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Triangulated categories are important structures lying at the confluence of several exciting
areas of mathematics (and even physics). Our notes on the subject are divided into three parts
which, if named by the major construction occurring within them, would be titled “Verdier quo-
tients”, “Thomason localisaton” and “Brown representability”. There are many places to learn
about triangulated categories, but these notes are mostly influenced by Neeman’s excellent book
[Nee01], with elements from [BN93] and [ATJLSS00].
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1 Triangulated Categories

For our conventions regarding categories the reader should consult (AC,Section 1). In particular
we work with the set-theoretic foundations outlined there. Throughout if we say a conglomerate
X is small we mean that there is a set x and a bijection X ∼= x. All categories are nonempty
unless specified otherwise. As usual we write X = 0 to indicate an object X is a zero object,
not that it is necessarily equal to any particular canonical zero. In the first two sections of these
notes there is nothing new, and the reader should consult [Nee01] for the canonical treatment. We
include the material here for completeness.

Definition 1. Let C be a category. Isomorphism defines an equivalence relation on the class of
objects of C, and we denote the conglomerate of equivalence classes of this relation by I(C). We
say that C is essentially small if the conglomerate I(C) is small.

1.1 Pretriangulated Categories

Definition 2. Let C be an additive category and Σ : C −→ C an additive automorphism. A
candidate triangle in C (with respect to Σ) is a diagram of the form

X
u // Y

v // Z
w // ΣX

such that the composites v ◦ u,w ◦ v and Σu ◦w are zero. A morphism of candidate triangles is a
commutative diagram

X
u //

f

��

Y

g

��

v // Z

h

��

w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

This defines the category of candidate triangles in C (with respect to Σ).

Definition 3. A pretriangulated category is an additive category T together with an additive au-
tomorphism Σ, and a class of candidate triangles (with respect to Σ) called distinguished triangles.
The following conditions must hold:

TR0: Any candidate triangle which is isomorphic to a distinguished triangle is a distinguished
triangle. For any object X the candidate triangle

X
1 // X // 0 // ΣX

is distinguished.

TR1: For any morphism f : X −→ Y in T there exists a distinguished triangle of the form

X
f // Y // Z // ΣX

TR2: Suppose we have a distinguished triangle

X
u // Y

v // Z
w // ΣX

Then the following two candidate triangles are also distinguished

Y
−v // Z

−w // ΣX
−Σu // ΣY

Σ−1Z
−Σ−1w // X

−u // Y
−v // Z
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TR3: For any commutative diagram of the form

X

f

��

u // Y

g

��

v // Z
w // ΣX

X ′
u′
// Y ′

v′
// Z ′

w′
// ΣX ′

where the rows are distinguished triangles, there is a morphism h : Z −→ Z ′, not necessarily
unique, which makes the following diagram commute

X

f

��

u // Y

g

��

v // Z
w //

h

��

ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

(1)

Throughout when we say “triangle” we mean “distinguished triangle” unless we say explicitly that
we are talking about a candidate triangle. Since the functor Σ is an isomorphism, it preserves
all limits and colimits and sends epimorphisms (resp. monomorphisms) to epimorphisms (resp.
monomorphisms).

Remark 1. Let T be a pretriangulated category. Then using TR3 and TR2 it is not difficult to
check we have the following results

TR3’: For any commutative diagram of the form

X

f

��

u // Y
v // Z

h

��

w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

where the rows are distinguished triangles, there is a morphism g : Y −→ Y ′, not necessarily
unique, which makes (1) commute.

TR3”: For any commutative diagram of the form

X
u // Y

v //

g

��

Z

h

��

w // ΣX

X ′
u′
// Y ′

v′
// Z ′

w′
// ΣX ′

where the rows are distinguished triangles, there is a morphism f : X −→ X ′, not necessarily
unique, which makes (1) commute.

Remark 2. Let T be a pretriangulated category and suppose we have a triangle

X
u // Y

v // Z
w // ΣX

Using TR0 one checks that if you change the sign on any two of u, v, w then the resulting candidate
triangle is still distinguished. For any n ∈ Z it follows from TR2 that the following triangle is
distinguished

ΣnX
(−1)nΣnu // ΣnY

(−1)nΣnv // ΣnZ
(−1)nΣnw// Σn+1X

By the previous comment we can replace the first two morphisms with Σnu,Σnv and still have a
triangle.
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Remark 3. There are probably a number of ways to understand these axioms intuitively. Here
is an algebraic way. The idea is that given a morphism u : X −→ Y , a distinguished triangle

X
u // Y

v // Z
w // ΣX

provides us with morphisms v : Y −→ Z and Σ−1w : Σ−1Z −→ X, which we think of as being
the homotopy cokernel and homotopy kernel respectively. In this language, the axioms loosely
correspond to the following statements

• TR0 : The identity has homotopy kernel and cokernel equal to zero.

• TR1 : Every morphism has a homotopy kernel and cokernel.

• TR2: Any morphism is the homotopy kernel of its homotopy cokernel (up to sign), and any
morphism is the homotopy cokernel of its homotopy kernel (up to sign).

• TR3: Homotopy kernels and cokernels are weakly functorial.

Remark 4. Let T be a pretriangulated category. Triangles in T are stable under isomorphism
at any of their vertices, in the sense that if you replace one of X,Y, Z with an isomorphic object
(and modify the morphisms appropriately) the result is still a triangle.

Remark 5. If T is a pretriangulated category then so is T op, where we replace Σ by Σ−1. We
define the distinguished triangles of T op as follows: given a distinguished triangle of T

X
u // Y

v // Z
w // ΣX

we define the following candidate triangle of T op (with respect to Σ−1) to be distinguished

Σ−1Z X
Σ−1woo Y

uoo Z
voo

With these structures, it is easy to check that T op is a pretriangulated category. Moreover the
double dual (T op)op is equal as a pretriangulated category to the original T .

Remark 6. Let T be a pretriangulated category and suppose we have two candidate triangles

X −→ Y −→ Z −→ ΣX
X ′ −→ Y ′ −→ Z ′ −→ ΣX ′

Since Σ(X ⊕X ′) is a direct sum of ΣX,ΣX ′ we have a candidate triangle

X ⊕X ′ −→ Y ⊕ Y ′ −→ Z ⊕ Z ′ −→ Σ(X ⊕X ′)

which we call the direct sum of the two candidate triangles.

Definition 4. Let T be a pretriangulated category and H : T −→ A an additive functor into an
abelian category A. Then H is called homological if for every triangle of T

X
u // Y

v // Z
w // ΣX

the following sequence is exact

H(X)
H(u) // H(Y )

H(v) // H(Z)

Remark 7. Let T be a pretriangulated category and H : T −→ A a homological functor as
above. By TR2 we can produce the following sequence in T , where every consecutive triple of
morphisms is a triangle (if we modify the signs appropriately)

· · · −→ Σ−1X −→ Σ−1Y −→ Σ−1Z −→ X −→ Y −→ Z −→ ΣX −→ ΣY −→ ΣZ −→ · · ·

Then by definition of H (here we use additivity) the following infinite sequence is exact

· · · // H(Σ−1Z)
H(Σ−1w) // H(X)

H(u) // H(Y )
H(v) // H(Z)

H(w) // H(ΣX) // · · ·

In particular, the additive functor H ◦ Σn is homological for any n ∈ Z.
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Definition 5. Let T be a pretriangulated category and H : T −→ A a contravariant additive
functor into an abelian category A. Then H is cohomological if it is homological as a covariant
functor T op −→ A. Equivalently, for every triangle of T

X
u // Y

v // Z
w // ΣX

the following sequence is exact

H(Z)
H(v) // H(Y )

H(u) // H(X)

Lemma 1. Let T be a pretriangulated category and U an object of T . Then the representable
functor Hom(U,−) : T −→ Ab is homological.

Proof. Suppose we are given a triangle

X
u // Y

v // Z
w // ΣX

We need to show that the following sequence of abelian groups is exact

Hom(U,X) −→ Hom(U, Y ) −→ Hom(U,Z)

Suppose that f : U −→ Y is a morphism with v ◦ f = 0. Then we have a commutative diagram

U

f

��

// 0

��

// ΣU
−1 // ΣU

Σf

��
Y −v

// Z −w
// ΣX −Σu

// ΣY

The bottom row is a triangle by TR2, the top row by TR0 and TR2. By TR3 there is a morphism
h : U −→ X such that Σh makes the diagram commute.In particular f = u ◦ h, which is what we
wanted to show.

Corollary 2. Let T be a pretriangulated category and U an object of T . Then the contravariant
representable functor Hom(−, U) : T −→ Ab is cohomological.

Definition 6. Let T be a pretriangulated category and A a complete abelian category with exact
products. Then a homological functor H : T −→ A is called decent if it preserves products.

Example 1. If T is a pretriangulated category and U an object of T , then the homological functor
H : T −→ Ab is decent, since Ab is complete with exact products, and Hom(U,−) certainly
preserves products.

Definition 7. Let T be a pretriangulated category. A candidate triangle

X
u // Y

v // Z
w // ΣX

is called a pretriangle if for every decent homological functor H : T −→ A, the following long
sequence is exact

· · · // H(Σ−1Z)
H(Σ−1w) // H(X)

H(u) // H(Y )
H(v) // H(Z)

H(w) // H(ΣX) // · · ·

Clearly any triangle is a pretriangle. Any direct summand of a pretriangle is a pretriangle.

Lemma 3. Let T be a pretriangulated category, Λ a nonempty set and suppose that for every
λ ∈ Λ we have a pretriangle

Xλ −→ Yλ −→ Zλ −→ ΣXλ

Suppose further that products exist for the families {Xλ}λ∈Λ, {Yλ}λ∈Λ, {Zλ}λ∈Λ. Then the follow-
ing candidate triangle is a pretriangle∏

Xλ −→
∏

Yλ −→
∏

Zλ −→ Σ
{∏

Xλ

}
(2)
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Proof. To be clear, given any products
∏
Xλ,

∏
Yλ,

∏
Zλ the morphisms Σ

∏
Xλ −→ ΣXλ are

also a product in T , so the last morphism in the candidate triangle is the usual one induced
between products. Evaluating any decent homological functor H : T −→ A on this triangle and
using the exact products in A it is easily checked that (2) is a pretriangle.

Lemma 4. Let H be a decent homological functor T −→ A and suppose we have a morphism of
pretriangles

X

f

��

u // Y

g

��

v // Z

h

��

w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

Suppose that for every n ∈ Z, H(Σnf) and H(Σng) are isomorphisms. Then the H(Σnh) are all
isomorphisms.

Proof. Given n ∈ Z we have a commutative diagram in A with exact rows

H(ΣnX)

H(Σnf)

��

// H(ΣnY )

H(Σng)

��

// H(ΣnZ)

H(Σnh)

��

// H(Σn+1X) //

H(Σn+1f)

��

H(Σn+1Y )

H(Σn+1g)

��
H(ΣnX ′) // H(ΣnY ′) // H(ΣnZ ′) // H(Σn+1X ′) // H(Σn+1Y ′)

and it follows from the 5-lemma (DCAC,Lemma 4) that H(Σnh) is an isomorphism.

Lemma 5. Let T be a pretriangulated category and suppose we have a morphism of pretriangles

X

f

��

u // Y

g

��

v // Z

h

��

w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

If f, g are isomorphisms, then so is h.

Proof. If f, g are isomorphisms then so are Σnf,Σng for any n ∈ Z, so it follows from Lemma 4
that H(h) is an isomorphism for any decent homological functor H. But the functors Hom(Z,−)
and Hom(Z ′,−) are decent homological, so it is easy to check that h is an isomorphism.

Proposition 6. Let T be a pretriangulated category and suppose we have a morphism of triangles

X

f

��

u // Y

g

��

v // Z

h

��

w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

If any two of f, g, h are isomorphisms, then so is the remaining morphism.

Proof. If f, g are isomorphisms then Lemma 5 implies that h is an isomorphism. The other two
cases follow by applying Lemma 5 to the “rotated” triangles obtained from TR2.

Remark 8. Let T be a pretriangulated category and u : X −→ Y a morphism. By TR1 it may
be completed to a triangle. Suppose we have two distinguished triangles “completing” u

X
u // Y

v // Z
w // ΣX

X
u // Y

v′ // Z ′
w′ // ΣX

6
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Using TR3 we produce a morphism h : Z −→ Z ′ making the following diagram commute

X

��

u // Y

��

v // Z

h

��

w // ΣX

��
X u

// Y
v′
// Z ′

w′
// ΣX

By Lemma 5 the morphism h must be an isomorphism, so any two distinguished triangles com-
pleting u are isomorphic (but not canonically).

Proposition 7. Let T be a pretriangulated category, Λ a nonempty set and suppose that for every
λ ∈ Λ we have a triangle

Xλ −→ Yλ −→ Zλ −→ ΣXλ

Suppose further that products exist for the families {Xλ}λ∈Λ, {Yλ}λ∈Λ, {Zλ}λ∈Λ. Then the follow-
ing pretriangle is a triangle∏

Xλ −→
∏

Yλ −→
∏

Zλ −→ Σ
{∏

Xλ

}
(3)

Proof. By TR1 we can complete the morphism
∏
Xλ −→

∏
Yλ to a triangle∏

Xλ −→
∏

Yλ −→ Q −→ Σ
{∏

Xλ

}
By TR3 we obtain for each λ ∈ Λ a morphism Q −→ Zλ making the following diagram commute

∏
Xλ

��

// ∏Yλ

��

// Q

��

// Σ
{∏

Xλ

}
��

Xλ
// Yλ // Zλ // ΣXλ

Inducing morphisms into the products in the bottom row, we have a commutative diagram in
which both rows are pretriangles (the bottom row by Lemma 3)

∏
Xλ

��

// ∏Yλ

��

// Q

��

// Σ
{∏

Xλ

}
��∏

Xλ
// ∏Yλ // ∏Zλ // Σ

{∏
Xλ

}
We conclude from Lemma 5 that this is an isomorphism of candidate triangles, and since the top
row is distinguished it follows from TR0 that the bottom row is also.

Remark 9. Using duality, it is easy to see that in a pretriangulated category any nonempty
coproduct of triangles is a triangle.

Proposition 8. Let T be a pretriangulated category and suppose we have candidate triangles

X −→ Y −→ Z −→ ΣX (4)
X ′ −→ Y ′ −→ Z ′ −→ ΣX ′ (5)

Suppose that the following candidate triangle is a triangle

X ⊕X ′ −→ Y ⊕ Y ′ −→ Z ⊕ Z ′ −→ Σ(X ⊕X ′)

Then (4) and (5) are also triangles.
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Proof. It suffices to prove that (4) is a triangle. Since it is a direct summand of a pretriangle, it
is at least a pretriangle. We can complete X −→ Y to a triangle

X −→ Y −→ Q −→ ΣX

And the injections X −→ X ⊕X ′, Y −→ Y ⊕ Y ′ induce a morphism of triangles

X

��

// Y

��

// Q

��

// ΣX

��
X ⊕X ′ // Y ⊕ Y ′ // Z ⊕ Z ′ // Σ(X ⊕X ′)

Composing with the projections, we have a morphism of pretriangles

X

��

// Y

��

// Q

h

��

// ΣX

��
X // Y // Z // ΣX

By Lemma 5 this is an isomorphism of candidate triangles, and since the top row is a triangle it
follows by TR0 that the bottom row is also a triangle.

Remark 10. In the loose intuitive sense of Remark 3 the axiom TR0 for a pretriangulated
category says that the identity has zero homotopy kernel and cokernel. The next result shows
that in fact this property characterises isomorphisms.

Lemma 9. Let T be a pretriangulated category. A morphism u : X −→ Y is an isomorphism if
and only if the following candidate triangle is distinguished

X
u // Y // 0 // ΣX (6)

Proof. If u is an isomorphism, then the following diagram is an isomorphism of candidate triangles

X +3

��

X

u

��

// 0

��

// ΣX

��
X u

// Y // 0 // ΣX

(7)

which shows that the bottom row is distinguished. Conversely, suppose that the candidate triangle
(6) is distinguished. Then (7) is a morphism of triangles with isomorphisms in the first and third
column. Proposition 6 now implies that u is an isomorphism, as required.

Remark 11. Let T be a pretriangulated category. Then for any object X the morphism −1 :
X −→ X is an isomorphism, so using TR0 and TR2 we conclude that the following are triangles

0 // X
1 // X // 0

X // 0 // ΣX
1 // ΣX

Using TR0 and Proposition 3 one checks that for any objects X,Z the following candidate triangle
(with the morphisms X −→ X ⊕Z,X ⊕Z −→ Z being the injection and projection respectively)
is a triangle

X // X ⊕ Z // Z
0 // ΣX
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Definition 8. Let T be a pretriangulated category and u : X −→ Y a morphism. We say that
a morphism v : Y −→ Z a homotopy cokernel or hocokernel of u if there exists a distinguished
triangle in T of the following form

X
u // Y

v // Z
w // ΣX (8)

So by definition vu = 0. We say that a morphism t : T −→ X is a homotopy kernel or hokernel
of u if there exists a distinguished triangle in T of the following form

X
u // Y

v // ΣT
Σt // ΣX

In particular given a triangle (8) the morphism Σ−1w : Σ−1Z −→ X is a hokernel and every
hokernel occurs in this way. By definition ut = 0. It follows from Remark 8 that any two
hocokernels (resp. hokernels) of u are related by a (noncanonical) isomorphism. In particular
statements like “the hocokernel is zero” are well-defined. It follows from TR1 that every morphism
in T has a homotopy kernel and cokernel.

