is localising, let
{Xi}i∈I be any nonempty family of objects of 〈S〉, which we may as well assume is infinite. The
cardinal β = |I| is a small infinite cardinal, and for each i ∈ I we choose a small infinite cardinal
βi with Xi ∈ 〈S〉βi .

By (BST,Proposition 44) the cardinal c(U) is regular, so the infinite cardinal
⋃

i βi is still small.
Combining this with Lemma 1 we can find a small infinite cardinal γ with γ > β and γ > βi for
each i ∈ I. Then all the Xi belong to 〈S〉γ and since β < γ we can use the fact that 〈S〉γ is
γ-localising to conclude that any coproduct of the Xi in T belongs to 〈S〉γ and therefore to 〈S〉.
This shows that 〈S〉 is localising. For the final statement, observe that any localising subcategory
containing S must contain 〈S〉β for every small infinite cardinal β, and therefore contains 〈S〉.

Definition 7. Let T be a triangulated category with coproducts and S a nonempty class of
objects of T . We call the localising subcategory 〈S〉 the localising subcategory generated by S.

Now that we have refined the notion of a localising subcategory to a β-localising subcategory,
we can also refine some results from (TRC,Section 4).

Lemma 8. Let β be a small infinite cardinal and T a triangulated category with β-coproducts. Let
S be a β-localising subcategory of T . Then the portly triangulated category T /S has β-coproducts
and the canonical functor F : T −→ T /S preserves β-coproducts.

Proof. See Remark 2 for the definition of a category with β-coproducts. It suffices to show that
F preserves β-coproducts, and the proof is exactly the one given in (TRC,Lemma 91).

Example 1. Let T be a triangulated category with coproducts, and S a β-localising subcategory
for some small infinite cardinal β > ℵ0. It is not true in general that F : T −→ T /S preserves all
coproducts. If it did then S would be localising, for given any family of objects {Xi}i∈I in S we
would have

F (
⊕

i

Xi) =
⊕

i

F (Xi) = 0

By Remark 6 the subcategory S is thick, so from F (
⊕

i Xi) = 0 we deduce that
⊕

i Xi ∈ S.
Therefore S is localising.

2 Perfect Classes

Definition 8. Let T be a triangulated category with coproducts and β a small infinite cardinal.
A class of objects S ⊆ T is called β-perfect if it satisfies the following conditions

(P0) S contains some zero object of T .
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(P1) Given a nonempty family of objects {Xi}i∈I of T indexed by a set I of cardinality < β and
a morphism ϕ : k −→

⊕
i∈I Xi with k ∈ S, there are morphisms fi : ki −→ Xi with ki ∈ S

and a commutative diagram of the following form

k
ϕ

""DD
DD

DD
DD

D

}}{{
{{

{{
{{

⊕
i ki L

i fi

// ⊕
i Xi

(P2) Given a nonempty family of morphisms {fi : ki −→ Xi}i∈I of T indexed by a set I of
cardinality < β with each ki ∈ S, if there is a morphism k −→

⊕
i ki with k ∈ S making the

following composite zero

k // ⊕
i ki

L
i fi // ⊕

i Xi

then each fi can be factored through an object li ∈ S as follows

ki
gi // li

hi // Xi

such that the following composite also vanishes

k // ⊕
i ki

L
i gi // ⊕

i li

Example 2. Let T be a triangulated category with coproducts and β a small infinite cardinal. If
0 is any zero object of T then the class {0} is β-perfect. The whole category T is also β-perfect.
If S ⊆ T is a β-perfect class then it is also γ-perfect for any small infinite cardinal γ < β.

In the next two results, T is a triangulated category with coproducts and β is a small infinite
cardinal.

Lemma 9. Let T ⊆ T be a β-perfect class for T . Suppose that S ⊆ T is an equivalent class; that
is, any object of T is isomorphic to some object of S. Then S is also β-perfect.

Lemma 10. Let S be a β-perfect class for T and let T be the class of all objects in T which are
direct summands of objects of S. Then T is also β-perfect.

Proof. Observe that the definition of T is fragile, in the following sense: an object X ∈ T belongs
to T if and only if there exists an object Y ∈ T and a coproduct X ⊕ Y in T with X ⊕ Y ∈ S.
Since S is not replete, it does not follow that every such coproduct must belong to S.

Any object X ∈ S is the coproduct of itself with any zero object of T , from which we deduce
that T contains S and every zero object of T . In particular T satisfies P0. To establish P1, let
a nonempty family {Xi}i∈I with |I| < β and a morphism ϕ : k −→

⊕
i Xi with k ∈ T be given.

There exists some k′ ∈ T and a coproduct k ⊕ k′ ∈ S. Consider the composite

k ⊕ k′
(1 0) // k

ϕ // ⊕
i Xi

Since S is β-perfect this must factor in the following way

k ⊕ k′ // ⊕
i ki

L
fi // ⊕

i Xi

with every ki ∈ S ⊆ T . Composing k ⊕ k′ −→
⊕

i ki with the injection k −→ k ⊕ k′ we have a
factorisation of the original morphism ϕ, as required.

It remains to check P2. Suppose we are given a vanishing composite

k // ⊕
i ki

L
i fi // ⊕

i Xi
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with k, ki ∈ T . Choose coproducts k ⊕ k′ ∈ S and ki ⊕ k′i ∈ S for each i ∈ I. Then the following
composite is zero

k ⊕ k′ // k // ⊕
i ki

L
i

(
1
0

)
// ⊕

i(ki ⊕ k′i)
L

i( fi 0 ) // ⊕
i Xi

Since S is β-perfect, for each i ∈ I the morphism (fi 0) : ki ⊕ k′i −→ Xi must factor through an
object li ∈ S as ki ⊕ k′i −→ li −→ Xi with the following composite equal to zero

k ⊕ k′ // k // ⊕
i ki

L
i

(
1
0

)
// ⊕

i(ki ⊕ k′i) // ⊕
i li

But then composite of this morphism with the injection k −→ k ⊕ k′ is also zero, so the proof is
complete.

Definition 9. Let T be a triangulated category with coproducts, β a small infinite cardinal and
S a triangulated subcategory. An object k ∈ T is called β-good for S if whenever we have a
nonempty family of objects {Xi}i∈I of T indexed by a set I of cardinality < β and a morphism
ϕ : k −→

⊕
i∈I Xi there are morphisms fi : ki −→ Xi with ki ∈ S and a commutative diagram of

the following form
k

ϕ

""DD
DD

DD
DD

D

}}{{
{{

{{
{{

⊕
i ki L

i fi

// ⊕
i Xi

Example 3. Let T , β,S be as in Definition 9. Any zero object 0 ∈ T is β-good for S. If k is
β-good for S then so are Σk,Σ−1k and any object isomorphic to k in T . Any direct summand in
T of a β-good object for S is also β-good for S. If k is β-good for S then it is also β-good for any
larger triangulated subcategory S ′ ⊇ S.