We say that u is a homonomorphism if its hokernel is zero, and a hoepimorphism if its hocok-
ernel is zero. It is obvious that any monomorphism is a homonomorphism, and any epimorphism
is a hoepimorphism.

Remark 12. Let T be a pretriangulated category. Using Remark 2 we observe that if u : X −→ Y
is a morphism with hocokernel v : Y −→ Z then v is also a hocokernel of −u. Similarly if
t : T −→ X is a hokernel of u then it is also a hokernel of −u. This shows that homotopy kernels
and cokernels are “sign agnostic”, just like the usual kernel and cokernel.

Remark 13. With these new concepts, we can read a remarkable amount of information from a
single triangle. Let T be a pretriangulated category and suppose we have a distinguished triangle

X
u // Y

v // Z
w // ΣX

Using TR2 one can verify the following

• v is a hocokernel of u, w is a hocokernel of v and u is a hocokernel of Σ−1w.

• u is a hokernel of v, v is a hokernel of w and Σ−1w is a hokernel of u.

This makes it clear that given any two morphisms u : X −→ Y, v : Y −→ Z, u is a hokernel of v
if and only if v is a hocokernel of u.

Lemma 10. Let T be a pretriangulated category. A morphism u : X −→ Y is an isomorphism if
and only if it is both a homonomorphism and a hoepimorphism.

Proof. If u is an isomorphism then Lemma 9 yields a certain triangle which shows that the hokernel
and hocokernel are zero. Conversely, if u has zero hokernel and hocokernel then we have a triangle
of the following form for some object Z

X
u // Y

0 // Z
0 // ΣX

We have a commutative diagram

X

��

u // Y

��

0 // Z

��

0 // ΣX

��
X u

// Y // 0 // ΣX

where the bottom row is a triangle by TR0. It now follows from Proposition 6 that the third
column is an isomorphism, so Z = 0 and Lemma 9 implies that u is an isomorphism.
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Lemma 11. Let T be a pretriangulated category, u : X −→ Y a morphism and v : Y −→ Z, t :
T −→ X a hocokernel and hokernel of u respectively. Then

(i) A morphism m : Y −→ Q factors through v if and only if mu = 0.

(ii) A morphism m : Q −→ X factors through t if and only if um = 0.

Proof. (i) If m factors through v then it is clear that mu = 0. Conversely, suppose that mu = 0.
Then we have a commutative diagram with triangles in the rows

X
u //

��

Y

m

��

v // Z
w // ΣX

0 // Q
1
// Q // 0

By TR3 there is a morphism h : Z −→ Q with hv = m, as required. One proves (ii) in much the
same way. One should observe that we are not claiming the factorisations are unique.

Remark 14. With the notation of Lemma 11, it is now clear that if v were an epimorphism, it
would be the cokernel of u (respectively, if t were a monomorphism, it would be the kernel of u).
Although this is not true in general, in some important cases the notions of homotopy kernel and
ordinary kernel coincide (and similarly for cokernels).

The following result shows just how special pretriangulated categories are among the additive
categories. Among other things, we will show that every monomorphism splits.

Proposition 12. Let T be a pretriangulated category, u : X −→ Y a morphism. Then the
following conditions are equivalent:

(i) u is a monomorphism;

(ii) u is a homonomorphism;

(iii) u is a coretraction.

(iv) There is a triangle of the following form

X
u // Y // Z

0 // ΣX

Proof. Since the implications (i) ⇒ (ii), (iii) ⇒ (i), (ii) ⇔ (iv) are trivial, it suffices to show
(ii) ⇒ (iii). Suppose that u is a homonomorphism. Then we have a commutative diagram in
which the rows are triangles

X

1

��

u // Y
v // Z

��

0 // ΣX

1

��
X

1
// X // 0 // ΣX

Therefore by TR3’ there is a morphism Y −→ X making the diagram commute, which shows that
u is a coretraction.

We record the dual result for convenience.

Corollary 13. Let T be a pretriangulated category, u : X −→ Y a morphism. Then the following
conditions are equivalent:

(i) u is an epimorphism;

(ii) u is a hoepimorphism;
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(iii) u is a retraction.

(iv) There is a triangle of the following form

X
u // Y

0 // Z // ΣX

Lemma 14. Let T be a pretriangulated category, and u : X −→ Y a morphism. Then

(i) If u is a monomorphism, then any hocokernel of u is a cokernel.

(ii) If u is an epimorphism, then any hokernel of u is a kernel.

Proof. Suppose that u is a monomorphism, and let v : Y −→ Z be any hocokernel. Then we have
a triangle

X
u // Y

v // Z
0 // ΣX

twisting we have another triangle

Y
−v // Z

0 // ΣX
−Σu // ΣY

This shows that −v is a hoepimorphism, therefore an epimorphism. But then v is an epimorphism,
which by Remark 14 is enough to show that v is the cokernel of u. The proof of (ii) is similar.

Remark 15. Let T be a pretriangulated category. Proposition 12, its dual and Lemma 14 have
the following interesting consequences:

• The category T is balanced. That is, a morphism is an isomorphism if and only if it is both
a monomorphism and an epimorphism (this follows from Lemma 10).

• Every object in T is both injective and projective.

• Every monomorphism in T has a cokernel, and every epimorphism has a kernel.

Definition 9. Let T be a pretriangulated category. Suppose we are given a triangle

X
u // Y

v // Z
w // ΣX

It follows from Proposition 12 and its dual together with Lemma 14 that u is a coretraction if
and only if v is a retraction, and in this situation we say that the triangle is split (clearly then
w = 0). If the triangle is split there is an isomorphism X ⊕ Z ∼= Y . In fact there are many such
isomorphisms:

• If v′ : Z −→ Y is such that vv′ = 1 then (u v′) : X ⊕ Z −→ Y is an isomorphism.

• If u′ : Y −→ X is such that u′u = 1 then
(
u′

v

)
: Y −→ X ⊕ Z is an isomorphism.

Lemma 15. Let T be a pretriangulated category and suppose we have a commutative diagram in
which the rows are triangles

X
u //

f

��

Y

g

��

v // Z
w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

If Hom(ΣX,Z ′) = 0 or Hom(Z, Y ′) = 0 then there is a unique morphism h : Z −→ Z ′ completing
this to a morphism of triangles.
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Proof. By TR3 there certainly exists such a morphism h, so it suffices to show uniqueness. Suppose
that Hom(ΣX,Z ′) = 0 and that two morphisms h, h′ : Z −→ Z ′ both make the above diagram
commute. Then (h − h′)v = 0 and since w is a homotopy cokernel of v we deduce that h − h′
factors through ΣX. But as the only possible factorisation ΣX −→ Z ′ is the zero morphism, we
deduce that h = h′, as required. If instead Hom(Z, Y ′) = 0 then we proceed in the same way,
using the fact that v′ is a homotopy kernel of w′.

Remark 16. Let T be a pretriangulated category and suppose we have a triangle

X
u // Y

v // Z
w // ΣX

It follows easily from the same arguments used in the proof of Lemma 15 that if Hom(ΣX,Z) = 0
then w is the unique morphism Z −→ ΣX making this diagram a triangle. That is, if w′ : Z −→
ΣX is another morphism making (u, v, w′) a triangle, then w = w′.

Remark 17. Before we give the next result, recall the following: if A is a preadditive category,
u : X −→ A a coretraction with pu = 1X , and v : Y −→ A a kernel of p then u, v is a coproduct
in A. It is therefore a biproduct, with p being the projection onto X

X
u
((
A

p
ii

q
))
Y

v
ii

We can write the four morphisms as matrices in the obvious way

u =
(

1
0

)
, p =

(
1 0

)
, v =

(
0
1

)
, q =

(
0 1

)
Suppose we are given a morphism α : Y −→ X and define p′ =

(
1 α

)
: A −→ X, v′ =

(−α
1

)
:

Y −→ A. It is easy to check that v′ is the kernel of p′ and the morphisms u, p′, v′, q define the
same object A as the biproduct of X,Y in a slightly different way (one must be careful to observe
that p′ =

(
1 α

)
is the matrix representation of p′ with respect to the original biproduct, not the

new one).

Example Let R be a ring and let A = RMod. Set X = Y = R and let A be the canonical direct
sum R ⊕ R. Let u, p, v, q be the canonical injections and projections respectively. Given
λ ∈ R let α : R −→ R be the corresponding morphism, and set p′ =

(
1 α

)
. In other words,

p′(r, s) = r + λs. Then v′ : R −→ A is defined by v′(s) = (−λs, s) and the morphisms
u, p′, v′, q write the plane A as a direct sum of the x-axis and the line x = −λy. The original
u, p, v, q correspond to the case λ = 0.

Alternatively, suppose we are given a morphism β : X −→ Y and define u′ =
(

1
β

)
: X −→ A.

We still have pu′ = 1X and v remains unchanged, but q (which was the factorisation of 1 − up
through v) will become q′ =

(
−β 1

)
. So we have written the same object A as the biproduct of

X,Y but with morphisms u′, p, v, q′.

Example With the same notation as above, let β : X −→ Y be multiplication by λ so that
u′(r) = (r, λr). Then the morphisms u′, p, v, q′ write the plane A as a direct sum of the line
y = λx (the image of u′) with the y-axis.

Combining TR0 and Remark 11 we have three special triangles associated to any object X.
Next we show that if a candidate triangle looks like it might admit one of these triangles as a
direct summand, then it actually does (loosely speaking). We give a proof in each case for the
sake of having a quick reference (and avoiding confusion about signs), but one could certainly be
more efficient.

Lemma 16. Let T be a pretriangulated category and suppose we are given a candidate triangle
of the following form

X

0@a
b

1A
// A⊕ Y

0@1 α
β γ

1A
// A⊕ Z

“
c d

”
// ΣX (9)

12



This can be written as a direct sum of the following two candidate triangles

0 // A
1 // A // 0

X
b // Y

γ−βα // Z
d // ΣX

(10)

Proof. Let u1, p1, v1, q1 be the morphisms for the biproduct A⊕Y and u2, p2, v2, q2 the morphisms
for A⊕Z. Define p′1 =

(
1 α

)
: A⊕Y −→ A and v′1 =

(−α
1

)
: Y −→ A⊕Y . This writes the object

A⊕Y as a biproduct of A, Y with morphisms u1, p
′
1, v

′
1, q1. We also define u′2 =

(
1
β

)
: A −→ A⊕Z

and q′2 =
(
−β 1

)
so that u′2, p2, v2, q

′
2 writes A⊕ Z as a biproduct of A,Z. With respect to these

new biproduct structures on its domain and codomain, the matrix in (9) becomes
(

1 0
0 γ−βα

)
.

Since (9) is a candidate triangle, we deduce the following equations a+αb = 0 and c+dβ = 0.
So with respect to the new biproduct structures, the morphisms have the following matrices(

0
b

)
: X −→ A⊕ Y,

(
0 d

)
: A⊕ Z −→ ΣX

Using the various other equations one deduces from the fact that (9) is a candidate triangle, one
checks that both sequences in (10) are candidate triangles. It is not clear that (9) is the direct sum
of these two candidate triangles (using the new biproduct stuctures, not the original ones).

Lemma 17. Let T be a pretriangulated category and suppose we are given a candidate triangle
of the following form

Q⊕X

“
a b

”
// Y

0@c
d

1A
// ΣQ⊕ Z

0@1 α
β γ

1A
// Σ(Q⊕X) (11)

This can be written as a direct sum of the following two candidate triangles

Q // 0 // ΣQ 1 // ΣQ

X
b // Y

d // Z
γ−βα // ΣX

Proof. Let u1, p1, v1, q1 be the morphisms for the biproduct Q⊕X and u2, p2, v2, q2 the morphisms
for ΣX ⊕ Z. Define the following morphisms

u′1 =
( 1

Σ−1β

)
: Q −→ Q⊕X

q′1 =
(
−Σ−1β 1

)
: Q⊕X −→ X

p′2 =
(

1 α
)

: ΣQ⊕ Z −→ ΣQ

v′2 =
(−α

1

)
: Z −→ ΣQ⊕ Z

One checks that u′1, p1, v1, q
′
1 and u2, p

′
2, v

′
2, q2 are biproducts, and using these biproducts the

candidate triangle (11) can be written as the direct sum of our two new candidate triangles.

Lemma 18. Let T be a pretriangulated category and suppose we are given a candidate triangle
of the following form

Q⊕X

0@1 α
β γ

1A
// Q⊕ Y

“
a b

”
// Z

0@c
d

1A
// Σ(Q⊕X)

This can be written as a direct sum of the following two candidate triangles

Q
1 // Q // 0 // ΣQ

X
γ−βα // Y

b // Z
d // ΣX

13



Proof. Use the same arguments as above.

1.2 Triangulated Categories

Definition 10. Let T be a pretriangulated category, and suppose we have a morphism of candi-
date triangles (call the first row T and the second row T ′)

X
u //

f

��

Y

g

��

v // Z

h

��

w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

Then we have a third candidate triangle

Y ⊕X ′

0@−v 0
g u′

1A
// Z ⊕ Y ′

0@−w 0
h v′

1A
// ΣX ⊕ Z ′

0@−Σu 0
Σf w′

1A
// Σ(Y ⊕X ′)

This new candidate triangle is called the mapping cone of the morphism F = (f, g, h) of candidate
triangles, and is sometimes denoted CF . There is a canonical morphism of candidate triangles
T ′ −→ CF

X ′ //

��

Y ′ //

��

Z ′ //

��

ΣX ′

��
Y ⊕X ′ // Z ⊕ Y ′ // ΣX ⊕ Z ′ // Σ(Y ⊕X ′)

Definition 11. Let T be a pretriangulated category, and suppose we have two morphisms F =
(f, g, h) and F ′ = (f ′, g′, h′) of the same candidate triangles

X
u //

f

��
f ′

��

Y

g

��
g′

��

v // Z

h

��
h′

��

w // ΣX

Σf

��
Σf ′

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

A homotopy (Θ,Φ,Ψ) : F −→ F ′ is a collection of three morphisms as depicted in the following
diagram

X
u // Y

Θ

}}||
||

||
||

v // Z
Φ

~~||
||

||
||

w // ΣX
Ψ

||zz
zz

zz
zz

X ′
u′
// Y ′

v′
// Z ′

w′
// ΣX ′

which satisfy

f − f ′ = Θu+ Σ−1(w′Ψ)
g − g′ = Φv + u′Θ
h− h′ = Ψw + v′Φ

If such a homotopy exists then we say that the morphisms of candidate triangles are homotopic
and if necessary write F ' F ′. If (Θ,Φ,Ψ) is a homotopy as above, then (−Θ,−Φ,−Ψ) : F ′ −→ F
is another homotopy. One checks that the relation of homotopy is an equivalence relation on the
set of morphisms between the two candidate triangles.

14



Lemma 19. Let T be a pretriangulated category and suppose we two morphisms of candidate
triangles F, F ′ : T −→ T ′. For each homotopy F ' F ′ there is a canonical isomorphism CF ∼= CF ′
of the mapping cones fitting into the following commutative diagram

T ′ //

!!C
CC

CC
CC

C CF

��
CF ′

Proof. Let a homotopy (Θ,Φ,Ψ) : (f, g, h) −→ (f ′, g′, h′) be given. Then one checks easily that
the following diagram is the required canonical isomorphism of the mapping cones

Y ⊕X ′

0@ 1 0
Θ 1

1A
��

// Z ⊕ Y ′

0@1 0
Φ 1

1A
��

// ΣX ⊕ Z ′

0@ 1 0
Ψ 1

1A
��

// Σ(Y ⊕X ′)

0@ 1 0
ΣΘ 1

1A
��

Y ⊕X ′ // Z ⊕ Y ′ // ΣX ⊕ Z ′ // Σ(Y ⊕X ′)

which clearly fits into the given commutative diagram.

Lemma 20. Let T be a pretriangulated category and suppose F, F ′ : T −→ T ′ are homotopic
morphisms of candidate triangles. Then for any morphism of candidate triangles G : S −→ T we
have F ◦G ' F ′◦G. Similarly if H : T ′ −→ S is a morphism of candidate triangles, H◦F ' H◦F ′.