Lemma 11. Let T be a triangulated category with coproducts, β a small infinite cardinal and S
a triangulated subcategory. If k is an object of T which is β-good for S then

• Given a nonempty family of morphisms {fi : ki −→ Xi}i∈I of T indexed by a set I of
cardinality < β with each ki ∈ S, if there is a morphism k −→

⊕
i ki making the following

composite zero

k // ⊕
i ki

L
i fi // ⊕

i Xi

then each fi can be factored through an object li ∈ S as ki −→ li −→ Xi with the following
composite equal to zero

k // ⊕
i ki

// ⊕
i li

Proof. Suppose we are in the situation described above. For each i ∈ I let wi : Yi −→ ki be a
homotopy kernel of fi. It follows from (TRC,Remark 9) that the morphism

⊕
i wi is a homotopy

kernel of
⊕

i fi. As the composite of
⊕

fi with our morphism α : k →
⊕

i ki is zero, we deduce that
α factors as k −→

⊕
Yi −→

⊕
i ki. But then since k is β-good for S, the morphism k −→

⊕
i Yi

must factor as k −→
⊕

i ji −→
⊕

i Yi with ji ∈ S. The composite

ji
// Yi

// ki
fi // Xi

is zero. So if we choose for each i ∈ I a homotopy cokernel gi : ki −→ li of ji −→ ki, we
obtain a morphism hi : li −→ Xi with fi = hi ◦ gi. Since ji, ki both belong to the triangulated
subcategory S, so does the homotopy cokernel li. It is clear by construction that the composite
k −→

⊕
i ki −→

⊕
i li vanishes, so the proof is complete.

7
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Lemma 12. Let T be a triangulated category with coproducts, β a small infinite cardinal and S
a triangulated subcategory whose objects are all β-good for S. Then S is a β-perfect class.

Proof. This follows immediately from Lemma 11.

In fact we will see in the next few results that to show S is β-perfect, it suffices to show that
it has a large enough generating class of β-good objects.

Proposition 13. Let T be a triangulated category with coproducts, β a small infinite cardinal
and S a triangulated subcategory. Then the full subcategory of T defined by

Q = {k ∈ S | k is β-good for S}

is a triangulated subcategory of T . If S is thick then so is Q.

Proof. It is clear from Example 3 that Q is replete and closed under Σ,Σ−1, so by (TRC,Lemma
33) it suffices to show that Q is closed under mapping cones (if S is thick then Example 3 also
shows that Q is thick). So suppose we have a triangle in T

k
f // l // m // Σk (2)

with k, l ∈ Q. Let a nonempty family {Xi}i∈I of objects of T be given, where |I| < β, and
let

⊕
i Xi be any coproduct in T . Suppose that we are given a morphism h : m −→

⊕
i Xi.

Composing with l −→ m yields a morphism l −→
⊕

i Xi making the following composite vanish

k −→ l −→
⊕

i

Xi

Since l is β-good for S there exists a factorisation of l −→
⊕

i Xi through some morphism
⊕

i fi :⊕
i li −→

⊕
i Xi with li ∈ S. The composite with k −→ l vanishes, so from Lemma 11 we deduce

that every fi factors as

li
gi // mi

hi // Xi

with mi ∈ S and the following composite equal to zero

k // l // ⊕
i li

L
i gi // ⊕

i mi

Since (2) is a triangle, we infer that l −→
⊕

i mi factors through l −→ m, with factorisation
g : m −→

⊕
i mi say. The composite

⊕
i hi ◦ g need not agree with the given morphism h, but

their composites with l −→ m do agree. Their difference h −
⊕

i hi ◦ g therefore factors through
Σk. Since Σk ∈ Q this factorisation Σk −→

⊕
i Xi must factor as

Σk // ⊕
i m′

i

L
i h′

i // ⊕
i Xi

with m′
i ∈ S. The direct sum (

⊕
i mi)⊕ (

⊕
i m′

i) is also a coproduct
⊕

i(mi⊕m′
i), and we denote

by q the sum of the following two composites

m
g // ⊕

i mi
// ⊕

i(mi ⊕m′
i)

m // Σk // ⊕
i m′

i
// ⊕

i(mi ⊕m′
i)

By construction h is equal to the composite of
⊕

i(hi h′i) :
⊕

i(mi ⊕ m′
i) −→

⊕
i Xi with q,

which shows that m is β-good for S and consequently that m ∈ Q. Therefore Q is a triangulated
subcategory of T , and the proof is complete.

Lemma 14. Let T be a triangulated category with coproducts, β a small infinite cardinal and S
a nonempty class of objects of T . Suppose that every object of S is β-good for the triangulated
subcategory T (S) ⊆ T . Then T (S) is a β-perfect class.

8
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Proof. We define a full subcategory R of T as follows

R = {k ∈ T (S) | k is β-good for T (S)}

By Lemma 12 it suffices to show that R = T (S), so we need only show that R is a triangulated
subcategory of T . But this is a special case of Proposition 13, so we are done.

Lemma 15. Let T be a triangulated category with coproducts, α, β small infinite cardinals and
S a nonempty class of objects of T . Suppose that every object of S is β-good for the triangulated
subcategory 〈S〉α ⊆ T . Then 〈S〉α is a β-perfect class.

Proof. We define a full subcategory S of T as follows

Q = {k ∈ 〈S〉α | k is β-good for 〈S〉α}

To show that 〈S〉α is β-perfect, it suffices by Lemma 12 to show that Q = 〈S〉α. It is therefore
enough to show that Q is a triangulated subcategory of T satisfying the conditions (i), (ii), (iii)
of Definition 2. It is a thick triangulated subcategory of T by Proposition 13 and the condition
(i) is true by hypothesis, so to complete the proof, we have only to show that any coproduct in T
of fewer than α objects of Q belongs to Q.

Let {kµ}µ∈Λ be a nonempty family of objects of Q indexed by a set Λ of cardinality < α and
let

⊕
µ kµ be any coproduct in T . We know that this coproduct belongs to 〈S〉α, so we need only

show that it is β-good for 〈S〉α. Suppose we are given a nonempty family {Xi}i∈I of objects of
T with |I| < β and a morphism

⊕
µ kµ −→

⊕
i Xi. In other words, we have for each µ ∈ Λ a

morphism kµ −→
⊕

i Xi, and this must factor as

kµ
//
⊕

i∈I kµ,i

L
i fµ,i //

⊕
i∈I Xi

for objects kµ,i ∈ 〈S〉α. It follows that our morphism
⊕

µ kµ −→
⊕

i Xi must factor as

⊕
µ kµ∈Λ //

⊕
i∈I

⊕
µ∈Λ kµ,i

L
i Gi //

⊕
i∈I Xi

where Gi :
⊕

µ kµ,i −→ Xi has µth coordinate fµ,i. This shows that
⊕

µ kµ is β-good for S, and
therefore belongs to Q, which completes the proof.