Proof. Suppose F = (f, g, h), F ′ = (f ′, g′, h′), G = (q, r, s) and let a homotopy (Θ,Φ,Ψ) : F −→
F ′ be given. Then the morphisms (Θr,Φs,Ψ ◦ Σq) are a homotopy F ◦ G ' F ′ ◦ G. Similarly if
H = (a, b, c) then the morphisms (aΘ, bΦ, cΨ) are a homotopy H ◦ F ' H ◦ F ′.

Definition 12. Let T be a pretriangulated category. A candidate triangle C is called contractible
if the idenity morphism 1 : C −→ C is homotopic to the zero morphism 0 : C −→ C.

Example 2. Let T be a pretriangulated category with objects X,Y . Then the following triangle
is easily checked to be contractible

X // X ⊕ Y // Y
0 // ΣX

Lemma 21. Let T be a pretriangulated category. If C is a contractible candidate triangle, then
any morphism C −→ D or D −→ C of candidate triangles is homotopic to the zero morphism.

Lemma 22. Let T be a pretriangulated category. If C is a contractible candidate triangle, then
C is a pretriangle.

Proof. Let H : T −→ A be any additive functor into an abelian category and suppose we have a
contractible candidate triangle C

X
u // Y

v // Z
w // ΣX

By definition we have morphisms Θ : Y −→ X,Φ : Z −→ Y,Ψ : ΣX −→ Z with

1X = Θu+ Σ−1(wΨ)
1Y = Φv + uΘ
1Z = Ψw + vΦ

Applying H we deduce that the identity morphism on the following infinite sequence is chain
homotopic to the zero morphism

· · · // H(Σ−1Z)
H(Σ−1w) // H(X)

H(u) // H(Y )
H(v) // H(Z)

H(w) // H(ΣX) // · · ·

It is therefore exact, which completes the proof.
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Proposition 23. Let T be a pretriangulated category and C a contractible candidate triangle.
Then C is a distinguished triangle.

Proof. Given our contractible candidate triangle

X
u // Y

v // Z
w // ΣX

we can complete u : X −→ Y to a triangle

X
u // Y

v′ // Q
w′ // ΣX

Since Hom(ΣX,−) is a homological functor, we have an exact sequence

Hom(ΣX,Q) −→ Hom(ΣX,ΣX) −→ Hom(ΣX,ΣY )

Let (Θ,Φ,Ψ) be a homotopy of 1C to the zero morphism, and consider the morphism wΨ : ΣX −→
ΣX. We have Σu ◦ (wΨ) = 0 and so by exactness of the above sequence there is a morphism
Ψ′ : ΣX −→ Q with w′Ψ′ = wΨ. One now checks that the following diagram commutes

X

1

��

u // Y

1

��

v // Z

µ

��

w // ΣX

1

��
X u

// Y
v′
// Q

w′
// ΣX

where µ = Ψ′w+ v′Φ. From Lemma 5 we infer that this is an isomorphism of candidate triangles,
which shows that C is a distinguished triangle.

Remark 18. Since any contractible candidate triangle is a triangle, we refer to them simply as
contractible triangles.

Lemma 24. Let T be a pretriangulated category. The mapping cone on the zero morphism between
triangles is a triangle.

Proof. Consider the zero morphism on the following triangle

X

0

��

u // Y

0

��

v // Z

0

��

w // ΣX

0

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

The mapping cone is the following sequence

Y ⊕X ′

0@−v 0
0 u′

1A
// Z ⊕ Y ′

0@−w 0
0 v′

1A
// ΣX ⊕ Z ′

0@−Σu 0
0 w′

1A
// Σ(Y ⊕X ′)

This is just the direct sum of the following two triangles

X ′ u′ // Y ′
v′ // Z ′

w′ // ΣX ′

Y
−v // Z

−w // ΣX
−Σu // ΣY

and is therefore itself a triangle by Proposition 3.

Corollary 25. Let T be a pretriangulated category and F : T −→ T ′ a morphism of triangles
homotopic to zero. Then the mapping cone CF is a triangle.
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Proof. This follows from Lemma 24 and Lemma 19.

Corollary 26. Let T be a pretriangulated category and suppose we have a morphism of triangles

X //

��

Y

��

// Z

��

// ΣX

��
X ′ // Y ′ // Z ′ // ΣX ′

in which at least one row is contractible. Then the mapping cone is a triangle.

Proof. Since at least one row is contractible, it follows from Lemma 21 that the morphism is
homotopic to zero, and therefore by Corollary 25 the mapping cone is a triangle.

This is as far as one gets without further assumptions. Now we come to the main definition of
this section:

Definition 13. Let T be a pretriangulated category. Then T is triangulated if it satisfies the
following condition

TR4’: Given any commutative diagram in which the rows are triangles

X
u //

f

��

Y

g

��

v // Z
w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

(12)

there is by TR3 a morphism h : Z −→ Z ′ making the diagram commute. This h may be
chosen so that the mapping cone is a triangle

Y ⊕X ′

0@−v 0
g u′

1A
// Z ⊕ Y ′

0@−w 0
h v′

1A
// ΣX ⊕ Z ′

0@−Σu 0
Σf w′

1A
// Σ(Y ⊕X ′)

Definition 14. Let T be a pretriangulated category. A morphism of triangles is good if its
mapping cone is a triangle. One checks that good morphisms are stable under composition with
isomorphisms of candidate triangles on either end.

Remark 19. Any twist of a good morphism of triangles is also good, in the following sense.
Given a good morphism of triangles

X
u //

f

��

Y

g

��

v // Z

h

��

w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′

(13)

The following morphisms of triangles are also good

Y

−g
��

−v // Z

−h
��

−w // ΣX

−Σf

��

−Σu // ΣY

−Σg

��
Y ′

−v′
// Z ′

−w′
// ΣX ′

−Σu′
// ΣY ′

Σ−1Z

−Σ−1h

��

−Σ−1w // X

−f
��

−u // Y

−g
��

−v // Z

−h
��

Σ−1Z ′
−Σ−1w′

// X ′
−u′
// Y ′

−v′
// Z ′

17



One can also alternate signs on any two of the morphisms f, g, h and still have a good morphism
of triangles, provided one also alternates the signs on the triangles in a consistent way. To be
precise, the following three morphisms of triangles are good

X
u //

f

��

Y

−g
��

−v // Z

−h
��

−w // ΣX

Σf

��
X ′

−u′
// Y ′

−v′
// Z ′

w′
// ΣX ′

X
−u //

−f
��

Y

g

��

v // Z

−h
��

−w // ΣX

−Σf

��
X ′

u′
// Y ′

−v′
// Z ′

−w′
// ΣX ′

X
−u //

−f
��

Y

−g
��

−v // Z

h

��

w // ΣX

−Σf

��
X ′

−u′
// Y ′

v′
// Z ′

−w′
// ΣX ′

Remark 20. In this language, TR4’ can be restated as saying that any commutative diagram
(12) in which the rows are triangles, may be completed to a good morphism of triangles. One
checks that the pretriangulated category T op is actually triangulated.

Next we discuss homotopy cartesian squares. First we review the usual construction of pushouts
in an additive category, to motivate the new definition. Let A be an additive category, and suppose
we have morphisms f : Y −→ Z, g : Y −→ Y ′. Take the biproduct Y ′⊕Z and let γ : Y ′⊕Z −→ Z ′

be the cokernel of the morphism
( g
−f

)
: Y −→ Y ′⊕Z. We write γ = (f ′ g′) for some morphisms

f ′ : Y ′ −→ Z ′, g′ : Z −→ Z ′. Then it is easily checked that the following square is a pushout

Y
f //

g

��

Z

g′

��
Y ′

f ′
// Z ′

Using the by now familiar idea of replacing the usual cokernel with a homotopy cokernel, we
can define homotopy pushouts. In fact we will see (as was the case with homotopy kernels and
cokernels) the homotopy pushout and pullback can be defined on the same objects, which is why
we introduce the idea of a homotopy cartesian square.

Definition 15. Let T be a triangulated category. A commutative square

Y

g

��

f // Z

g′

��
Y ′

f ′
// Z ′

(14)

is homotopy cartesian if there is a distinguished triangle of the following form

Y

0@ g
−f

1A
// Y ′ ⊕ Z

“
f ′ g′

”
// Z ′ // ΣY (15)

This is equivalent to saying that (f ′ g′) is the homotopy cokernel of
( g
−f

)
(which is the same as

being the homotopy cokernel of
(−g
f

)
by Remark 12). In this situation we call the triple (Y, f, g)
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the homotopy pullback of (Z ′, f ′, g′), and we call the latter triple the homotopy pushout of the
former. It follows from Remark 2 that if you replace f ′, g′ by −f ′,−g′ (or f, g by −f,−g) the
diagram is still homotopy cartesian.

Remark 21. Let T be a triangulated category. Then the first commutative diagram below is
homotopy cartesian in T if and only if the second diagram is homotopy cartesian in T op

Y

g

��

f // Z

g′

��
Y ′

f ′
// Z ′

Y Z
foo

Y ′

−g

OO

Z ′
−f ′
oo

g′

OO

Remark 22. Let T be a triangulated category. Given a pair of morphisms

Y
f //

g

��

Z

Y ′

it is clear that a homotopy pushout exists, since we can complete the morphism
( g
−f

)
to a

distinguished triangle. Dually, every pair of morphisms

Z

g′

��
Y ′

f ′
// Z ′

must have a homotopy pullback. It follows from Remark 8 that homotopy pullbacks and pushouts
are unique up to (non-canonical) isomorphism.

Lemma 27. Let T be a triangulated category and suppose we have a homotopy cartesian square

Y

g

��

f // Z

g′

��
Y ′

f ′
// Z ′

Then we have

(i) Given morphisms α : P −→ Y ′, β : P −→ Z with g′β = f ′α there is a morphism γ : P −→ Y
such that fγ = β, gγ = α.

(ii) Given morphisms α : Y ′ −→ Q, β : Z −→ Q with αg = βf there is a morphism γ : Z ′ −→ Q
such that γg′ = β, γf ′ = α.

Proof. By duality it suffices to prove (ii). We have a triangle (15) which the cohomological
functor Hom(−, P ) : T −→ Ab takes to a long exact sequence. We are given a morphism (α β)
in Hom(Y ′ ⊕ Z,P ) whose image in Hom(Y, P ) is zero. We conclude that there is a morphism
γ : Y −→ P with the required property.

Lemma 28. Let T be a triangulated category and suppose we have a commutative diagram with
triangles for rows

Y
v //

g

��

Z
w

&&MMMMMM

X

f
99ssssss

%%KKKKKK ΣX

Y ′
v′
// Z ′

w′

88rrrrrr

(16)

It may be completed to a morphism of triangles such that the middle square is homotopy cartesian.
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Proof. By TR4’ we may complete the diagram by a morphism h : Z −→ Z ′ to a good morphism
of triangles. Then the following mapping cone is a triangle

X ⊕ Y −→ Y ′ ⊕ Z −→ ΣX ⊕ Z ′ −→ Σ(X ⊕ Y )

It follows from Lemma 17 that we can write this triangle as a direct sum of the following two
candidate triangles (which are therefore by Proposition 8 themselves triangles)

X // 0 // ΣX
1 // ΣX

Y

(
g
−v

)
// Y ′ ⊕ Z

(
v′ h

)
// Z ′

(Σf)w // ΣY

The fact that the second candidate triangle is distinguished shows precisely that the middle square
in (16) is homotopy cartesian.

Lemma 29. Let T be a triangulated category and suppose we have a commutative diagram in
which the top row is a triangle and the square is homotopy cartesian

Y

r

��

g // Y ′

s

��

k // Y ′′
l // ΣY

Z
h
// Z ′

Then there is a triangle

Z
h // Z ′ // Y ′′ // ΣZ

making the following diagram commute

Y

r

��

g // Y ′

s

��

k // Y ′′
l //

1

��

ΣY

Σr

��
Z

h
// Z ′ // Y ′′ // ΣZ

Proof. By assumption we have a commutative diagram in which both rows are triangles

Y

1

��

(
g
−r

)
// Y ′ ⊕ Z

��

(
s h

)
// Z ′ // ΣY

1

��
Y g

// Y ′ // Y ′′ // ΣY

By TR4’ there exists a morphism m : Z ′ −→ Y ′′ completing this to a good morphism of triangles.
Using Lemma 17 and Lemma 18 we can write the mapping cone (which is a triangle) as a direct
sum of the following three candidate triangles

Y // 0 // ΣY
1 // ΣY

Y ′
1 // Y ′ // 0 // ΣY ′

Z
−h // Z ′

m // Y ′′
−(Σr)l // ΣZ

which by Proposition 8 must themselves be triangles. The last triangle remains distinguished if
we change the sign on the outer two morphisms, so we have constructed a triangle

Z
h // Z ′

m // Y ′′
(Σr)l // ΣZ

which clearly makes the required diagram commute.
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Proposition 30. Let T be a triangulated category, f : X −→ Y and g : Y −→ Y ′ morphisms,
and suppose we are given triangles

X
f // Y

a // Z
b // ΣX

X
gf // Y ′ // Z ′ // ΣX

Y
g // Y ′ // Y ′′ // ΣY

Then we can complete this to a commutative diagram

X

1

��

f // Y

~g

��

a // Z
b //

��

ΣX

1

��
X

gf //

��

Y ′

��

// Z ′ //

��

ΣX

��
0 //

��

Y ′′

��

1 // Y ′′ //

��

0

��
ΣX

Σf // ΣY
Σa // ΣZ

−Σb // Σ2X

(17)

where every row and column is a distinguished triangle and ~ is homotopy cartesian.

Proof. The only morphisms we need to add are the vertical morphisms in the third column. It is
clear that every row and every other column is already a triangle. By Lemma 28 we can find a
morphism h : Z −→ Z ′ making the first row (of squares) into a good morphism of triangles such
that ~ is homotopy cartesian. Then by applying Lemma 29 to the following diagram

Y

a

��
~

g // Y ′

��

// Y ′′ // ΣY

Z // Z ′

we find that there exists a morphism m : Z ′ −→ Y ′′ with the required properties.

Remark 23. This result is also known as the Octahedral Axiom. A more emotive way to draw
the involved triangles is shown in the following diagram

X

Y

Z

ΣX

Y ′

Z ′

ΣX

Y ′′

ΣZ

ΣY
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From Proposition 30 we know that given the three solid triangles we can construct a fourth
triangle fitting into the above commutative diagram. Commutativity of every cell except for the
square Z ′,ΣX,ΣY,ΣZ is immediate from the statement of Proposition 30 and commutativity of
the remaining square follows from a careful analysis of the proof.

We deduce immediately the dual result.

Corollary 31. Let T be a triangulated category, f : X −→ Y and g : Y −→ Y ′ morphisms, and
suppose we are given triangles as in Proposition 30. Then there exists a commutative diagram

Σ−1Z //

−Σ−1b

��

0 //

��

Z
1 //

��

Z

b

��
X

gf //

f

��

Y ′ //

1

��

Z ′ //

��

ΣX

Σf

��
Y

g //

a

��

Y ′ //

��

Y ′′ //

��

ΣY

Σa

��
Z // 0 // ΣZ

1 // ΣZ

where every row and column is a distinguished triangle.

Corollary 32. Let T be a triangulated category. Any commutative diagram

X ′

��

// Y ′

��
X // Y

can be extended to a diagram of the form

X ′

��

// Y ′

��

// Z ′

��

// ΣX ′

��
X

��

// Y

��

// Z

��

// ΣX

��
X ′′ //

��

Y ′′

��

// Z ′′

��
~

// ΣX ′′

−
��

ΣX ′ // ΣY ′ // ΣZ ′ −
// Σ2X ′

where every row and column is a distinguished triangle and every square commutes, except for ~
which anticommutes.

Proof. Choose arbitrary extensions to triangles of the sides of the original commutative diagram
as well as the equal composites X ′ −→ Y , as follows

X ′ −→ Y ′ −→ Z ′ −→ ΣX ′ (18)
X ′ −→ Y −→ A −→ ΣX ′ (19)
X ′ −→ X −→ X ′′ −→ ΣX ′ (20)
Y ′ −→ Y −→ Y ′′ −→ ΣY ′ (21)
X −→ Y −→ Z −→ ΣX (22)
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First apply Remark 23 to the three triangles (18), (19), (21) to obtain a triangle

Z ′ −→ A −→ Y ′′ −→ ΣZ ′ (23)

which yields a second shifted triangle

A // Y ′′ // ΣZ ′
− // ΣA (24)

Now apply Remark 23 to the triangles (19), (19), (22) to obtain a triangle

X ′′ −→ A −→ Z −→ ΣX ′′ (25)

This defines morphisms e : A −→ Y ′′ and f : X ′′ −→ A. Extend ef : X ′′ −→ Y ′′ to a triangle

X ′′ −→ Y ′′ −→ Z ′′ −→ ΣX ′′ (26)

and use Remark 23 one last time on (25), (26), (24) to obtain a triangle Z ′ −→ Z −→ Z ′′ −→ ΣZ ′.
This constructs all the necessary triangles and one checks they fit into the diagram above as
claimed.

1.3 Triangulated Subcategories

Definition 16. Let T be a triangulated category. A full additive subcategory S in T is called a
triangulated subcategory if it is replete, if ΣS = S, and if for any distinguished triangle

X −→ Y −→ Z −→ ΣX (27)

such that X,Y are in S, the object Z is also in S (we refer to this last condition by saying S is
closed under mapping cones).

Remark 24. Let T be a triangulated category and S a triangulated subcategory, with i : S −→ T
the inclusion functor. Since i is additive it preserves finite products and coproducts, which means
that S is closed under finite products and coproducts of its objects in T .

By definition the additive automorphism Σ on T restricts to an automorphism on S. If we
define a candidate triangle in S to be distinguished if it is distinguished in T , then it is easily
checked that S is indeed a triangulated category. If S ′ is a triangulated subcategory of S, then it
is clearly also a triangulated subcategory of T .

Remark 25. One checks easily that if S is a triangulated subcategory of T and we have a
distinguished triangle (27) in T , and if any two of the objects X,Y, Z are in S, then so is the
third.

Remark 26. Let T be a triangulated category with triangulated subcategory S. Then Sop is a
triangulated subcategory of T op. A nonempty intersection of triangulated subcategories is still a
triangulated subcategory.

Lemma 33. Let T be a triangulated category and S a full replete subcategory. Then S is a
triangulated subcategory if and only if it is closed under Σ−1 and mapping cones.

Proof. The conditions are certainly necessary. Suppose that S is full, replete and closed under
mapping cones and Σ−1. By convention all our categories are nonempty, so choose some X ∈ S.
From the following triangles

X
1 // X // 0 // ΣX

X // 0 // ΣX
1 // ΣX
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we deduce that S contains all the zero objects of T , and that S is closed under Σ. Given objects
X,Z ∈ T we have by Remark 11 the following triangle in T

Σ−1Z
0 // X // X ⊕ Z // Z

from which we deduce that S is closed under finite products and coproducts in T , and is therefore
additive. This completes the verification that S is a triangulated subcategory.

Definition 17. Let T be a triangulated category, S a triangulated subcategory. We define a class
of morphisms MorS of T by the following rule. A morphism f : X −→ Y belongs to MorS if and
only if there exists a triangle

X
f // Y // Z // ΣX

with Z an object of S. Every morphism of S belongs to MorS , and it is also clear that the subclass
MorSop of T op consists of the same morphisms as MorS . A morphism f : X −→ Y becomes to
MorS if and only if Σf : ΣX −→ ΣY does.

Lemma 34. Let S be a triangulated subcategory of a triangulated category T . Then every iso-
morphism f : X −→ Y belongs to MorS .

Proof. This follows from Lemma 9 and the fact that since S is closed under finite products and
coproducts, it in particular contains every zero object of T .

Lemma 35. Let S be a triangulated subcategory of a triangulated category T and let f : X −→
Y, g : Y −→ Y ′ be morphisms in T . If any two of f, g, gf belong to MorS , then so does the third.

Proof. By Proposition 30 there is a diagram of triangles (17). Now f is in MorS if and only if Z
is in S, gf is in MorS if and only if Z ′ is in S, and g is in MorS if and only if Y ′′ is in S. From
the triangle

Z −→ Z ′ −→ Y ′′ −→ ΣZ

we learn that if any two of Z,Z ′, Y ′′ lie in S, then so does the third.

Lemma 36. If S is a triangulated subcategory of a triangulated category T then there is a sub-
category of T whose objects are all the objects of T , and whose morphisms are the ones in MorS .

Proof. All the identities of T belong to MorS by Lemma 34. It follows from Lemma 35 that
MorS is closed under composition, so we can consider MorS as a subcategory of T .

Lemma 37. Let S be a triangulated subcategory of a triangulated category T , and suppose we
have a homotopy cartesian square

Y

g

��

f // Z

g′

��
Y ′

f ′
// Z ′

Then g′ belongs to MorS if and only if g does. That is, morphisms in MorS are stable under
homotopy pushout and pullback.

Proof. By Lemma 29 the homotopy cartesian square may be completed to a morphism of triangles

Y

f

��

g // Y ′

f ′

��

// Y ′′ //

1

��

ΣY

Σf

��
Y ′

g′
// Z ′ // Y ′′ // ΣZ

Now Y ′′ lies in S precisely if both morphisms g, g′ are in MorS , which proves that g is in MorS
if and only if g′ is.
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2 Triangulated Functors

Definition 18. Let D, E be triangulated categories. A triangulated functor F : D −→ E is
an additive functor together with a natural equivalence φ : FΣ −→ ΣF , where Σ denotes the
respective automorphisms on D, E , with the property that for any distinguished triangle in D

X
u // Y

v // Z
w // ΣX

the following candidate triangle is distinguished in E

F (X)
F (u) // F (Y )

F (v) // F (Z)
φX◦F (w) // ΣF (X)

By abuse of notation we simply say the functor F is triangulated, and drop φ from the notation,
whenever this will not cause confusion. Note that whenever we say two triangulated functors are
equal, we mean the underlying functors are equal and the natural equivalences are the same. If
we simply mean they are equal as additive functors, we will say so explicitly.

The identity functor 1 : D −→ D together with the identity transformation φ : 1Σ −→ Σ1
is a triangulated functor D −→ D. Given triangulated functors F : D −→ E , G : E −→ F
with corresponding natural equivalences φ, ψ we define a new triangulated functor GF : D −→ F
whose underlying functor is the usual composite, and whose natural transformation γ : (GF )Σ −→
Σ(GF ) is defined for an object X by γX = ψFXG(φX). This composition of triangulated functors
is associative, and the identity triangulated functors clearly act as identities.

Definition 19. Let (F, φ), (G,ψ) : D −→ E be triangulated functors. A trinatural transformation
η : (F, φ) −→ (G,ψ) is a natural transformation η : F −→ G of the additive functors which has
the additional property that for every object X ∈ D the following diagram commutes

FΣ(X)

ηΣX

��

φX // ΣF (X)

ΣηX

��
GΣ(X)

ψX

// ΣG(X)

If η, η′ : (F, φ) −→ (G,ψ) are two trinatural transformations then so is their sum and difference,
so the trinatural transformations (F, φ) −→ (G,ψ) form an abelian group (this is a subgroup of
the natural transformations F −→ G). Given trinatural transformations η : (F, φ) −→ (G,ψ) and
τ : (G,ψ) −→ (H,κ) the composite τ ◦ η is a trinatural transformation (F, φ) −→ (H,κ). The
identity transformation 1 : (F, φ) −→ (F, φ) is certainly a trinatural transformation, and we call
a trinatural transformation η : (F, φ) −→ (G,ψ) a trinatural equivalence if there is a trinatural
transformation κ : (G,ψ) −→ (F, φ) with ηκ = 1 and κη = 1.

This notation is unambiguous, since it is clear that a trinatural transformation η is a trinatural
equivalence if and only if is a natural equivalence (that is, ηX is an isomorphism for every X).

Remark 27. Let F : D −→ E and G,H : Q −→ D be triangulated functors, and suppose we
have a trinatural transformation η : G −→ H. Then the natural transformation Fη : FG −→ FH
is a trinatural transformation. In particular if G ∼= H are trinaturally equivalent then FG ∼= FH
are trinaturally equivalent.

Similarly if G,H : E −→ Q are triangulated functors and η : G −→ H a trinatural transfor-
mation, then the natural transformation ηF : GF −→ HF is trinatural. In particular if G ∼= H
are trinaturally equivalent then GF ∼= HF are trinaturally equivalent.

Remark 28. Let D, E be triangulated categories. If a pair (F, φ) : D −→ E is a triangulated
functor then the induced functor F op : Dop −→ Eop and natural equivalence φop : F opΣ−1 −→
Σ−1F op defined by φop

X = Σ−1φΣ−1X is a triangulated functor between the duals. Obviously
dualising twice yields the original pair (F, φ). Given triangulated functors F : D −→ E , G : E −→
F we have (GF )op = Gop ◦ F op, and the dual of the identity triangulated functor is the identity
triangulated functor on the dual.
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If F,G : D −→ E are triangulated functors and η : F −→ G a trinatural transformation,
then ηop : Gop −→ F op defined by ηop

X = ηX is a trinatural transformation. It is clear that
(ηψ)op = ψopηop and (ηH)op = ηopHop, (Hη)op = Hopηop.

Definition 20. Let T be a triangulated category. A fragile triangulated subcategory is a trian-
gulated functor j : S −→ T which is a full subcategory with the additional property that the
suspension functor on S is the restriction of the suspension functor on T , and the natural equiva-
lence jΣ −→ Σj is the identity. One checks that a candidate triangle in S is distinguished in S if
and only if it is distinguished in T , so a fragile triangulated subcategory is specificed completely
by its class of objects.

Example 3. Let T be a triangulated category and S a triangulated subcategory. Then the
inclusion i : S −→ T together with the identity 1 : iΣ −→ Σi is a triangulated functor, and
this functor is a fragile triangulated subcategory. In fact, triangulated subcategories and replete
fragile triangulated subcategories are the same thing. If T ′ is a fragile triangulated subcategory
of T then it is easy to check that S ∩ T ′ is a triangulated subcategory of T ′.

Example 4. For examples of fragile triangulated subcategories which are not replete, see the
results (DTC,Remark 7) and (DTC,Proposition 34).

Definition 21. Let F : C −→ D be a functor. The full subcategory of D consisting of objects X
isomorphic to F (Y ) for some Y ∈ C is called the essential image of F .

Remark 29. Let F : D −→ E be a triangulated functor and S ⊆ E a fragile triangulated
subcategory containing F (X) for every X ∈ D. Then there is a unique triangulated functor
D −→ S making the following diagram commute

D F //

��?
??

??
??

E

S

OO

On the other hand, given a full triangulated functor F : D −→ E the essential image S is a
triangulated subcategory of E , through which F certainly factors.

Definition 22. Let F : D −→ T be a triangulated functor. The kernel of F is the full subcategory
C of D consisting of those objects X with F (X) = 0.

Lemma 38. Let F : D −→ T be a triangulated functor. Then the kernel C of F is a triangulated
subcategory of D.

Proof. The kernel C is clearly a full additive replete subcategory of D. For any object X we have
an isomorphism FΣ(X) ∼= ΣF (X), so X belongs to C if and only if ΣX does. Now suppose we
are given a triangle in D

X −→ Y −→ Z −→ ΣX

Then
F (X) −→ F (Y ) −→ F (Z) −→ ΣF (X)

is a triangle in T . If F (X), F (Y ) are zero then by Remark 8 the object F (Z) is also zero. This
shows that Z is in C, which is therefore a triangulated subcategory.

Lemma 39. Let F : D −→ T be a triangulated functor with kernel C. If X ⊕ Y is an object of C,
then so are the direct summands X,Y .

Definition 23. A triangulated subcategory C of a triangulated category D is thick if it contains
all direct summands of its objects. The kernel of any triangulated functor is thick. A triangulated
subcategory C is thick if and only if Cop is thick. A nonempty intersection of thick subcategories
is thick.
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Definition 24. Let F : D −→ T be a triangulated functor. We say that F reflects triangles if it
has the property that given any candidate triangle in D

X −→ Y −→ Z −→ ΣX (28)

such that the following candidate triangle is a triangle in T

F (X) −→ F (Y ) −→ F (Z) −→ ΣF (X)

then (28) is a triangle in D.

Remark 30. Let F,G : D −→ E be triangulated functors and ψ : F −→ G a trinatural transfor-
mation. If we define S = {X ∈ D |ψX is an isomorphism} then one checks that S is a triangulated
subcategory of D. If F,G preserve coproducts then S is closed under coproducts in D.

2.1 Triadjoints

The reader should consult (AC,Definition 28) (AC,Definition 30) for the definition of reflections
and coreflections along a functor.

Definition 25. A triangulated functor L : B −→ A is left triadjoint to a triangulated functor
F : A −→ B if there exists a trinatural transformation η : 1B −→ FL such that for every B ∈ B
the pair (L(B), ηB) is a reflection of B along F . A trinatural transformation η with this property
is called a left triadjunction of L to F . Clearly if L is left triadjoint to F then it is left adjoint to
F , although the converse is not true in general.

Remark 31. Observe that a natural transformation η : 1 −→ FL is trinatural if and only if for
every B ∈ B we have φF,GBF (φG,B)ηΣB = ΣηB where φF , φG are the natural equivalences given
as part of the data of the triangulated functors F,G.

Definition 26. A triangulated functor R : B −→ A is right triadjoint to a triangulated functor
F : A −→ B if there exists a trinatural transformation ε : FR −→ 1B such that for every B ∈ B
the pair (R(B), εB) is a coreflection of B along F . A trinatural transformation ε with this property
is called a right triadjunction of F to R. Clearly if R is right triadjoint to F then it is right adjoint
to F , although the converse is not true in general.

Remark 32. Observe that a natural transformation ε : FR −→ 1 is trinatural if and only if for
every B ∈ B we have Σ(εB)φF,RBF (φR,A) = εΣB where φF , φG are the natural equivalences given
as part of the data of the triangulated functors F,G.

Lemma 40. Let F : A −→ B and G : B −→ A be triangulated functors. There is a bijection
between left triadjunctions of G to F and right triadjunctions of G to F . In particular G is left
triadjoint to F if and only if F is right triadjoint to G.

Proof. Let η : 1 −→ FG be a left triadjunction of G to F . Then it is in particular a left
adjunction of G to F , and therefore corresponds to a right adjunction ε of G to F as in the proof
of (AC,Lemma 12). We simply check that ε is a trinatural transformation. We have to check that
for every A ∈ A the following diagram commutes

GFΣA

εΣA $$I
IIIIIIII

φG,F AG(φF,A) // ΣGFA

ΣεAzzuuuuuuuuu

ΣA

where φF , φG are the natural equivalences given as part of the data of the triangulated functors
F,G. By applying F , composing with the isomorphism φF,A and using the universal property of
η, this is not difficult.

Conversely if we are given a right triadjunction ε : GF −→ 1 of G to F we construct the left
adjunction η : 1 −→ FG as in (AC,Lemma 12) and check that η is trinatural by an argument
dual to the one given above. We already know these two assignments are mutually inverse, so the
proof is complete.
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Definition 27. Let F : A −→ B and G : B −→ A be triangulated functors. A triadjunction
G

�
F is a pair (η, ε) consisting of a left triadjunction η of G to F and a right triadjunction

ε of G to F with η, ε corresponding under the bijection of Lemma 40. Any triadjunction is in
particular an adjunction (AC,Definition 32).

Remark 33. Let F : A −→ B and G : B −→ A be triangulated functors and suppose that we
have an adjunction (η, ε) : G �

F . It follows from the proof of Lemma 40 that if η is trinatural,
so is ε, and vice versa. In other words, to prove that an adjunction is a triadjunction, it suffices
to show that either the unit or the counit is trinatural.

Lemma 41. Let F : A −→ B and G : B −→ A be triangulated functors and let (η, ε) be a
triadjunction G � F . The pair (εop, ηop) is a triadjunction F op � Gop .

Theorem 42. Consider triangulated functors F : A −→ B and G : B −→ A. The following
conditions are equivalent

1. G is left triadjoint to F .

2. F is right triadjoint to G.

3. There exist trinatural transformations η : 1B −→ FG and ε : GF −→ 1A such that

Fε ◦ ηF = 1F , εG ◦Gη = 1G

4. There exists a family of bijections {θA,B}A∈A,B∈B

θA,B : HomA(GB,A) −→ HomB(B,FA)

which is natural in both variables and commutes with suspension. That is, for any objects
A ∈ A, B ∈ B the following diagram commutes

Hom(GΣB,A)

��

θA,ΣB // Hom(ΣB,FA)

��
Hom(ΣGB,A)

��

Hom(B,Σ−1FA)

��
Hom(GB,Σ−1A)

θΣ−1A,B

// Hom(B,FΣ−1A)

(29)

Proof. In fact we will show that there is a bijection between (a) triadjunctions G � F , (b)
pairs of trinatural transformations η, ε with the property of (3) and (c) families of bijections θ
with the property of (4).

Given a triadjunction (η, ε) it is clear that η, ε satisfy the condition of (3). Conversely, suppose
that a pair of trinatural transformations η, ε is given satisfying this condition. From the proof
of (AC,Theorem 14) we know that (η, ε) is an adjunction, and since by assumption both natural
transformations are trinatural, it is also a triadjunction. This proves the bijection (a)⇔ (b).

Let (η, ε) : G � F be a triadjunction. Given a morphism a : GB −→ A we define θA,B(a) =
F (a)ηB . Given b : B −→ FA we define τA,B(b) = εAG(b). One checks in the usual way that
τA,B = θ−1

A,B and the map θ is natural in both variables. It only remains to show that θ commutes
with suspension.