Theorem 16. Let T be a triangulated category with coproducts, β a small infinite cardinal and
{Si}i∈I a nonempty family of β-perfect classes of T . Then

(i) The class of objects T (
⋃

i Si) is β-perfect.

(ii) For any small infinite cardinal α the class of objects 〈
⋃

i Si〉α is β-perfect.

Proof. To be clear, whenever we say “family” we generally mean “conglomerate” and in this case
we only require the indices I to be a nonempty conglomerate (not necessarily a set, or even a
class). In any case, we can certainly form the class

⋃
i Si of objects of T . To prove (ii) it suffices

by Lemma 15 to show that any k ∈
⋃

i Si is β-good for 〈
⋃

i Si〉α, but when one recalls what it
means for each Si to be β-perfect, this is trivial. Using Lemma 14 the proof of (i) is equally
straightforward.

Corollary 17. Let T be a triangulated category with coproducts, β a small infinite cardinal and
S a triangulated subcategory. The conglomerate of all β-perfect classes S ⊆ T which are contained
in S has a largest member.

Proof. We can form the family {Si}i∈I of all β-perfect classes of objects Si ⊆ T whose objects
happen to all lie in S. This is nonempty, since any zero object forms a perfect class. By Theorem
16(i) the class of objects T (

⋃
i Si) is β-perfect (here T refers to the smallest triangulated subcat-

egory of T containing the union). Since S is triangulated and contains the union
⋃

i Si, it also
contains T (

⋃
i Si), so T (

⋃
i Si) is one our of β-perfect classes contained in S. It clearly contains

every other such class so it is the unique largest member, as required.

9



Definition 10. Let T be a triangulated category with coproducts, β a small infinite cardinal and
S a triangulated subcategory. We denote by Sβ the triangulated subcategory of T whose class
of objects is the largest member of the conglomerate of all β-perfect classes of T contained in S.
Clearly Sβ is also a triangulated subcategory of S.

Corollary 18. Let T be a triangulated category with coproducts, β a small infinite cardinal and
S a thick triangulated subcategory. Then Sβ is also a thick subcategory of T .

Proof. Let T be the thick closure in T of the triangulated subcategory Sβ . Since S is thick we
have Sβ ⊆ T ⊆ S. By Lemma 10 the class T is β-perfect, so by maximality of Sβ we have T = Sβ ,
from which we deduce that Sβ is thick.

Corollary 19. Let T be a triangulated category with coproducts, α, β small infinite cardinals and
S an α-localising subcategory. Then Sβ is also an α-localising subcategory of T .

Proof. Every triangulated subcategory is ℵ0-localising, so we can assume α > ℵ0, in which case S
must also be thick. The category S is thick and α-localising and contains Sβ , so it must contain
〈Sβ〉α, the smallest thick α-localising subcategory containing Sβ . But by Theorem 16 the class
〈Sβ〉α is β-perfect, so maximality of Sβ implies Sβ = 〈Sβ〉α. This shows that Sβ is an α-localising
subcategory of T , as required.

Remark 7. Let T be a triangulated category with coproducts and S a triangulated subcategory.
If γ < β are small infinite cardinals then it is clear that Sβ ⊆ Sγ . On the other hand if we fix a
small infinite cardinal β and consider triangulated subcategories R,S of T with R ⊆ S then it is
clear that Rβ ⊆ Sβ .

Lemma 20. Let T be a triangulated category with coproducts and S a triangulated subcategory.
Then Sℵ0 = S.

Proof. It suffices to show that S is an ℵ0-perfect class in T . Given any finite set {X1, . . . , Xn} of
objects of T and a morphism k −→

⊕n
i=1 Xi with k ∈ S, let fi : k −→ Xi be the components.

Then we can factor this morphism as

k
∆ // ⊕n

i=1 k

L
i fi // ⊕n

i=1 Xi

where ∆ is the diagonal morphism. Now suppose we are given morphisms fi : ki −→ Xi of T
for 1 ≤ i ≤ n with ki ∈ S, such that there is a morphism γ : k −→

⊕n
i=1 ki with k ∈ S and⊕n

i=1 fi ◦ γ = 0. Denote the ith component of γ by γi. Then we have fiγi = 0 for 1 ≤ i ≤ n.
Choose for each i a homotopy cokernel ci : ki −→ wi. Then since S is a triangulated subcategory
we have wi ∈ S and fi factorises as

ki
ci // wi // Xi

By construction
⊕

i ci ◦ γ = 0, so the proof is complete.

3 Small Objects

Definition 11. Let C be a category, A an object of C and α a small infinite cardinal. We say
that A is α-small if whenever we have a morphism u : A −→

⊕
i∈I Ai into a nonempty coproduct,

there is a nonempty subset J ⊆ I of cardinality < α and a factorisation of u of the following form

A −→
⊕
j∈J

Aj −→
⊕
i∈I

Ai

where the second morphism is canonical. This property is stable under isomorphism of objects
and automorphisms of C. If A is α-small then A is β-small for any small infinite cardinal β > α.

10



Remark 8. An object A is ℵ0-small if and only if it is small, in the sense of (AC,Definition 18).
In particular, a small object is α-small for any small infinite cardinal α. Any zero object is small.

Definition 12. Let T be a triangulated category with coproducts, α a small infinite cardinal.
Then the full subcategory whose objects are all the α-small objects of T will be denoted T (α). If
α < β are small infinite cardinals then clearly T (α) ⊆ T (β).

Lemma 21. Let T be a triangulated category with coproducts, α a small infinite cardinal. Then
T (α) is a thick triangulated subcategory of T .