Let a morphism a : GΣB −→ A be given. To check that (29) commutes on a we have to show

FΣ−1(aφ−1
G,B)ηB = κAΣ−1(F (a)ηΣB)

where κ denotes the natural equivalence Σ−1φFΣ−1 : Σ−1F −→ FΣ−1. Since η is trinatural we
deduce that

Σ−1ηΣB = Σ−1F (φ−1
G,B)κ−1

ΣGBηB
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while by naturality of φF : FΣ −→ ΣF we have κAΣ−1F (a) = FΣ−1(a)κGΣB . Therefore

FΣ−1(aφ−1
G,B)ηB = FΣ−1(aφ−1

G,B)κΣGBκ
−1
ΣGBηB

= κAΣ−1F (aφ−1
G,B)κ−1

ΣGBηB

= κAΣ−1F (a)Σ−1ηΣB

as required. So any triadjunction (η, ε) gives rise to a family of bijections θ with the properties of
(4). Conversely, suppose we are given the family of bijections θ. As in the proof of (AC,Theorem
14) we deduce an adjunction (η, ε). To show that this is a triadjunction, it suffices by Remark
33 to show that η is trinatural. But this follows from commutativity of (29) on the identity
1 : GΣB −→ GΣB. We have defined the required bijection (a) ⇔ (c), and therefore the proof is
complete.

Remark 34. With the notation of Theorem 42 it is also true that the dual of the compatibility
diagram (29) commutes. In other words, for any objects A ∈ A, B ∈ B the following diagram
commutes

Hom(GΣ−1B,A)

��

θA,Σ−1B // Hom(Σ−1B,FA)

��
Hom(Σ−1GB,A)

��

Hom(B,ΣFA)

��
Hom(GB,ΣA)

θΣA,B

// Hom(B,FΣA)

(30)

Lemma 43. Let F : A −→ B be a triangulated functor, and suppose G1, G2 : B −→ A are both
left triadjoint to F , with triadjunctions η1, η2. Then there is a canonical trinatural equivalence
ρ : G1 −→ G2.

Proof. By (AC,Lemma 15) we have a natural equivalence ρ : G1 −→ G2 and it is clear from the
construction that this natural transformation and its inverse are both trinatural.

Lemma 44. Let F : A −→ B be a triangulated functor, and suppose G1, G2 : B −→ A are both
right triadjoint to F , with triadjunctions ε1, ε2. Then there is a canonical trinatural equivalence
ρ : G1 −→ G2.

Proof. By (AC,Lemma 16) we have a natural equivalence ρ : G1 −→ G2 and it is clear from the
construction that this natural transformation and its inverse are both trinatural.

Lemma 45. Let F : A −→ B and G : B −→ A be triangulated functors with F left triadjoint
to G. If F is trinaturally equivalent to F ′ then F ′ is left triadjoint to G, and if G is trinaturally
equivalent to G′ then G′ is right triadjoint to F .

Proof. The proof is the same as (AC,Lemma 17), we simply have to observe that one can compose
trinatural transformations, and apply triangulated functors on either side, and the result is still
trinatural.

Proposition 46. Consider the following diagram of triangulated functors

A
F

44 B
G

ss

H

44 C
K

tt

where G is left triadjoint to F and K is left triadjoint to H. Then GK is left triadjoint to HF .
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Proof. Choose triadjunctions G � F and K � H represented by natural families of bijec-
tions µ and θ which are compatible with suspension. Then as in (AC,Proposition 18) we define a
natural family of bijections

%A,C = θFA,CµA,KC : HomA(GKC,A) −→ HomC(C,HFA)

One checks this family of bijections commutes with suspension, and therefore defines the required
triadjunction.

Proposition 47. Let F : D −→ E be a triangulated functor, G : E −→ D an ordinary functor
which is left adjoint to F with unit and counit

η : 1 −→ FG, ε : GF −→ 1

Then G becomes a triangulated functor in a canonical way, such that η, ε are trinatural. That is,
so that G is left triadjoint to F . Dually if G is right adjoint to F with unit and counit

ν : 1 −→ GF, ρ : FG −→ 1

Then G becomes a triangulated functor in a canonical way, such that ν, ρ is a triadjunction.

Proof. For clarity, let Σ be the suspension functor on D and Λ the suspension functor on E . We
have the following natural transformation φG

GΛ
GΛη // GΛFG

Gφ−1
F G +3 GFΣG

εΣG // ΣG

We have the following diagram of functors

D
Σ−1

))
D

Σ

ii
F
(( E

G

hh
Λ−1

(( E
Λ

hh

As isomorphisms are both left and right adjoint to their inverse, we can compose adjunctions to
deduce that ΣG �

FΣ−1 and GΛ � Λ−1F . If φ : FΣ −→ ΛF is the natural equivalence
associated to F then Λ−1φΣ−1 is a natural equivalence Λ−1F −→ FΣ−1. Therefore ΣG,GΛ are
left adjoints of the same functor, and are consequently naturally equivalent. In explicit terms, if
one works out the details we arrive at a canonical natural equivalence GΛ −→ ΣG defined for
E ∈ E by

εΣGE ◦G(φF,GE)−1 ◦GΛ(ηE)

That is, our natural transformation φG is a natural equivalence. Observe that the functor G must
be additive, since it has a right adjoint and therefore preserves finite products. We claim that
the pair (G,φG) is a triangulated functor (observe that η is now a trinatural transformation).
Henceforth we drop the notation Λ and just write Σ for both suspension functors. Suppose we
are given a triangle in E

X −→ Y −→ Z −→ ΣX

Complete the morphism GX −→ GY to a triangle in D

GX −→ GY −→ C −→ ΣGX

applying F we have a triangle in E

FGX −→ FGY −→ FC −→ ΣFGX

The unit morphisms induce a morphism of triangles

X //

ηX

��

Y //

ηY

��

Z //

θ

��

ΣX

ΣηX

��
FGX // FGY // FC // ΣFGX
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We define a morphism of abelian groups Θ : HomD(C,R) −→ HomE(Z,FR) by Θ(m) = F (m)θ.
For any R ∈ D we have a commutative diagram with exact rows

HomD(GX,R)

��

HomD(GY,R)

��

oo HomD(C,R)oo

Θ

��

HomD(ΣGX,R)oo

��

HomD(ΣGY,R)

��

oo

HomE(X,FR) HomE(Y, FR)oo HomE(Z,FR)oo HomE(ΣX,FR)oo HomE(ΣY, FR)oo

In other words, given R ∈ D and a morphism τ : Z −→ FR there is a unique morphism m : C −→
R making the following diagram commute

Z
θ //

τ
!!C

CC
CC

CC
C FC

Fm

��
FR

This is the universal property of the unit η, from which we deduce that the morphism ψ : GZ −→ C
corresponding to θ is an isomorphism. Since we have a commutative diagram in D

GX

1

��

// GY

1

��

// GZ

ψ

��

// ΣGX

1

��
GX // GY // C // ΣGX

we conclude that the first row is a triangle in D, as required. Therefore (G,φG) is a triangulated
functor, and by Remark 33 the natural transformation ε is trinatural and the pair (η, ε) is a
triadjunction G � F .

Dually if G is right adjoint to F with unit ν and counit ρ then we use duality and the above
to see that there is a canonical natural equivalence φG : GΣ −→ ΣG defined by

φG,X = ΣGΣ−1(ρΣX) ◦ ΣG(Σ−1φF,Σ−1GΣX)−1 ◦ ΣνΣ−1GΣX

such that (G,φG) is a triangulated functor, and ν, ρ are trinatural. The pair (ν, ρ) is therefore a
triadjunction F

�
G , as claimed.

Corollary 48. A triangulated functor F : D −→ E has a left (right) triadjoint if and only if it
has a left (right) adjoint.

Remark 35. Let C be an additive functor together with an additive automorphism Σ : C −→ C.
Suppose we are given two classes T1 ⊆ T2 of candidate triangles such that C1 = (C,Σ,T1) and
C2 = (C,Σ,T2) are triangulated categories. Then the identity functor 1 : C1 −→ C2 is triangulated,
and therefore so is its left adjoint 1 : C2 −→ C1. Therefore T1 = T2, so you can’t add (or remove)
triangles from a triangulated category and still have a triangulated category.

Lemma 49. Given a triangulated functor F : A −→ B the following conditions are equivalent:

(i) F is an equivalence of categories.

(ii) There is a triangulated functor G : B −→ A and trinatural equivalences 1 ∼= FG,GF ∼= 1.

And similarly the following conditions are equivalent:

(i) F is an isomorphism of categories.

(ii) There is a triangulated functor G : B −→ A such that 1 = FG,GF = 1 (as triangulated
functors).
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Proof. We prove the first statement, with the second being an easy consequence. (ii) ⇒ (i) is
trivial. Suppose that F is an equivalence. That is, F is fully faithful and every object of E is
isomorphic to F (X) for some X ∈ D. There exists an additive functor G : E −→ D and natural
equivalences η : 1 −→ FG, ε : GF −→ 1. In fact we can choose these natural transformations so
that Fε ◦ ηF = 1 and Gη ◦ εG = 1, that is, so that they are the unit and counit of an adjunction
G � F . Then we have a natural equivalence

GΣ ∼= GΣFG ∼= GFΣG ∼= ΣG

which we denote by φG = εΣG ◦Gφ−1
F G ◦GΣη. By the construction of Proposition 47 this makes

G into a triangulated functor such that η, ε are trinatural. In other words we have trinatural
equivalences FG ∼= 1, GF ∼= 1 which completes the proof.

Definition 28. A triangulated functor F : D −→ E is called a triequivalence if it is an equivalence
of categories, and a triisomorphism if it is an isomorphism of categories. Any triequivalence reflects
triangles.

Remark 36. Let F : A −→ B be a triequivalence of triangulated categories, so that there exists
a triangulated functor G : B −→ A and trinatural equivalences s : 1 −→ FG and t : GF −→ 1.
It is not difficult to check that s is a left adjunction of G to F and s−1 is a right adjunction of F
to G (although the corresponding counit need not be t or t−1). Therefore F is left triadjoint and
right triadjoint to G.

2.2 Verdier Quotients

Remark 37. In the remainder of this section we develop the construction of the verdier quotient
D/C of a triangulated U-category D by a triangulated U-subcategory C. This construction will
produce a portly category (AC,Section 1), that without some assumptions on C is not necessarily
a category. In later sections we will indicate what these conditions are, and address some related
set-theoretic difficulties.

To define a portly triangulated category one simply reads Definition 3 and Definition 13 with
“portly category” replacing “category” throughout. The only other modification is that we do
not require the distinguished triangles to form a class (that is, we may have a conglomerate of
distinguished triangles). One defines triangulated functors between portly triangulated categories
in the same way. Observe that any triangulated category is in particular a portly triangulated
category, so it makes sense to talk about triangulated functors between triangulated categories
and portly triangulated categories. All the basic results about triangulated categories hold in this
generality, but the reader is directed to Section 7 for a careful elaboration on this point.

Definition 29. Let D be a triangulated category, C a triangulated subcategory. A verdier quotient
of D by C is a portly triangulated category T together with a triangulated functor F : D −→
T which satisfies C ⊆ Ker(F ) and is universal with this property. That is, given any other
triangulated functor G : D −→ S into a portly triangulated category with C ⊆ Ker(G) there is a
unique triangulated functor H : T −→ S making the following diagram commute

D

G ��@
@@

@@
@@
F // T

H

��
S

The functor F : D −→ T is called the verdier localisation functor. It is clearly an epimorphism of
triangulated categories, in the sense that given triangulated functors P,Q : T −→ T ′ if we have
PF = QF then P = Q. It is also clear that the triangulated functor F op : Dop −→ T op is a
verdier quotient of Dop by Cop.
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Remark 38. Given D, C as in Definition 29, if a verdier quotient F : D −→ T exists it must be
unique up to a canonical isomorphism of portly triangulated categories. That is, if two triangulated
functors F : D −→ T and F ′ : D −→ T ′ satisfy the properties of a verdier quotient, there is a
unique isomorphism of portly triangulated categories H : T −→ T ′ making the following diagram
commute

D

F ′   A
AA

AA
AA
F // T

H

��
T ′

Ideally we would like the verdier quotient to be a category, not just a portly category, but in
general this is not possible. Throughout the rest of this section, we work with a fixed triangulated
category D and triangulated subcategory C. The objects of the portly category D/C will just be
the objects of D. It remains to define the morphisms.

Suppose for a moment that the verdier quotient F : D −→ D/C existed, and recall the
subcategory MorC of D of Definition 17. Using Lemma 9 it is easy to check that if a morphism
f : X −→ Y belongs to MorC then F (f) is an isomorphism. It is therefore natural to define

Definition 30. For any two objects X,Y in D let α(X,Y ) be the class of all pairs of morphisms
f : Z −→ X, g : Z −→ Y with f ∈MorC . These are diagrams of the form