Proof. By (TRC,Lemma 33) it suffices to show that T (α) is closed under Σ,Σ−1 and mapping
cones (thickness is easily checked). The former is trivial, so it remains to show the latter. Suppose
we have a triangle in T

k // l // m w // Σk (3)

with k, l ∈ T (α). We have to show that m is α-small. Suppose we are given a nonempty family of
objects {Xi}i∈I and a coproduct

⊕
i Xi. Suppose now that we are given a morphism h : m −→⊕

i Xi. Composing with l −→ m we have a morphism l −→
⊕

i Xi whose composite with k −→ l
is zero. But l is α-small, so there is a nonempty subset J ⊆ I with |J | < α and a factorisation of
l −→

⊕
i Xi of the form

l
z //

⊕
j∈J Xj

uJ //
⊕

i∈I Xi

The composite
k −→ l −→

⊕
j∈J

Xj −→
⊕
i∈I

Xi

vanishes, but in this diagram the last morphism is a monomorphism, so the composite of the first
two morphisms must already vanish. Since (3) is a triangle, we deduce that l −→

⊕
j∈J Xj must

factor through m, say via the morphism g : m −→
⊕

j∈J Xj . Then the difference h−uJg vanishes
on l −→ m and therefore factors through some morphism q : Σk −→

⊕
i∈I Xi. But Σk is α-small,

so q factors as

Σk
z //

⊕
v∈K Xv //

⊕
i∈I Xi

for some nonempty subset with |K| < α. Then our original morphism h factors as

m

(
g

zw

)
//
⊕

j∈J Xj ⊕
⊕

v∈K Xv //
⊕

j∈J∪K Xj //
⊕

i∈I Xi

where |J ∪ K| ≤ |J | + |K| < α since α is infinite. Therefore m is α-small, and the proof is
complete.

Lemma 22. Let T be a triangulated category with coproducts and α a small infinite cardinal. If
α is regular, then T (α) is an α-localising subcategory of T .

Proof. Let {kµ}µ∈M be a nonempty family of objects of T (α), where M is a set of cardinality < α,
and suppose we have a morphism

⊕
µ kµ −→

⊕
i Xi for some nonempty family {Xi}i∈I of objects

of T . That is, for every µ ∈ M we have a morphism kµ −→
⊕

i Xi. Because kµ is α-small, there
exists a nonempty subset Iµ ⊆ I with |Iµ| < α, and a factorisation of kµ −→

⊕
i Xi as follows

kµ −→
⊕
j∈Iµ

Xj −→
⊕
i∈I

Xi

The morphism
⊕

µ kµ −→
⊕

i Xi then factorises as⊕
µ

kµ −→
⊕

j∈
S

µ Iµ

Xj −→
⊕
i∈I

Xi

Here the cardinality of
⋃

µ∈M Iµ is bounded by the sum of |M | < α cardinals all of which are
< α. Since α is regular, this cardinal must also be < α, so

⊕
µ kµ is α-small and the proof is

complete.
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4 Compact Objects

Let T be a triangulated category with coproducts. In Section 3 we learned how to construct for
every small infinite cardinal α a thick triangulated subcategory T (α) of α-small objects in T . In
Section 2 we learned that given any triangulated subcategory S ⊆ T and a small infinite cardinal
β, there is a way to construct a triangulated subcategory Sβ ⊆ S. In this section, the idea will be
to combine these constructions and study

{
T (α)

}
β
.

Lemma 23. Let T be a triangulated category with coproducts and α a small infinite cardinal. Let
S be an α-perfect class of α-small objects. Then S is β-perfect for every small infinite cardinal β.

Proof. Let k be an object of S, and suppose {Xi}i∈I is a family of objects of T indexed by a set
I of cardinality < β. Suppose we are given a morphism k −→

⊕
i Xi. Since k is α-small, this

factors as
k −→

⊕
j∈J

Xj −→
⊕
i∈I

Xi

where |J | < α. Since S is α-perfect, the first morphism in this diagram factors as

k //
⊕

j∈J kj

L
j fj //

⊕
j∈J Xj

for some objects kj ∈ S. For i ∈ I \ J we define ki = 0 (some zero object in S) and fi = 0. We
deduce a factorisation of our original morphism k −→

⊕
i Xi as

k //
⊕

i∈I ki

L
i fi //

⊕
i∈I Xi

which shows that S satisfies the condition P1 of a β-perfect class. Suppose now that we are given
a nonempty family of morphisms {fi : ki −→ Xi}i∈I of T indexed by some set I of cardinality
< β with each ki ∈ S, and a morphism w : k −→

⊕
i ki with k ∈ S and the composite (

⊕
i fi) ◦w

equal to zero. Because k is α-small, the morphism k −→
⊕

i ki must factor as

k −→
⊕
j∈J

kj −→
⊕
i∈I

ki

for some |J | < α. The composite

k //
⊕

j∈J kj

L
j fj //

⊕
j∈J Xj

vanishes, and since S is α-perfect, we deduce that for each j ∈ J the morphism fj : kj −→ Xj

factors as

kj
gj // lj

hj // Xj

with lj ∈ S and the composite of k −→
⊕

j kj with
⊕

j gj equal to zero. For i ∈ I \ J define
gi : ki −→ li to be the identity. Then the composite of k −→

⊕
i ki with

⊕
i gi still vanishes, so

the proof is complete.

Definition 13. Let T be a triangulated category with coproducts and α a small infinite cardinal.
We define the triangulated subcategory T α of T to be given by {T (α)}α, which by Corollary 18
is thick. By construction T α ⊆ T (α) is an α-perfect class in T . It is the largest α-perfect class
consisting of α-small objects.

Lemma 24. Let T be a triangulated category with coproducts and α < β small infinite cardinals.
Then T α ⊆ T β.

Proof. We have T (α) ⊆ T (β) and therefore T α ⊆ T (β). On the other hand, the objects of T α form
an α-perfect class of α-small objects, so T α is also β-perfect by Lemma 23. Using maximality we
have T α ⊆ T β , as required.
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Lemma 25. Let T be a triangulated category with coproducts and α a small infinite cardinal. If
α is regular then T α is an α-localising subcategory of T .

Proof. We know from Lemma 22 that T (α) is α-localising. It then follows from Corollary 19 that
T α = {T (α)}α is α-localising.

Remark 9. Let T be a triangulated category with coproducts. In the special case α = ℵ0, every
triangulated subcategory of T forms an α-perfect class. In particular we have {T (ℵ0)}ℵ0 = T (ℵ0)

and therefore T ℵ0 = T (ℵ0).

Definition 14. Let T be a triangulated category with coproducts and α a small infinite cardinal.
We call the objects of T α the α-compact objects. The property of being α-compact is certainly
stable under isomorphism of objects. We say that X is compact if it is ℵ0-compact, which by
Remark 9 is equivalent to X being a small object. We sometimes write T c for the subcategory
T ℵ0 of compact objects. If X is α-compact it is β-compact for any small infinite cardinal β > α.

5 Portly Considerations

As in (TRC,Section 7) we collect in this section all the “portly” versions of results that we will
need.

Definition 15. Let T be a portly triangulated category with coproducts, β a small infinite
cardinal and S a nonempty conglomerate of objects of T . Then 〈S〉β denotes the smallest portly
triangulated category S of T satisfying the following conditions

(i) The objects of S belong to S.

(ii) Any coproduct in T of fewer than β objects of S belongs to S. That is, if {Xi}i∈I is a family
of objects of S indexed by a nonempty set I of cardinality < β then any coproduct of this
family in T belongs to S.

(iii) The subcategory S ⊆ T is thick.

It is clear that Lemma 2 holds for portly triangulated categories. It also makes sense to define
T (S) for any portly triangulated category T and nonempty conglomerate S of objects of T to
be the smallest portly triangulated subcategory containing the objects of S. It is clear what we
mean if we say that a portly triangulated subcategory is β-localising or β-colocalising for a small
infinite cardinal β. By definition 〈S〉β is β-localising.

Lemma 26. Let T be a portly triangulated category, S a portly triangulated subcategory. Then S
is localising if and only if it is β-localising for every small infinite cardinal β.

Remark 10. If T is a portly triangulated category with coproducts, and S a β-localising portly
subcategory for any small infinite cardinal β > ℵ0, then S contains countable coproducts of its
objects and is therefore thick.

Lemma 27. Let T be a portly triangulated category, S a portly triangulated subcategory and β a
small infinite cardinal. If S is β-localising then so is its thick closure Ŝ.

Proposition 28. Let T be a portly triangulated category with coproducts and S a nonempty
conglomerate of objects of T . Then the portly triangulated subcategory 〈S〉 =

⋃
β〈S〉β is localising,

and is the smallest localising portly subcategory containing S.

Let T be a portly triangulated category with coproducts and β a small infinite cardinal. Given
a conglomerate S of objects of T , it is clear what we mean if we say that S is β-perfect. Example
2 still stands for portly triangulated categories, as do Lemma 9 and Lemma 10. Given a portly
triangulated subcategory S of T it is clear what we mean if we say an object k ∈ T is β-good for S.
One checks that Example 3, Lemma 11 are true with “triangulated category” and “triangulated
subcategory” replaced by their portly equivalents.
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Lemma 29. Let T be a portly triangulated category with coproducts, β a small infinite cardinal
and S a portly triangulated subcategory whose objects are all β-good for S. Then S is a β-perfect
conglomerate.

Proposition 30. Let T be a portly triangulated category with coproducts, β a small infinite
cardinal and S a portly triangulated subcategory. Then the full portly subcategory of T defined by

Q = {k ∈ S | k is β-good for S}

is a portly triangulated subcategory of T . If S is thick then so is Q.

Lemma 31. Let T be a portly triangulated category with coproducts, β a small infinite cardinal
and S a nonempty conglomerate of objects of T . Suppose that every object of S is β-good for the
portly triangulated subcategory T (S) ⊆ T . Then T (S) is a β-perfect conglomerate.

Lemma 32. Let T be a portly triangulated category with coproducts, α, β small infinite cardinals
and S a nonempty conglomerate of objects of T . Suppose that every object of S is β-good for the
portly triangulated subcategory 〈S〉α ⊆ T . Then 〈S〉α is a β-perfect conglomerate.

Theorem 33. Let T be a portly triangulated category with coproducts, β a small infinite cardinal
and {Si}i∈I a nonempty family of β-perfect conglomerates of T . Then

(i) The conglomerate of objects T (
⋃

i Si) is β-perfect.

(ii) For any small infinite cardinal α the conglomerate of objects 〈
⋃

i Si〉α is β-perfect.

Corollary 34. Let T be a portly triangulated category with coproducts, β a small infinite cardinal
and S a portly triangulated subcategory. The conglomerate of all β-perfect conglomerates S ⊆ T
which are contained in S has a largest member.

Definition 16. Let T be a portly triangulated category with coproducts, β a small infinite
cardinal and S a portly triangulated subcategory. We denote by Sβ the portly triangulated
subcategory of T whose class of objects is the largest member of the conglomerate of all β-perfect
conglomerates of T contained in S. Clearly Sβ is also a portly triangulated subcategory of S.

As before it is clear that if S is thick or α-localising, then so is Sβ . The portly versions of
Remark 7 and Lemma 20 are also true. If C is a portly category and α a small infinite cardinal,
it is clear what we mean if we say an object of C is α-small, and Remark 8 still holds.

Definition 17. Let T be a portly triangulated category with coproducts, α a small infinite
cardinal. Then the full portly subcategory whose objects are all the α-small objects of T will be
denoted T (α). This is a thick portly triangulated subcategory of T , and if α is regular it is also
α-localising. If α < β are small infinite cardinals then clearly T (α) ⊆ T (β).

Lemma 35. Let T be a portly triangulated category with coproducts and α a small infinite cardinal.
Let S be an α-perfect conglomerate of α-small objects. Then S is β-perfect for every small infinite
cardinal β.

Definition 18. Let T be a portly triangulated category with coproducts and α a small infinite
cardinal. We define the thick portly triangulated subcategory T α of T to be given by {T (α)}α.
This is the largest α-perfect conglomerate consisting of α-small objects. If α is regular then T α is
α-localising, and if α < β are small infinite cardinals we have T α ⊆ T β . It is also still true that
T ℵ0 = T (ℵ0). We call the objects of T α the α-compact objects.

6 Thomason Localisation

Remark 11. Let T be a triangulated category with coproducts and S a nonempty class of objects
of T . Recall that 〈S〉 denotes the smallest localising subcategory containing the objects of S (see
Definition 7), and is equal to the union

〈S〉 =
⋃
β

〈S〉β

14



where 〈S〉β is the smallest thick β-localising subcategory containing S (see Definition 2).

Lemma 36. Let T be a triangulated category with coproducts, β a small regular cardinal and
S ⊆ T β a nonempty class of objects. Then 〈S〉β ⊆ T β.

Proof. We already know that T β is thick and contains S, and it is β-localising by Lemma 25, so
the inclusion 〈S〉β ⊆ T β is immediate.

Theorem 37. Let T be a triangulated category with coproducts, β a small regular cardinal and
S ⊆ T β a nonempty class of objects. Given objects x ∈ T β and z ∈ 〈S〉, any morphism x −→ z
factors through some object of 〈S〉β.

T
β

〈S〉

S

〈S〉β

x

z

y

Proof. We know that the localising subcategory 〈S〉 is the union of the ascending chain of sub-
categories 〈S〉ℵ0 ⊆ 〈S〉ℵ1 ⊆ · · · and the idea is that 〈S〉β is the “last” such subcategory that we
know for certain is contained in T β (by Lemma 36). We claim that any morphism from an object
of T β to an object of 〈S〉 factors through this ”last stage” of the construction still inside T β .

Let S be the full subcategory of T consisting of all those objects z which satisfy the theorem,
for every x ∈ T β . That is, an object z ∈ T belongs to S if and only if every morphism x −→ z
with x ∈ T β factors through an object of 〈S〉β . We complete the proof by showing that 〈S〉 ⊆ S,
which we do by proving that S is a localising subcategory of T which contains S. It is clear that
any object of 〈S〉β belongs to S. In particular, S ⊆ S. So we need to show that S is a triangulated
subcategory, closed under all coproducts in T .