Z
f

~~~~
~~

~~
~

g

��@
@@

@@
@@

X Y

which we think of as the “morphism” X −→ Y given by g ◦f−1. We say two pairs (f, g), (f ′, g′) ∈
α(X,Y ) are equivalent if there exists (f ′′, g′′) ∈ α(X,Y ) and morphisms u, v making the following
diagram commute

Z ′

f ′

~~||
||

||
|| g′

  A
AA

AA
AA

A

X Z ′′

v

OO

u

��

g′′ //f ′′oo Y

Z

f

``BBBBBBBB g

>>}}}}}}}}

(31)

In this situation it is clear from Lemma 35 that u, v belong to MorC . This notion of equivalence
defines a relation R(X,Y ) on the class α(X,Y ).

Remark 39. In the context of (31) if we write “backwards” morphisms inverted, we have

gf−1 = guf ′′−1 = g′′f ′′−1 = g′′(f ′v)−1 = g′′v−1f ′−1 = g′f ′−1

which motivates the identification of the fractions gf−1 and g′f ′−1.

Lemma 50. For any objects X,Y in D the relation R(X,Y ) is an equivalence relation.

Proof. The relation is trivially reflexive and symmetric, so it only remains to show it is transitive.
Let (f1, g1), (f2, g2), (f3, g3) be three elements of α(X,Y ) with the first equivalent to the second
and the second equivalent to the third. Let this be expressed by the following commutative
diagrams

Z1

f1

~~}}
}}

}}
}} g1

  A
AA

AA
AA

X Z

u

OO

v

��

//oo Y

Z2

f2

``AAAAAAAA g2

>>}}}}}}}

Z2

f2

~~}}
}}

}}
}} g2

  @
@@

@@
@@

@

X Z ′

u′

OO

v′

��

//oo Y

Z3

f3

``AAAAAAAA g3

>>~~~~~~~~
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Form the following homotopy pullback diagram in D

Z ′′

w′

��

w // Z

v

��
Z ′

u′
// Z2

From Lemma 37 we infer that w,w′ belong to MorC . Therefore the pair (f2vw, g2vw) is an element
of α(X,Y ) and the morphisms Z ′′ −→ Z −→ Z1, Z

′′ −→ Z ′ −→ Z3 make the following diagram
commute

Z1

f1

~~}}
}}

}}
}} g1

  A
AA

AA
AA

A

X Z ′′

OO

��

//oo Y

Z3

f3

``AAAAAAAA g3

>>}}}}}}}}

This shows that (f1, g1) is equivalent to (f3, g3), as required.

Definition 31. Given objects X,Y in D we write HomD/C(X,Y ) for the conglomerate of equiv-
alence classes of the class α(X,Y ) under the equivalence relation R(X,Y ). Given a pair (f, g) ∈
α(X,Y ) we denote its image in HomD/C(X,Y ) by [f, g].

Let pairs (f, g) ∈ α(X,Y ) and (f ′, g′) ∈ α(Y, Z) be given. Suppose we have morphisms
v : W ′′ −→ W,u : W ′′ −→ W ′ with v ∈ MorC such that the following diagram commutes (such
morphisms exist, since we can always take the homotopy pullback)

W ′′

v

}}{{
{{

{{
{{ u

""D
DD

DD
DD

D

W
f

~~}}
}}

}}
}} g

!!D
DD

DD
DD

D W ′

f ′

||zz
zz

zz
zz g′

  B
BB

BB
BB

B

X Y Z

We therefore have a pair (fv, g′u) ∈ α(X,Z). One checks easily that this is independent of the
chosen morphisms v, u up to equivalence in α(X,Z), so we have a well-defined map

c : α(Y, Z)× α(X,Y ) −→ HomD/C(X,Z)
((f ′, g′), (f, g)) 7→ (fv, g′u)

Lemma 51. For any three objects X,Y, Z of D there is a canonical map of conglomerates

HomD/C(Y,Z)×HomD/C(X,Y ) −→ HomD/C(X,Z)

calculated on representatives using the map c above.

Proof. We have to show that the value of map c defined above is fixed on equivalence classes.
Let (f, g) ∈ α(X,Y ) and equivalent pairs (f ′, g′), (f ′′, g′′) ∈ α(Y, Z) be given. Let the following
diagram express this equivalence

W ′′

f ′′

}}||
||

||
|| g′′

!!B
BB

BB
BB

B

Y Z ′

OO

��

q //poo Z

W ′
f ′

aaBBBBBBBB g′

==||||||||
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Let Q be a homotopy pullback of g, f ′, Q′ a homotopy pullback of g, f ′′ and T a homotopy pullback
of g, p. There are induced morphisms into the homotopy pullbacks u : T −→ Q′ and v : T −→ Q
making the following diagram commute

Q′

		��
��
��
��
��
��
��
��
��
��
��

!!C
CC

CC
CC

C

T

����
��
��
��
��
��
��
�

!!C
CC

CC
CC

C

OO

��

W ′′

g′′

��+
++

++
++

++
++

++
++

++
++

++
+

f ′′

		��
��
��
��
��
��
��
��
��
��
��

Q

~~}}
}}

}}
}}

!!C
CC

CC
CC

C Z ′

��1
11

11
11

11
11

11
11

��








��

OO

W

g
  B

BB
BB

BB
B

f~~}}
}}

}}
}}

W ′

f ′}}zz
zz

zz
zz

g′ !!C
CC

CC
CC

C

X Y Z

Studying this diagram once concludes that c((f ′, g′), (f, g)) = c((f ′′, g′′), (f, g)). In other words,
c is fixed on equivalence classes in the left variable. One checks the right variable similarly, and
together these facts show that we have a map on the Hom sets of the required form.

Given an object X, the pair (1X , 1X) determines an equivalence class in HomD/C(X,X) which
is a left and right identity under the composition map of Lemma 51. Associativity of this compo-
sition is also easily checked, so we have completed the definition of the portly category D/C. We
define a functor F : D −→ D/C to be the identity on objects, and to send a morphism f : X −→ Y
to the elements [1X , f ] ∈ HomD/C(X,Y ). That is, the equivalence class of following diagram

X
1

~~}}
}}

}}
}

f

  @
@@

@@
@@

X Y

Lemma 52. Let f : X −→ Y be a morphism in MorC. Then in the portly category D/C the
morphism F (f) = [1X , f ] : X −→ Y is an isomorphism with inverse [f, 1X ] : Y −→ X.

Lemma 53. Suppose we are given the following pair, with f ∈MorC

W
f

~~}}
}}

}}
}} g

  A
AA

AA
AA

A

X Y

Then in D/C we have [f, g] = [1W , g] ◦ [f, 1W ]. In pictures

W
f

}}{{
{{ g

!!B
BB

B

X Y

= W
f

}}{{
{{ 1

!!C
CC

C W
1

}}{{
{{ g

!!B
BB

B

X W Y

Proposition 54. The functor F : D −→ D/C is universal among all functors into portly categories
sending morphisms in MorC to isomorphisms.

Proof. Let G : D −→ E be another functor into a portly category with the propertly that G(f)
is an isomorphism for every f ∈MorC . Given objects X,Y and a pair (f, g) ∈ α(X,Y ) we define
z′(f, g) : G(X) −→ G(Y ) to be the composite G(g) ◦ G(f)−1. If two pairs (f, g) and (f ′, g′) are
equivalent it is clear that z′(f, g) = z′(f ′, g′), so there is an induced map z : HomD/C(X,Y ) −→
HomE(G(X), G(Y )). If we define the functor H : D/C −→ E to agree with G on objects and be
defined by the maps z on morphisms, then it is clear that H is unique satisfying H ◦ F = G, as
required.
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Remark 40. The triangulated category Dop has a triangulated subcategory Cop, so we can form
the portly category Dop/Cop. This shares the same universal property as (D/C)op so there is a
unique isomorphism of portly categories µ : Dop/Cop −→ (D/C)op making the following diagram
commute

Dop

vvnnnnnnn
''PPPPPPP

Dop/Cop
µ

+3 (D/C)op

Remark 41. Taken together, Lemma 52 and Lemma 53 say that every morphism X −→ Y in
D/C can be written in the form F (g)F (f)−1 for some object W and morphisms f : W −→ X, g :
W −→ Y with f ∈MorC . Using homotopy pushouts, it follows that every morphism X −→ Y in
D/C can also be written in the form F (b)−1F (a) for some object W and a : X −→ Z, b : Y −→ Z
with b ∈MorC . We repesent this morphism by the following diagram

Z

X

a
99tttttt

Y

b
ddJJJJJJ

Using the duality of Remark 40 one checks that two such diagrams determine the same morphism
in D/C (in other words, F (b)−1F (a) = F (b′)−1F (a′)) if and only if there is a commutative diagram
of the following form in D

Z

��
X //

a

>>||||||||

a′   B
BB

BB
BB

B Z ′′ Yoo

b

``BBBBBBBB

b′~~}}
}}

}}
}}

Z ′

OO

with Y −→ Z ′′ belonging to MorC .

Lemma 55. Let f, g : X −→ Y be morphisms in D. Then the following conditions are equivalent

(i) F (f) = F (g).

(ii) There exists a morphism α : W −→ X in MorC with fα = gα.

(iii) The morphism f − g : X −→ Y factors through some object of C.

Proof. The equivalence (i) ⇔ (ii) is easily checked. Let us prove (ii) ⇔ (iii). Let α : W −→ X
be any morphism, which we can complete to a triangle

W
α // X // C // ΣW

Because Hom(−, Y ) is a cohomological functor, we have (f − g)α = 0 if and only if f − g factors
through C. But α belongs to MorC if and only if C ∈ C. Consequently, there exists α ∈ MorC
with fα = gα if and only if f − g factors through an object of C.

Lemma 56. Any zero object in D is also a zero object in D/C.

Remark 42. Thinking of morphisms in D/C as fractions, the following observations are intuitively
obvious. Firstly, given two morphisms f : W −→ X, g : W −→ Y in D with f ∈ MorC , we
have [f, g] = [fu, gu] for any morphism u : Q −→ W in MorC (multiplying numerator and
denominator by the same thing does not change the fraction). One checks easily that any two
morphisms α, β : X −→ Y in D/C can be represented by pairs [f, g], [f, g′] with the same morphism
f : W −→ X in the first position. Similarly α, β can be written as “left” fractions α = F (a)−1F (b)
and β = F (a)−1F (b′) with the same denominator.

36



Lemma 57. Given two morphisms α : X −→ Y, β : Y −→ Z in D/C there are morphisms
a : X ′ −→ Y ′, b : Y ′ −→ Z ′ in D and morphisms s : X ′ −→ X, t : Y ′ −→ Y, q : Z ′ −→ Z in MorC
making the following diagram commute in D/C

X ′

��

// Y ′

��

// Z ′

��
X α

// Y
β
// Z

In fact we can always choose Z = Z ′ and q = 1.

Proof. Write α = [f, g] and α′ = [f ′, g′] for f : W −→ X, g : W −→ Y, f ′ : W ′ −→ Y, g′ : W ′ −→ Z
and take a homotopy pullback

Q

m

��

n // W ′

f ′

��
W g

// Y

Then setting X ′ = Q,Y ′ = W ′, Z ′ = Z and a = n, b = g′, s = fm, t = f ′, q = 1 has the desired
effect.

Lemma 58. Any commutative square in D/C is isomorphic to the image of a commutative square
in D. More precisely, given a commutative square in D/C

W

��

// X

��
Y // Z

There is a commutative square in D

W ′

��

// X ′

��
Y ′ // Z ′

(32)

and morphisms W ′ −→ W,X ′ −→ X,Y ′ −→ Y and Z ′ −→ Z in MorC which make the following
diagram commute in D/C

W ′

��

�&
DDD

D
DDD

D
// X ′

�%
CCC

C
CCC

C

��

W

��

// X

��

Y ′

�&
DD

DD
DD

DD
// Z ′

�%
CCC

C
CCC

C

Y // Z ′

Proof. By Lemma 57 we can lift the composites W −→ X −→ Z and W −→ Y −→ Z of D/C
to morphisms W1 −→ X ′ −→ Z and W2 −→ Y ′ −→ Z. By taking the homotopy pullback of
W1,W2 we may assume W1 = W2 are the same object W ′′. Commutativity in D/C of the following
diagram

W ′′

��

// X ′

��
Y ′ // Z

implies by Lemma 55 that there is a morphism W ′ −→ W ′′ in MorC which equalises the two
composites in D. This defines the required commutative square (32) and the four morphisms in
MorC . We may even take Z ′ −→ Z to be the identity.
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Lemma 59. The functor F : D −→ D/C preserves biproducts. That is, given objects X,Y in D
and a biproduct X ⊕ Y with morphisms u, p, v, q the images of these morphisms under F are a
biproduct in D/C.

Proof. By duality and Remark 40 it suffices to show that F preserves binary coproducts. So let
u : X −→ X ⊕ Y, v : Y −→ X ⊕ Y be a coproduct in D and let morphisms [α, f ] : X −→ Q and
[α′, g] : Y −→ Q in D/C be given. Since α, α′ lie in MorC , they fit into triangles

P
α // X // Z // ΣP

P ′
α′ // Y // Z ′ // ΣP ′

with Z,Z ′ in C. By Proposition 7 the direct sum of these triangles is a triangle

P ⊕ P ′
α⊕α′ // X ⊕ Y // Z ⊕ Z ′ // Σ(P ⊕ P ′)

But Z ⊕ Z ′ is in C, and therefore α ⊕ α′ belongs to MorC . This means we have a morphism
[α ⊕ α′, (f g)] : X ⊕ Y −→ Q in D/C which is clearly a factorisation of the pair [α, f ], [α′, g]
through F (u), F (v). It only remains to show that this factorisation is unique.

Suppose we are given two morphisms ϕ,ψ : X⊕Y −→ Q in D/C which agree on the injections
F (u), F (v). We can write these morphisms as ϕ = F (a)−1F (b) and ψ = F (a)−1F (b′) for some
a : Q −→ P inMorC and b, b′ : X⊕Y −→ P . By assumption ϕF (u) = ψF (u) and ϕF (v) = ψF (v),
so we have

F (a)−1F (bu) = F (a)−1F (b′u)

F (a)−1F (bv) = F (a)−1F (b′v)

multiplying through by F (a) we have F (bu) = F (b′u) and F (bv) = F (b′v). By Lemma 55, this
means that (b− b′)u factors through C ∈ C and (b− b′)v factors through C ′ ∈ C. This means that
b− b′ factors through C ⊕C ′, and again by Lemma 55 we deduce that F (b) = F (b′). This implies
α = β, proving uniqueness of the factorisation.

Lemma 60. The portly category D/C is additive, and the functor F : D −→ D/C is an additive
functor.

Proof. By Lemma 59 the portly category D/C has binary biproducts, and also a zero object by
Lemma 56. It follows from a standard result of category theory that there is a unique “semiaddi-
tive” structure on D/C. That is, for every pair of objects X,Y the conglomerate HomD/C(X,Y )
becomes a commutative monoid, in such a way that composition is bilinear and composition with
additive identities yields additive identities. To show that D/C is additive, it suffices to show each
of these commutative monoids is actually an abelian group (that is, additive inverses exist). Since
F preserves zero objects and binary biproducts, it is certainly additive.

Let α : X −→ Y be an arbitrary morphism in D/C, which can be written as F (a)−1F (b). It
is not hard to check that F (a)−1F (−b) is an additive inverse for α, as required. To calculate the
sum of two morphisms α, β : X −→ Y of D/C you take either of the composites

X
∆ // X ⊕X

(
α β

)
// Y X

(
α
β

)
// Y ⊕ Y ∆ // Y

which yield the same morphism α+ β : X −→ Y in D/C.

Remark 43. Let G : D −→ E be an additive functor into an additive portly category which sends
morphisms in MorC to isomorphisms. Then the unique factorisation H : D/C −→ E of Proposition
54 is easily checked to be an additive functor. In particular the additive functor FΣ : D −→ D/C
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induces a unique additive functor Σ : D/C −→ D/C making the following diagram commute

D

Σ

��

F // D/C

Σ

��
D

F
// D/C

To be explicit, the functor Σ : D/C −→ D/C is defined on objects in the same way as the original
Σ, and for a morphism [f, g] : X −→ Y we have Σ([f, g]) = [Σf,Σg]. In the same we obtain an
additive functor Σ−1 : D/C −→ D/C defined on morphisms by Σ−1([f, g]) = [Σ−1f,Σ−1g]. This
is clearly an inverse for Σ, which is consequently an additive automorphism of D/C.

Lemma 61. If a morphism [f, g] : X −→ X in D/C is equal to the identity, then g ∈MorC.

Proof. This follows immediately from Lemma 35.

Lemma 62. A morphism in D/C of the form

P
α

yytttttt g

%%JJJJJJ

X Y

is an isomorphism if and only if there exist morphisms f, h in D such that gf, hg ∈MorC.

Proof. If there exist morphisms f, h such that gf, hg ∈ MorC then F (g) has a right and left
inverse in D/C, and therefore so does F (g)F (α)−1. For the converse, suppose that F (g)F (α)−1 is
an isomorphism in D/C. Then F (g) must also be an isomorphism. We wish to produce f, h with
hg, gf ∈MorC . Let the diagram

Q
β

zzuuuuuu f

$$I
IIIII

Y P

be a right inverse in D/C to F (g). Then in D/C we have [β, gf ] = 1, so Lemma 61 implies that
gf ∈ MorC . We can write the left inverse Y −→ P of F (g) in the form F (a)−1F (b). Then
F (a)−1F (h)F (g) = 1 implies F (hg) = F (a) and therefore by Lemma 55, hgt = at for some
t ∈MorC . It follows from Lemma 35 that hg ∈MorC , as required.

Lemma 63. A morphism X −→ 0 in D becomes an isomorphism in D/C if and only if there
exists Y ∈ D with X ⊕ Y ∈ C.

Proof. Suppose g : X −→ 0 is a morphism in D taken to an isomorphism in D/C. By Lemma 62
there exists h : 0 −→ ΣY so that the composite X −→ 0 −→ ΣY is in MorC . But taking a direct
sum of triangles of the form given in Remark 11, we have a triangle

X
0 // ΣY // Σ(X ⊕ Y ) // ΣX (33)

from which it follows that X ⊕ Y is in C. Conversely, suppose there exists Y with X ⊕ Y in C.
Let h : 0 −→ ΣY and f : 0 −→ X be the zero morphisms, so that gf is an isomorphism and
hg : X −→ ΣY is the zero morphism, and fits into a triangle (33) with Σ(X ⊕ Y ) ∈ C. Hence
both hg, gf are in MorC , and g is an isomorphism in D/C.

Remark 44. Later we will see that not only does there exist some Y with X ⊕ Y ∈ C, but Y
may be chosen to be ΣX. That is, whenever X becomes zero in D/C we have X ⊕ ΣX ∈ C.

Proposition 64. Let g : Y −→ Y ′ be a morphism in D. Then F (g) is an isomorphism if and
only if for any triangle in D

Y
g // Y ′ // Z // ΣY

the object Z is a direct summand of an object of C.
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Proof. Suppose that we are given such a triangle, together with an object Z ′ such that Z⊕Z ′ ∈ C.
We have to show that F (g) is an isomorphism, and by Lemma 62 it suffices to find h, f with
gf, hg ∈MorC . Starting with the two triangles

Y
g // Y ′ // Z // ΣY

0 // Z ′ // Z ′ // 0

we can form the direct sum, which is the following triangle

Y

(