Proof that S is triangulated. It is clear that S is replete and closed under Σ,Σ−1 so it only
remains to show it is closed under mapping cones (TRC,Lemma 33). Suppose that we are given
a triangle in T

z // z′ // z′′ // Σz

with z, z′ ∈ S. Let a morphism f : x −→ z′′ be given, with x ∈ T β . The composite of f with
z′′ −→ Σz must factor through some object y ∈ 〈S〉β , and the composite

x −→ y −→ Σz −→ Σz′ (4)

clearly vanishes. If we complete x −→ y to a triangle x −→ y −→ C −→ Σx then the morphism
y −→ Σz′ of (4) must factor through y −→ C. That is, we have a commutative diagram

y

��

// C

��
Σz // Σz′

(5)
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Since both x, y belong to the triangulated subcategory T β , we have C ∈ T β also. Since Σz′ ∈ S,
the morphism C −→ Σz′ must factor through some y′ ∈ 〈S〉β . So we can replace (5) with a
commutative diagram

y //

��

y′

��
Σz // Σz′

(6)

in which the top row only involves objects of 〈S〉β . Also observe that the composite of x −→ y
with the top row still vanishes. Now complete (6) to a morphism of triangles

Σ−1y′′

��

// y

��

// y′ //

��

y′′

��
z′′ // Σz // Σz′ // Σz′′

Clearly y′′ ∈ 〈S〉β and since the composite x −→ y −→ y′ vanishes the morphism x −→ y factors
through Σ−1y′′. The morphism g : x −→ Σ−1y′′ −→ z′′ is not necessarily f , but the difference
f − g gives zero when composed with z′′ −→ Σz, and must therefore factor through z′ −→ z′′.
We know that z′ ∈ S so the factorisation q : x −→ z′ must itself factor through some y ∈ 〈S〉β .
But then f : x −→ z′′ factors as

x −→ y ⊕ Σ−1y′′ −→ z′′

and y ⊕ Σ−1y′′ belongs to 〈S〉β . Therefore z′′ ∈ S, as required.
Proof that S is localising. Let {zi}i∈I be an arbitrary family of objects of S and

⊕
i zi a

coproduct in T . We want to show that this coproduct belongs to S. Suppose we are given a
morphism f : x −→

⊕
i zi with x ∈ T β . Since T β ⊆ T (β) the object x is β-small, so there is a

nonempty subset J ⊆ I of cardinality < β and a factorisation

x
g //

⊕
j∈J zj //

⊕
i∈I zi

But the class T β is β-perfect, so the morphism g factors as

x //
⊕

j∈J xj

L
j hj //

⊕
j∈J zj

for some collection of morphisms hj : xj −→ zj with xj ∈ T β . For each j ∈ J the fact that zj ∈ S
means that hj factors as xj −→ yj −→ zj with yj ∈ 〈S〉β . But then f factors as

x −→
⊕
j∈J

yj −→
⊕
i∈I

zi

and
⊕

j∈J yj , being a coproduct of fewer than β objects of 〈S〉β , belongs to 〈S〉β . This is the
necessary factorisation of f , which completes the proof.

Remark 12. Both Lemma 36 and Theorem 37 are still in the case where T is a portly triangulated
category.

As we observed in (TRC,Section 2), one of the problems with Verdier’s construction of the
quotient is that the resulting categories are portly categories. That is, their morphism “sets” are
not necessarily sets: they are in general only conglomerates. In the remainder of this section
we will apply what we have learned to study verdier quotients, and in particular we will give a
criterion for the verdier quotient to have morphism conglomerates which are at least small.

Proposition 38. Let T be a triangulated category with coproducts, β a small regular cardinal and
S ⊆ T β a nonempty class of objects. There is a canonical triangulated functor

% : T /〈S〉β −→ T /〈S〉
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and we claim that for x ∈ T β and arbitrary y ∈ T the morphism

%x,y : HomT /〈S〉β (x, y) −→ HomT /〈S〉(x, y)

is an isomorphism.

Proof. Since 〈S〉β ⊆ 〈S〉 there is by (TRC,Remark 50) an induced triangulated functor % defined
on objects to be the identity and on morphisms by %([f, g]) = [f, g]. Throughout fix objects x ∈
T β , y ∈ T . First we show that %x,y is surjective. Suppose we are given a morphism [f, α] : x −→ y
in T /〈S〉, alternatively written as the following diagram

p
f

zzuuuuuu α

$$IIIIII

x y

(7)

with f ∈ Mor〈S〉. Extend f : p −→ x to a triangle p −→ x −→ z −→ Σp. Then z ∈ 〈S〉 and
by Theorem 37 the morphism x −→ z must factor through some z′ ∈ 〈S〉β . We can extend the
factorisation x −→ z′ to a triangle as in the first row of the following diagram, and then extend
the middle commutative square to a morphism of triangles

p′

g

��

// x

1

��

// z′

��

// Σp′

��
p

f
// x // z // Σp

The morphism fg : p′ −→ x belongs to Mor〈S〉β since z′ ∈ 〈S〉β . The diagram

p′
fg

zzvvvvvv αg

$$HHHHHH

x y

is therefore a morphism in T /〈S〉β , whose image under %x,y is clearly [f, g], as required.
To show that %x,y is injective, suppose we are given a morphism [f, α] : x −→ y in T /〈S〉β

represented by a diagram of the form (7) whose image under %x,y is zero. Extending f to a
triangle as before, we observe that z ∈ 〈S〉β which is contained in T β . Since this is a triangulated
subcategory, we deduce that p ∈ T β also. From %x,y[f, α] = 0 and (TRC,Lemma 55) we deduce
that α : p −→ y must factor through some object z ∈ 〈S〉. But then Theorem 37 implies that the
factorisation p −→ z must factor through some z′ ∈ 〈S〉β . Since we have now factored α through
an object of 〈S〉β it follows again by (TRC,Lemma 55) that [f, α] = 0 already in T /〈S〉β .

Corollary 39. Let T be a triangulated category with coproducts, β a small regular cardinal and
S ⊆ T β a nonempty class of objects. Then the canonical triangulated functor

ϑ : T β/〈S〉β −→ T /〈S〉

is a full embedding.

Proof. We know that 〈S〉β is contained in T β , so the verdier quotients make sense. The functor
T β −→ T −→ T /〈S〉 sends objects of 〈S〉β to zero, so there is an induced triangulated functor
ϑ : T β/〈S〉β −→ T /〈S〉. The proof of Proposition 38 shows that this functor is fully faithful.

All of this becomes useful when T =
⋃

β T β . Then we know

Corollary 40. Let T be a triangulated category with coproducts, and suppose that

T =
⋃
β

T β

That is, every object of T is β-compact for some small infinite cardinal β. Suppose that S ⊆ T α

is a small nonempty class of objects for some small infinite cardinal α. Then the portly category
T /〈S〉 has small morphism conglomerates.
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Proof. To be clear, recall that in a portly category the morphisms HomT /〈S〉(x, y) are arbitrary
conglomerates. We are claiming that under some hypothesis, these conglomerates are small (that
is, in bijection with sets). We are not claiming that they are sets, so T /〈S〉 is still not a “genuine”
category. For the proof, we fix objects x, y ∈ T and let β be a small infinite cardinal with x ∈ T β .
We may as well assume that β is regular and β > α (since successor cardinals are regular, and
successors of small cardinals are small). Then we have S ⊆ T β so by Proposition 38 there is a
bijection

HomT /〈S〉β (x, y) −→ HomT /〈S〉(x, y) (8)

On the other hand S is small, so by Proposition 4 the category 〈S〉β is essentially small. From
(TRC,Proposition 69) we deduce that the conglomerate on the left in (8) is small. Therefore
HomT /〈S〉(x, y) is also small, which is what we wanted to show.

Lemma 41. Let F : D −→ E be a fully faithful triangulated functor between portly triangulated
categories. Then the essential image of F is a portly triangulated subcategory of E.

Proof. By the essential image we mean the full portly subcategory of E consisting of all those
objects of E isomorphic to F (X) for some X ∈ D. Denote the essential image by Im(F ). There
is an equivalence D ∼= Im(F ) of ordinary categories, so Im(F ) is certainly replete and additive.
Using (TRC,Lemma 33) it is easy to check that in fact Im(F ) is a portly triangulated subcategory.

Lemma 42. Let T be a triangulated category with coproducts satisfying T =
⋃

β T β, α a small
infinite cardinal and S ⊆ T α a nonempty class. Then for any small regular cardinal β ≥ α the
objects of T β form a β-perfect class of β-small objects in T /〈S〉. In particular

T β ⊆
(
T /〈S〉

)β

Proof. We first we show that any object of T β is β-small in T /〈S〉. Suppose we are given a
morphism k −→

⊕
i Xi into a nonempty coproduct in T /〈S〉, where k ∈ T β . By (TRC,Lemma 91)

we may as well assume that this coproduct is the image in T /〈S〉 of a coproduct ui : Xi −→
⊕

i Xi

in T . Since S ⊆ T α ⊆ T β we are in the situation of Proposition 38, and our morphism k −→
⊕

i Xi

is the image under the functor T /〈S〉β −→ T /〈S〉 of some morphism, represented say by a diagram

p

f

����
��

��
��

""EEEEEEEE

k
⊕

i Xi

with f ∈ Mor〈S〉β . This means that there is a triangle p −→ k −→ z −→ Σp in T with z ∈ 〈S〉β ,
which by Lemma 36 is contained in T β . Therefore also p ∈ T β . The β-smallness of p implies that
the morphism p −→

⊕
i Xi factors in T as follows

p −→
⊕
j∈J

Xj −→
⊕
i∈I

Xi

for some subset J ⊆ I of cardinality < β. The β-compactness of p in T says that the morphism
p −→

⊕
j∈J Xj factors as

p −→
⊕
j∈J

kj −→
⊕
j∈J

Xj

with every kj ∈ T β . So we have factored the morphism k −→
⊕

i Xi in T /〈S〉 into a composite

k −→
⊕
j∈J

kj −→
⊕
j∈J

Xj −→
⊕
i∈I

Xi

which shows that k is β-small, and also that it is β-good for any portly triangulated subcategory of
T /〈S〉 containing the objects of T β . By Corollary 39 the canonical functor T β/〈S〉β −→ T /〈S〉 is

18

file:"TriangulatedCategories.pdf"
file:"TriangulatedCategories.pdf"
file:"TriangulatedCategories.pdf"


fully faithful, which together with Lemma 41 shows that the full subcategory of T /〈S〉 consisting
of objects isomorphic to some object of T β (in T /〈S〉) is a portly triangulated subcategory of
T /〈S〉. Call this portly triangulated subcategory E .

From what we have already shown, every object of E is β-good for E . Then from Lemma 29
we infer that E is a β-perfect class. Lemma 9 for portly categories implies that T β is β-perfect,
which completes the proof.

Lemma 43. Let T be a triangulated category with coproducts, α a small infinite cardinal and
S ⊆ T α a nonempty class of objects with T = 〈S〉. Then T =

⋃
β T β.

Proof. We have to show that any object is β-compact for some small infinite cardinal β. Let an
object x ∈ T be given. Since T = 〈S〉 =

⋃
β〈S〉β there exists a small infinite cardinal β with

x ∈ 〈S〉β . We can assume that β ≥ α and replacing β by its successor cardinal if necessary, we can
assume β is regular. Then S ⊆ T α ⊆ T β and by Lemma 36 we know that 〈S〉β ⊆ T β . Therefore
x ∈ T β , as required.

Lemma 44. Let T be a triangulated category with coproducts, α a small infinite cardinal and
S ⊆ T α a nonempty class of objects with T = 〈S〉. Given any small regular cardinal β ≥ α we
have 〈S〉β = T β.

Proof. We already know that 〈S〉β ⊆ T β , so it suffices to show the reverse inclusion. Given an
object x ∈ T β the identity 1 : x −→ x is a morphism from an object of T β to an object of 〈S〉.
Therefore by Theorem 37 it must factor through some object y ∈ 〈S〉β . This morphism x −→ y is
a coretraction, so x must be a direct summand of y. Since 〈S〉β is thick we conclude that x ∈ 〈S〉β ,
which is what we wanted to show.

Remark 13. Put another way, Lemma 44 says that (〈S〉)β = 〈S〉β . In general this is not true,
so we usually try to avoid expressions like the one on the left.

Remark 14. Since Theorem 37 works for portly triangulated categories, it is immediate that
Lemma 44 is still true if we replace T by a portly triangulated category (in which case S is only
required to be a nonempty subconglomerate).

Remark 15. Let T be a triangulated category with coproducts and S a triangulated subcategory.
Suppose we are given a portly triangulated subcategory Q ⊆ T /S. Then the full subcategory of
T whose objects are the objects of Q is a triangulated subcategory of T . If S is localising in T
and Q is localising in T /S then its preimage is localising in T .