g
0

)
// Y ′ ⊕ Z ′ // Z ⊕ Z ′ // ΣY

Since Z ⊕ Z ′ is in C, the morphism Y −→ Y ′ ⊕ Z ′ is in MorC . But it factors as g followed by
the injection h : Y ′ −→ Y ′ ⊕ Z ′, which produces the required morphism h with hg ∈MorC . One
defines f similarly using the triangle Σ−1Z ′ −→ 0 −→ Z ′ −→ Z ′. Thus F (g) is an isomorphism.

Conversely, suppose that F (g) is an isomorphism. Then there exists h : Y ′ −→ Y ′′ with
hg ∈MorC . Consider the following morphism of triangles

Y

hg

��

g // Y ′(
h
α

)
��

α // Z

1

��

// ΣY

Σ(hg)

��
Y ′′ // Y ′′ ⊕ Z // Z

0
// ΣY ′′

The bottom triangle is contractible, and therefore by Corollary 26 this is a good morphism of
triangles. Using Remark 19 and the proof of Lemma 28 one checks that the following square is
homotopy cartesian

Y

hg

��

g // Y ′(
h
α

)
��

Y ′′ // Y ′′ ⊕ Z

But hg is in MorC , so this is also true of
(
h
α

)
. In particular this morphism maps to an isomorphism

in D/C. Composing with the isomorphism F (g) we see that the image of
(
hg
0

)
: Y −→ Y ′′ ⊕ Z

is an isomorphism in D/C. Since this matrix is the composite
(

1
0

)
hg and hg also maps to an

isomorphism, the injection Y ′′ −→ Y ′′ ⊕Z is an isomorphism in D/C. Its inverse can only be the
image of the projection Y ′′ ⊕ Z −→ Y ′′, which means that in particular the composite(

1 0
0 0

)
=

(
1
0

)
·
(
1 0

)
: Y ′′ ⊕ Z −→ Y ′′ ⊕ Z

maps to the identity in D/C. Since F preserves biproducts we must conclude that the identity
matrix (for the biproducts in D/C) on Y ′′⊕Z is equal to

(
1 0
0 0

)
and therefore the identity 1 : Z −→

Z maps to the zero morphism in D/C. But in an additive category, zero objects are characterised
by the equality 1 = 0 in their endomorphism ring, so we have Z = 0 in D/C. From Lemma 63 we
conclude that there exists Z ′ ∈ D with Z ⊕ Z ′ ∈ C.

Lemma 65. Suppose we are given a commutative diagram in D with triangles for rows

X
f //

1

��

Y

g

��

// Z // ΣX

1

��
X

gf
// Y ′ // Z ′ // ΣX
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and suppose that F (g) is an isomorphism. Then there exists a morphism h with F (h) an isomor-
phism, such that the following diagram commutes

X
f //

1

��

Y

g

��

// Z

h

��

// ΣX

1

��
X

gf
// Y ′ // Z ′ // ΣX

(34)

Proof. By Proposition 30 it is possible to extend to a commutative diagram in which all columns
and rows are triangles

X
f //

1

��

Y

g

��

// Z

h

��

// ΣX

1

��
X

��

gf // Y ′

��

// Z ′

��

// ΣX

��
0 //

��

Y ′′
1 //

��

Y ′′

��

// 0

��
ΣX

Σf // ΣY // ΣZ // Σ2X

Since F (g) is an isomorphism, Proposition 64 for the second column implies that Y ′′ is a direct
summand of an object in C, which by Proposition 64 for the third column implies that F (h) is
also an isomorphism, as required.

Remark 45. In fact, we know from Lemma 28 and the proof of Proposition 30 that we can
always choose h so that the morphism of triangles (34) is good with the middle square homotopy
cartesian (in addition to the property that F (h) is an isomorphism).

Remark 46. The dual of Lemma 65 says that if we are given a commutative diagram in D with
triangles for rows and F (h) an isomorphism

X //

1

��

Y // Z
fh //

h

��

ΣX

1

��
X // Y ′ // Z ′

f
// ΣX

Then there exists g : Y −→ Y ′ with F (g) an isomorphism making the diagram commute.

Lemma 66. Suppose we are given two triangles in D

X
u // Y

v // Z
w // ΣX

X ′ u′ // Y ′
v′ // Z ′

w′ // ΣX ′

and isomorphisms α : X −→ X ′, β : Y −→ Y ′ in D/C making the induced square commute. Then
there is an isomorphism γ : Z −→ Z ′ in D/C making the following diagram commute in D/C

X //

α

��

Y

β

��

// Z

γ

��

// ΣX

Σα

��
X ′ // Y ′ // Z ′ // ΣX ′

41



Proof. Here Σα denotes the action of the additive automorphism Σ defined in Remark 43. We
claim it suffices to prove the result in the case where Y = Y ′ and β is the identity. To see this,
write β = [f, a] for morphisms a : Y ′′ −→ Y ′ and f : Y ′′ −→ Y and extend the composites v′a, vf
to triangles as in the following commutative diagrams in D

X ′′ // Y ′′

a

��

v′a // Z ′

1

��

// ΣX ′′

X ′ // Y ′
v′
// Z ′ // ΣX ′

X
′′ // Y ′′

f

��

vf // Z

1

��

// ΣX
′′

X // Y v
// Z // ΣX

We can apply Remark 46 to produce morphisms m : X ′′ −→ X ′, n : X
′′ −→ X in D completing

these diagrams to isomorphisms in D/C. We have a new isomorphism τ : F (m)−1αF (n) : X
′′ −→

X ′′ in D/C and to complete the proof it would suffice to extend the following diagram

X
′′

τ

��

// Y ′′

1

��

// Z // ΣX
′′

Στ

��
X ′′ // Y ′′ // Z ′ // ΣX ′′

to an isomorphism of the rows in D/C. Therefore, as claimed, we can reduce to the case where
Y = Y ′ and β is the identity. If we write α = [g, b] for morphisms b : X ′′ −→ X ′, g : X ′′ −→ X
then the equality βF (u) = F (u′)α in D/C translates to F (ug) = F (u′b) in D. Therefore by
Lemma 55 we have ugt = u′bt for some t : W −→ X ′′ in MorC . If we extend the morphism
ugt : W −→ Y to a triangle, it fits into the following commutative diagrams

W

gt

��

ugt // Y

1

��

// Z ′′ // ΣW

Σ(gt)

��
X u

// Y v
// Z w

// ΣX

W

bt

��

ugt // Y

1

��

// Z ′′ // ΣW

Σ(bt)

��
X ′

u′
// Y

v′
// Z ′

w′
// ΣX ′

By Remark 46 there exist morphisms h : Z ′′ −→ Z and c : Z ′′ −→ Z ′ in D making these diagrams
commute, with F (h), F (c) isomorphisms. The isomorphism γ = F (c)F (h)−1 : Z −→ Z ′ in D/C is
the morphism we are looking for.

We are ready to put the structure of a portly triangulated category on D/C. We know this
portly category is additive, and we have defined an additive automorphism Σ. Observe that by
definition we have an equality of functors ΣF = FΣ. For each distinguished triangle in D

X
u // Y

v // Z
w // ΣX

we have the following candidate triangle in D/C

F (X)
F (u) // F (Y )

F (v) // F (Z)
F (w) // ΣF (X)

A candidate triangle in D/C is to be distinguished if it is isomorphic as a candidate triangle to a
candidate triangle in D/C of this form. This defines the conglomerate of distinguished triangles
in D/C.

Proposition 67. The additive portly category D/C, together with the additive automorphism Σ
and conglomerate of distinguished triangles defined above, is a portly triangulated category. The
canonical functor F : D −→ D/C is a triangulated functor.

Proof. The axioms TR0 and TR2 are easily verified. For TR1, let a morphism α = [f, u] : X −→ Y
in D/C be given with f : P −→ X,u : P −→ Y . Complete u to a triangle in D

P
u // Y

v // Z
w // ΣP (35)
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Consider the following candidate triangle in D/C

F (X) α // F (Y )
F (v) // F (Z)

F (Σf)F (w) // ΣF (X)

It is isomorphic as a candidate triangle in D/C to the image of (35) under F , and is therefore
distinguished. It only remains to prove TR4’ (which in particular implies TR3). We need to show
that, given a commutative diagram in D/C with triangles for rows

X

��
~

// Y

��

// Z // ΣX

��
X ′ // Y ′ // Z ′ // ΣX ′

(36)

there is a way to choose a morphism Z −→ Z ′ making this diagram a good morphism of triangles,
that is, so that the mapping cone is a triangle. Observe that by Lemma 58 the commutative
square ~ can be lifted from D/C to an isomorphic commutative square in D, say

X //

��

Y

��
X
′ //

Y
′

The rows can be extended to triangles in D, and the diagram

X

��

// Y

��

// Z // ΣX

��
X
′ //

Y
′ //

Z
′ // ΣX

′

can be extended to a good morphism of triangles in D, hence also in D/C. But by Lemma 66 the
commutative square with vertical isomorphisms

X

��

// Y

��
X // Y

extends to an isomorphism of candidate triangles in D/C

X //

��

Y

��

// Z

��

// ΣX

��
X // Y // Z // ΣX

Similarly we obtain an isomorphism of the following candidate triangles in D/C

X
′

��

//
Y
′

��

//
Z
′

��

// ΣX
′

��
X ′ // Y ′ // Z ′ // ΣX ′

Since good morphisms are stable under composition with isomorphisms, the composite Z −→
Z −→ Z

′ −→ Z ′ in D/C completes the diagram (36) to a good morphism of triangles, as required.
This completes the proof that D/C is a portly triangulated category. The additive functor F :
D −→ D/C (together with the identity φ : FΣ −→ ΣF ) is clearly a triangulated functor.
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We are now ready to prove the theorem stated at the beginning of this section.

Theorem 68. Let D be a triangulated category, C a triangulated subcategory. Then there is a
canonical portly triangulated category D/C and triangulated functor F : D −→ D/C with C ⊆
Ker(F ) which has the following universal property: given any triangulated functor G : D −→ S
into a portly triangulated category with C ⊆ Ker(G) there is a unique triangulated functor H :
D/C −→ S such that HF = G.

Proof. We have constructed the canonical portly triangulated category D/C and triangulated
functor F . It follows from Lemma 63 that C ⊆ Ker(F ). If G : D −→ S is any triangulated
functor into a portly triangulated category with the property that C ⊆ Ker(G), then G must send
MorC to isomorphisms and therefore factors uniquely through D/C via some additive functor
H : D/C −→ S. We need to show that this functor is triangulated.

Let ψ : GΣ −→ ΣG be the natural equivalence associated with G. Since H(X) = G(X) for
every object X ∈ D/C one can check that the isomorphisms ψX are also a natural equivalence
HΣ −→ ΣH. With the additive functor H this defines a triangulated functor D/C −→ S, so the
proof is complete.

Remark 47. It follows that the isomorphism Dop/Cop ∼= (D/C)op of Remark 40 is an isomorphism
of triangulated categories. To be precise, by Theorem 68 we induce two triangulated functors µ, λ
which are unique making their respective triangles commute in the following diagram

Dop

zzuuuuuuuuu

$$I
IIIIIIII

Dop/Cop
µ

--
(D/C)op

λ

mm

It follows that µλ = 1 and λµ = 1 so this is an isomorphism of triangulated categories.

Remark 48. Let D be a triangulated category, C a triangulated subcategory. The kernel of
F : D −→ D/C is a thick subcategory of D. From Lemma 63 we learn that the kernel contains C,
and can be described as the full subcategory whose objects are the direct summands of objects of
C. We will call this category the thick closure of C and denote it Ĉ.

Because the kernel of a triangulated functor is always a triangulated subcategory, we deduce
that for any triangulated subcategory C ⊆ D, the thick closure Ĉ is a triangulated subcategory. A
triangulated subcategory C is thick if and only if C = Ĉ.
Remark 49. Let F : D −→ T be a triangulated functor which is the verdier quotient of D by a
triangulated subcategory C in the sense of the universal property given in Definition 29. Since the
verdier quotient is unique up to isomorphism and we understand in detail one canonical example,
we can deduce that Ĉ = Ker(F ). It is also clear that F is the verdier quotient of D by the
triangulated subcategory Ker(F ). In other words, a triangulated functor is a verdier quotient if
and only if it is the verdier quotient of its kernel.

Remark 50. Let D be a triangulated category, C, C′ two triangulated subcategories with C ⊆ C′.
Then the canonical functor D −→ D/C′ sends C to zero objects, so there is a unique triangulated
functor D/C −→ D/C′ making the following diagram commute

D
yyrrrrrr

&&LLLLLL

D/C // D/C′

Now suppose we have triangulated subcategories C ⊆ D′ ⊆ D. The composite D′ −→ D −→ D/C
sends objects of C to zero, so there is a unique triangulated functor D′/C −→ D/C making the
following diagram commute

D′

��

// D

��
D′/C // D/C
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Proposition 69. Let D be a triangulated category, C an essentially small triangulated subcategory.
Then the portly category D/C has small morphism conglomerates.

Proof. For every pair of objects X,Y ∈ D/C the morphisms HomD/C(X,Y ) in general only form
a conglomerate. We are claiming that if C is essentially small then these conglomerates are all
small (but they are not necessarily sets). This does not mean that D/C is a “genuine” category.

For the proof we fix two objects X,Y ∈ D and a small subclass C ⊆ C with the property that
every object of C is isomorphic to some object of C. Let Z be the class of all morphisms with
domain X and codomain an object of C. This class is small. For every g ∈ Z choose a particular
homotopy kernel kg : Kg −→ X. Let Z ′ be the class of pairs (kg, α) where g ∈ Z and α : Kg −→ Y
is any morphism of D. This class is also small. It is easy to check that every morphism X −→ Y
in D/C is of the form [kg, α] for some pair (kg, α) ∈ Z ′, which shows that HomD/C(X,Y ) is a
small conglomerate, as required.

Proposition 70. Let D be a triangulated category, D′ a fragile triangulated subcategory and C a
triangulated subcategory of D. Assume that at least one of the following conditions holds

(a) For any morphism s : X −→ Y in MorC with Y ∈ D′, there is a morphism f : X ′ −→ X
with sf ∈MorC and X ′ ∈ D′.

(b) For any morphism t : Y −→ X in MorC with Y ∈ D′, there is a morphism f : X −→ X ′

with fs ∈MorC and X ′ ∈ D′.

Then the canonical functor D′/(C ∩ D′) −→ D/C is a full embedding that reflects triangles.

Proof. Let C′ denote the triangulated subcategory C ∩D′ of D′. First of all, we have two triangu-
lated categories D,D′ with respective triangulated subcategories C, C′, so it makes sense to form
the verdier quotients D/C and D′/C′. The inclusion D′ −→ D is by assumption a triangulated
functor, and the composite D′ −→ D −→ D/C clearly contains C′ in its kernel, so by Theorem 68
there is a unique triangulated functor q : D′/C′ −→ D/C making the following diagram commute

D′

��

// D

��
D′/C′

q
// D/C

It is easy to check that MorC′ = MorC ∩ D′. We claim that, provided at least one of (a), (b) is
satisfied, this functor q is a full embedding. It is certainly distinct on objects, so it suffices to
show q is fully faithful. By duality it is enough to prove this in the case where (a) is satisfied.
The functor q is defined by q([f, g]) = [f, g] for any morphism in D′/C′ represented by a diagram
of the form

W
f

yyssssss g

%%KKKKKK

X Y

with f ∈MorC′ . Suppose that we have morphisms [f, g], [f ′, g′] : X −→ Y in D′/C′ which become
equal in D/C. That is, we have a commutative diagram of the form

W
f

~~}}
}}

}}
}} g

  @
@@

@@
@@

@

X Q
uoo

s

OO

v //

t

��

Y

W

f ′

``AAAAAAAA g′

>>~~~~~~~~

with Q not necessariy in D′ and u ∈ MorC . By (a) we can find a morphism m : Q′ −→ Q with
um ∈Mor′C (and in particular Q′ ∈ D′). Replacing Q by Q′ and all the inner morphisms by their
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composite with m, we have a commutative diagram in D′ expressing an equality [f, g] = [f ′, g′].
Therefore q is faithful. One shows that q is full in much the same way, so it only remains to show
that q reflects triangles. Suppose we are given a candidate triangle in D′/C′

X
u // Y

v // Z
w // ΣX (37)

which becomes a triangle in D/C. We can extend u to a triangle in D′/C′, which of course maps to
a triangle in D/C, necessarily isomorphic as a candidate triangle to the image of (37). We deduce
from the fact that q is fully faithful that (37) must have been a triangle to begin with.

In the special case of derived categories, one often shows that a particular morphism of com-
plexes is a quasi-isomorphism (in our current notation, a morphism of MorC for a special choice
of C) by fitting it into a morphism of exact sequences in which the other two morphisms are
quasi-isomorphisms. The desired conclusion then follows from consideration of the long exact co-
homology sequence. The next result is an analogue of this argument for general verdier quotients.

Lemma 71. Let D be a triangulated category, C a thick triangulated subcategory, and suppose
that we have a commutative diagram in D with triangles for rows

X

f

��

// Y

g

��

// Z

h

��

// ΣX

��
X ′ // Y ′ // Z ′ // ΣX ′

If any two of f, g, h belong to MorC then so does the third.

Proof. Denoting by F : D −→ D/C the verdier quotient, we have in D/C the following morphism
of triangles

F (X)

F (f)

��

// F (Y )

F (g)

��

// F (Z)

F (h)

��

// ΣF (X)

��
F (X ′) // F (Y ′) // F (Z ′) // ΣF (X ′)

If two of f, g, h belong to MorC then two of F (f), F (g), F (h) are isomorphisms, and so by Propo-