Proposition 45. Let T be a triangulated category with coproducts, α a small infinite cardinal and
S, T ⊆ T α nonempty classes of objects with T = 〈T 〉. Suppose β ≥ α is a small regular cardinal.
Then we have

T β ⊆ (T /〈S〉)β

and moreover everything on the right hand side is a direct summand of something on the left.

Proof. We know from Lemma 43 that the hypothesis of Lemma 42 are satisfied, so we at least have
the inclusion T β ⊆ (T /〈S〉)β . As in the proof of Lemma 42 we let E denote the portly triangulated
subcategory of T /〈S〉 given by closing the objects of T β with respect to isomorphisms. Since
(T /〈S〉)β is thick it contains the thick closure Ê of E . We have to prove the reverse inclusion.

Since β is regular the subcategory T β is β-localising in T . As coproducts in T /〈S〉 can be
calculated in T , it follows that E is β-localising, and therefore by Lemma 27 so is Ê . Therefore
Ê is a thick, β-localising portly triangulated subcategory, which contains the objects of T . We
therefore have an inclusion 〈T 〉β ⊆ Ê (where the former subcategory is calculated in T /〈S〉).

On the other hand T = 〈T 〉, so it follows that T /〈S〉 is also the smallest localising portly
subcategory of itself containing the objects of T (use Remark 15). The portly triangulated category
T /〈S〉 has coproducts (TRC,Lemma 91) so by Lemma 44 applied to the class T in the portly
triangulated category T /〈S〉 we get

(T /〈S〉)β = 〈T 〉β ⊆ Ê

which is what we wanted to show.
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Corollary 46. Let T be a triangulated category with coproducts, α a small infinite cardinal and
S, T ⊆ T α nonempty classes of objects with T = 〈T 〉. Suppose β ≥ α is a small regular cardinal
with β > ℵ0. Then the essential image of the canonical triangulated functor

ϑ : T β/〈S〉β −→ T /〈S〉

is precisely (T /〈S〉)β. In particular there is a canonical equivalence of triangulated categories

T β/〈S〉β −→ (T /〈S〉)β

Proof. From Corollary 39 we know that this functor is fully faithful and distinct on objects. In
the proof of Proposition 45 we observed that the essential image E is β-localising. Since β > ℵ0 it
follows from (TRC,Lemma 91) and Remark 10 that E is already thick, so E = Ê = (T /〈S〉)β .

Lemma 47. Let T be a triangulated category with coproducts, α a small infinite cardinal and
S ⊆ T α a nonempty class. Let S = 〈S〉 be the localising subcategory generated by S and suppose
that β ≥ α is a small regular cardinal. Then

S ∩ T β ⊆ Sβ

Proof. We will show that S ∩ T β is a β-perfect class of objects in S which is contained in S(β).
Maximality of Sβ will then give the desired result.

First we show that every element of this intersection is β-small in S. Let k ∈ S ∩T β be given,
and suppose we have a morphism k −→

⊕
i∈I Xi into a nonempty coproduct in S. Since S is

localising this is also a coproduct in T , and since k ∈ T β is β-small there must be a subset J ⊆ I
of cardinality < β and a factorisation

k −→
⊕
j∈J

Xj −→
⊕
i∈I

Xi

This middle coproduct also belongs to S, which proves that k is β-small in S and yields the
inclusion S ∩ T β ⊆ S(β).

Now we want to show that S ∩T β is a β-perfect class in S. It is a triangulated subcategory, so
by Lemma 12 it suffices to show that every object of S∩T β is β-good for S∩T β in S. Suppose we
are given a family of objects {Xi}i∈I of S indexed by a set I of cardinality < β and a morphism
k −→

⊕
i Xi with k ∈ S ∩ T β . Since k ∈ T β this morphism factors as

k //
⊕

i∈I ki

L
i fi //

⊕
i∈I Xi

with ki ∈ T β . But then each fi : ki −→ Xi is a morphism from an object of T β to an object of
S = 〈S〉. So by Theorem 37 it must factor as

ki −→ k′i −→ Xi

for some k′i ∈ 〈S〉β ⊆ S ∩ T β . Thus we can factor our original morphism k −→
⊕

i Xi as

k −→
⊕
i∈I

k′i −→
⊕
i∈I

Xi

which proves that k is β-good for S ∩ T β and completes the proof.

Putting the results of this section together, we have the following

Theorem 48. Let T be a triangulated category with coproducts and S a localising subcategory.
Suppose that we have a small infinite cardinal α and nonempty classes of objects T ⊆ T α, S ⊆
S ∩ T α such that

T = 〈T 〉 and S = 〈S〉
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Then for any small regular cardinal β ≥ α we have

〈S〉β = Sβ = S ∩ T β

〈T 〉β = T β

The canonical triangulated functor T β/Sβ −→ T /S is fully faithful and induces a triangulated
functor θ : T β/Sβ −→ (T /S)β with the following properties

• If β = ℵ0 then every object of (T /S)β is a direct summand of some object of T β/Sβ.

• If β > ℵ0 then θ is an equivalence.

Proof. Firstly we observe that 〈S〉β , the smallest thick β-localising subcategory of T containing
S, is also the smallest thick β-localising subcategory of S containing S, so there is no ambiguity
in the notation. From Lemma 47 we know that S ∩ T β ⊆ Sβ . So we have inclusions

〈S〉β ⊆ S ∩ T β ⊆ Sβ

By Lemma 44 applied to the triangulated category S we have 〈S〉β = Sβ , so all three inclusions
are equalities. The equality 〈T 〉β = T β follows immediately from Lemma 44. By Corollary 39 the
canonical triangulated functor

T β/Sβ −→ T /S

is a full embedding. By Lemma 42 the image of this functor is contained in (T /S)β so there is
an induced triangulated functor θ : T β/Sβ −→ (T /S)β . We know from Proposition 46 that every
object of the portly triangulated category (T /S)β is a direct summand (in (T /S)β or T /S, the
condition being the same) of some object of T β . In the case where β > ℵ0 we showed in Corollary
46 that θ is an equivalence of categories.

6.1 In the countable case

The results of the previous section were proved in great generality, for arbitrary small infinite
cardinals. In applications the simplest case α = ℵ0 is the most common, so it is worthwhile
recording the results in this special case explicitly.

Remark 16. Let T be a triangulated category with coproducts and let S be a nonempty class of
objects of T . Then the triangulated subcategory 〈S〉ℵ0 is simply the smallest thick triangulated
subcategory of T containing the objects of S.

Lemma 49. Let T be a triangulated category with coproducts, and suppose there is a nonempty
class S ⊆ T c of compact objects such that T = 〈S〉. Then T c is the smallest thick triangulated
subcategory of T containing the objects of S.

Proof. This is Lemma 2.2 of [Nee92], and it is a special case of Theorem 48 with α = ℵ0 and
S = T .
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