sition 6 so is the third. Since C is thick we conclude from Proposition 64 that the remaining
morphism in the triple f, g, h must belong to MorC .

Definition 32. Given a commutative ring k a k-linear triangulated category is a triangulated
category T which is also a k-linear category in the sense of (AC,Definition 35), so that Σ : T −→ T
is a k-linear functor.

Remark 51. Let k be a commutative ring, D a k-linear triangulated category and C a triangulated
subcategory. Then the verdier quotientD/C is k-linear with action r·[f, g] = [f, r·g]. The canonical
triangulated functor D −→ D/C is clearly k-linear.

2.3 Weak Verdier Quotients

The results of this section are a technical weakening of verdier quotients that we will use in our
study of bousfield subcategories of derived categories (DTC,Section 6). The reader can probably
skip this section and refer back to it as needed. The definition of a weak verdier quotient is modeled
on Definition 29, but we soften the factorisation so that it only works up to triequivalence.

Definition 33. Let D be a triangulated category, C a triangulated subcategory. A weak verdier
quotient of D by C is a portly triangulated category T together with a triangulated functor
F : D −→ T which satisfies C ⊆ Ker(F ) and is “weakly” universal with this property. That
is, given any other triangulated functor G : D −→ S into a portly triangulated category with

46

file:"AbelianCategories.pdf"
file:"DerivedCategories.pdf"


C ⊆ Ker(G) there is a triangulated functor H : T −→ S making the following diagram commute
up to trinatural equivalence

D F //

G ��@
@@

@@
@@

T

H

��
S

Moreover we require that any two such factorisations H,H ′ be trinaturally equivalent. It is clear
that the weak verdier quotient is unique up to triequivalence, and that F op : Dop −→ T op is a
weak verdier quotient of Dop by Cop.

Remark 52. With the notation of Definition 33 it is clear that given triangulated functors
H,H ′ : T −→ S into a portly triangulated category, there is a trinatural equivalence H ∼= H ′ if
and only if there is a trinatural equivalence HF ∼= H ′F .

Lemma 72. Suppose we have a diagram of functors

C
F

zzuuuuuu G

$$I
IIIII

D
H

// E

in which F is the identity on objects and there is a natural equivalence α : G −→ HF . Then there
is a functor H ′ : D −→ E naturally equivalent to H with H ′F = G.

Proof. In other words, given a diagram of functors of this special type which commutes up to
natural equivalence, we can “perturb” the bottom functor to make it actually commute. We
define H ′ as follows: on objects it is defined to agree with G. For a morphism f : X −→ Y in D
we have the following diagram

G(X)
αX +3 HF (X) = H(X)

H(f)

��
G(Y )

αY

+3 HF (Y ) = H(Y )

and we define H ′(f) = α−1
Y H(f)αX . It is easily checked that H ′ is naturally equivalent to H and

H ′F = G, as required.

Remark 53. Let (F, φ) : A −→ B be a triangulated functor and G : A −→ B any functor.
Suppose we have a natural equivalence α : F −→ G. Then G is additive, and ψ = (Σα)φ(αΣ)−1 :
GΣ −→ ΣG is a natural equivalence. One checks easily that (G,ψ) : A −→ B is a triangualted
functor and α is a trinatural equivalence.

Lemma 73. Suppose we have a diagram of triangulated functors

C
F

zzuuuuuu G

$$I
IIIII

D
H

// E

in which F is the identity on objects and there is a trinatural equivalence α : G −→ HF . Then
there is a triangulated functor H ′ : D −→ E trinaturally equivalent to H with H ′F = G.

Proof. If we define H ′ as before, then H ′ is naturally equivalent to the triangulated functor H and
therefore becomes a triangulated functor itself. One checks easily that H ′F = G as triangulated
functors.

Proposition 74. Let D be a triangulated category, C a triangulated subcategory. The usual verdier
quotient F : D −→ D/C is a weak verdier quotient.
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Proof. We need only show that given triangulated functors H1,H2 : D/C −→ S into a portly
triangulated category with the property that H1F,H2F are trinaturally equivalent, there is a
trinatural equivalence H1

∼= H2. Taking G = H1F in Lemma 73 we deduce that there is a
triangulated functor H ′

2 : D/C −→ S with H1F = H ′
2F and a trinatural equivalence H2

∼= H ′
2.

The universal property of the verdier quotient implies that H1 = H ′
2, so we have the desired

trinatural equivalence H1
∼= H2.

Corollary 75. Let D be a triangulated category, C a triangulated subcategory and D −→ T a
weak verdier quotient of D by C. Then there is a canonical triequivalence D/C −→ T making the
following diagram commute

D
yyrrrrrr

$$I
IIIII

D/C // T

Proof. The triangulated functor D −→ T contains C in its kernel, so there is certainly a tri-
angulated functor D/C −→ T making this diagram commute. By Proposition 74 the functor
D −→ D/C is also a weak verdier quotient, so we deduce from the weak uniqueness of the weak
verdier quotient that the bottom functor is a triequivalence.

Remark 54. Let D be a triangulated category, C a triangulated subcategory and F : D −→ T a
weak verdier quotient of D by C. Corollary 75 has the following consequences:

• Given objects X,Y ∈ D any morphism F (X) −→ F (Y ) can be written as F (g)F (f)−1 for
some morphisms f : W −→ X, g : W −→ Y in D, with f ∈MorC .

• Every object of T is isomorphic to F (X) for some X ∈ D.

• The kernel of F is the thick closure of C.

• For objects X,Y ∈ D with X ∈ ⊥C or Y ∈ C⊥ the map HomD(X,Y ) −→ HomT (FX,FY )
induced by F is an isomorphism.

Remark 55. Let F : D −→ T be a triangulated functor which is the weak verdier quotient of
D by a triangulated subcategory C. Then as in Remark 49 one verifies that F is also the weak
verdier quotient of D by Ker(F ).

Proposition 76. Let D be a triangulated category, C a triangulated subcategory and F : D −→ T
a weak verdier quotient of D by C. If T : T −→ T ′ is a triequivalence of portly triangulated
categories then TF is also a weak verdier quotient.

Proof. By definition of a triequivalence there is a triangulated functor S : T ′ −→ T and trinatural
equivalences TS ∼= 1, ST ∼= 1. Suppose we are given a triangulated functor G : D −→ S containing
C in its kernel. There is an induced triangulated functor H : T −→ S and a trinatural equivalence
HF ∼= G. Then we have trinatural equivalences

(HS)(TF ) = H(ST )F ∼= HF ∼= G

so factorisations of the desired type exist. For the weak uniqueness, it suffices to show that
given triangulated functors H1,H2 : T ′ −→ S into a portly triangulated category together with
a trinatural equivalence H1TF ∼= H2TF that there exists a trinatural equivalence H1

∼= H2. But
F is a weak verdier quotient, so by Remark 52 there is a trinatural equivalence H1T ∼= H2T and
therefore trinatural equivalences

H1
∼= H1TS ∼= H2TS ∼= H2

which completes the proof.

Lemma 77. Let D be a triangulated category, C a triangulated subcategory and F : D −→ T
a weak verdier quotient of D by C. If F ′ : D −→ T is another triangulated functor trinaturally
equivalent to F , then F ′ is also a weak verdier quotient.
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These results explain why we have introduced the concept of a weak verdier quotient: given a
verdier quotient D/C it often natural to consider triangulated categories E triequivalent to D/C.
In general E will not be a verdier quotient in the sense of Defintion 29. However it is always a
weak verdier quotient.

Lemma 78. Let D be a triangulated category, C a triangulated subcategory and F : D −→ T
a weak verdier quotient of D by C. Given triangulated functors H,H ′ : T −→ S into a portly
triangulated category and a trinatural transformation Φ : HF −→ H ′F , there is a unique trinatural
transformation φ : H −→ H ′ with φF = Φ.

Proof. If F is the canonical verdier quotient F : D −→ D/C this is straightforward to check. An
arbitrary weak verdier quotient factors via an equivalence through the canonical one, so we can
always reduce to this case, and the proof is complete.

Proposition 79. Suppose we have a diagram of triangulated functors

T F // S G // Q

where F is a weak verdier quotient. If GF has a right triadjoint then G has a right triadjoint.

Proof. Let H : Q −→ T be right triadjoint to GF with counit ε : GFH −→ 1, and say that F is a
weak verdier quotient of T by the triangulated subcategory C. We will show that the triangulated
functor FH is right triadjoint to G. Firstly we observe that given C ∈ C and Q ∈ Q we have

HomT (C,HQ) ∼= HomQ(GFC,Q) = 0

so the image of H is contained in C⊥. It follows from Remark 54 that for any Q ∈ Q and X ∈ T
the following morphism induced by F is an isomorphism

HomT (X,HQ) −→ HomS(FX,FHQ) (38)

We already have a trinatural transformation ε : GFH −→ 1, and we complete the proof by
showing that it is a right triadjunction of G to FH. Suppose we are given an object Y ∈ S and
a morphism b : GY −→ Q. By Remark 54 there is some object X ∈ T and an isomorphism
t : FX −→ Y . The morphism bG(t) : GFX −→ Q induces via the adjunction GF

�
H a

morphism a : X −→ HQ, and it is clear that the following diagram commutes

GY

b   A
AA

AA
AA

A
G(F (a)t−1) // GFHQ

εQ

{{xx
xx

xx
xx

x

Q

If m : Y −→ FHQ is another morphism with εQG(m) = b then mt : FX −→ FHQ lifts by (38) to
a morphism a′ : X −→ HQ which satisfies εQGF (a′) = bG(t). But a is unique with this property,
so we deduce a = a′ and therefore m = F (a)t−1. This proves that ε is a right triadjunction of G
to FH, as required.

3 Homotopy Colimits

The homotopy colimit is a construction originating in algebraic topology, which was introduced
to the algebraists in the work of Bökstedt and Neeman [BN93]. At the formal level of these notes
the main application is to splitting idempotents. While this is important, the reader should see
our notes on Derived Categories (DTC) and particularly Derived Categories of Quasi-coherent
Sheaves (DCOQS) to appreciate the full utility of the construction. In this section we follow the
presentation given in [Nee01] and originally in [BN93].
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Definition 34. Let T be a triangulated category with countable coproducts. Suppose we are
given a sequence of objects and morphisms in T

X0
j1 // X1

j2 // X2
j3 // X3

j4 // · · · (39)

Let µ :
⊕∞

i=0Xi −→
⊕∞

i=0Xi be the morphism induced out of the first coproduct by the mor-
phisms ji+1 : Xi −→ Xi+1. That is, µui = ui+1ji+1 where ui is the injection of Xi into the
coproduct. A homotopy colimit of the sequence, denoted holim−−−→Xi, is a homotopy cokernel of
1− µ. That is, it is a morphism v :

⊕∞
i=0Xi −→ holim−−−→Xi fitting into a distinguished triangle

⊕∞
i=0Xi

1−µ //⊕∞
i=0Xi

v // holim−−−→Xi
w // Σ

{ ⊕∞
i=0Xi

}
The homotopy colimit is unique up to (non-canonical) isomorphism, and as part of the definition
there are morphisms Xi −→ holim−−−→Xi compatible with the sequence morphisms ji. Suppose we
have a morphism of sequences: that is, morphisms fi : Xi −→ Yi fitting into a commutative
diagram

X0
j1 //

f0

��

X1
j2 //

f1

��

X2
j3 //

f2

��

X3
j4 //

f3

��

· · ·

Y0
k1 // Y1

k2 // Y2
k3 // Y3

k4 // · · ·

Then for any choice of the homotopy colimits, there is an induced morphism holim−−−→Xi −→ holim−−−→Yi.
In particular isomorphic sequences have isomorphic homotopy colimits.

Throughout the remainder of this section we work in a fixed triangulated category T with
countable coproducts. Since homotopy colimits are only defined up to noncanonical isomorphism,
one has to interpret statements like “holim−−−→Xi = 0” or “holim−−−→Xi = holim−−−→Yi” in an appropriately
loose sense (that is, any particular constructions of both sides are isomorphic in T ).

Lemma 80. Suppose we have two sequences in T

X0
// X1

// X2
// X3

// · · ·

Y0
// Y1

// Y2
// Y3

// · · ·

Then holim−−−→(Xi ⊕ Yi) = (holim−−−→Xi)⊕ (holim−−−→Yi).

Proof. By Proposition 7 the direct sum of two triangles is a triangle, so we have a triangle in T

⊕∞
i=0Xi ⊕

⊕∞
i=0 Yi

1−µ //⊕∞
i=0Xi ⊕

⊕∞
i=0 Yi

ssgggggggggggggggggggg

(holim−−−→Xi)⊕ (holim−−−→Yi) // Σ
{ ⊕∞

i=0Xi ⊕
⊕∞

i=0 Yi
}

From which we deduce the desired isomorphism.

Remark 56. In the next result we will need to use a nice trick, which probably falls into the
class of tricks known as an “Eilenberg swindle”. Let C be an additive category with countable
coproducts and suppose we are given an object X together with a coproduct ui : Xi −→

⊕∞
i=0Xi
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of an infinite number of copies of X (so Xi = X for all i). We claim that the following morphisms

u0 : X0 −→
∞⊕
i=0

X

u0 − u1 : X1 −→
∞⊕
i=0

X

u1 − u2 : X2 −→
∞⊕
i=0

X

u2 − u3 : X3 −→
∞⊕
i=0

X

...

are also a coproduct in C. Let morphisms βi : Xi −→ B be given for each i ≥ 0. Then we have a
family of morphisms γi : Xi −→

⊕∞
i=0Xi defined recursively by γ0 = β0 and for i ≥ 1

γi = γi−1 − βi

So γ1 = β0 − β1, γ2 = β0 − β1 − β2, and so on. These induce a morphism out of the coproduct
{ui}i≥0. That is, a morphism β :

⊕∞
i=0Xi −→ B with βui = γi for i ≥ 0. One checks inductively

that β(ui−1 − ui) = βi for each i ≥ 1, and β is unique with this property, so the morphisms
u0, u0 − u1, u1 − u2, . . . are a coproduct in C.

Lemma 81. Let X be an object of T , and consider the sequence

X
1 // X

1 // X
1 // X

1 // · · ·

Then holim−−−→X
∼= X.

Proof. Let our chosen coproduct of the objects in the sequence be ui : X −→
⊕∞

i=0X. In this
case the morphism 1−µ :

⊕∞
i=0X −→

⊕∞
i=0X has components u0−u1, u1−u2, . . . which means

that by Remark 56 the two morphisms u0 : X0 −→
⊕∞

i=0X and 1− µ :
⊕∞

i=0X −→
⊕∞

i=0X are
a coproduct in T , and therefore induce an isomorphism

(u0 1− µ) : X ⊕
∞⊕
i=0

X −→
∞⊕
i=0

X (40)

In particular 1 − µ must be a monomorphism in T , in which case any homotopy cokernel is an
actual cokernel by Lemma 14. But the cokernel of 1 − µ is the projection

⊕∞
i=0X −→ X, so

we obtain the desired isomorphism holim−−−→X
∼= X. To be precise, any choice of homotopy colimit

holim−−−→X comes with a morphism X −→ holim−−−→X, and this is an isomorphism.

Remark 57. More generally, suppose we have a sequence in which all the morphisms are isomor-
phisms

X0
j1 // X1

j2 // X2
j3 // X3

j4 // · · ·
This is isomorphic in the obvious way to the sequence with all objects equal to X0 and all
morphisms identities. Therefore for any homotopy colimit holim−−−→Xi the canonical morphism
Xi −→ holim−−−→Xi is an isomorphism for i ≥ 0.

Lemma 82. Suppose we have a sequence in which all the morphisms are zero

X0
0 // X1

0 // X2
0 // X3

0 // · · ·

Then holim−−−→Xi = 0.

Proof. In this case µ is the zero morphism, so any homotopy cokernel of 1 − µ is a homotopy
cokernel of an isomorphism, and is therefore zero.
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3.1 Splitting Idempotents

Definition 35. Let C be a category and e : X −→ X an endomorphism of some object. We say
that e splits if there are morphisms f : X −→ Y, g : Y −→ X such that e = gf and fg = 1Y . We
say that e is idempotent if ee = e.

Remark 58. Splitting idempotents are intimately connected with binary coproducts. Let C
be an additive category and e : A −→ A an idempotent. If C has kernels, then the kernels
u1 : A1 −→ A, u2 : A2 −→ A of e and 1 − e respectively are a coproduct. If the corresponding
projections are p1, p2 then we have e = u2p2 and p2u2 = 1 so e is a splitting idempotent. If C
doesn’t have kernels, then in general not every idempotent splits. But as we will see in a moment,
triangulated categories are special in this respect.

Proposition 83. Let T be a triangulated category with countable coproducts. Then in T any
idempotent is split.

Proof. Let e : X −→ X be an idempotent in T . Consider the two sequences

X
e // X

e // X
e // · · ·

X
1−e // X

1−e // X
1−e // · · ·

Let Y be a homotopy colimit of the first sequence, and Z a homotopy colimit of the second. By
Lemma 80, Y ⊕ Z is isomorphic to the homotopy colimit of the following sequence

X ⊕X

(
e 0
0 1−e

)
// X ⊕X

(
e 0
0 1−e

)
// X ⊕X

(
e 0
0 1−e

)
// · · ·

But the following commutative diagram shows that this sequence is isomorphic to the bottom row

X ⊕X

κ

��

(
e 0
0 1−e

)
// X ⊕X

κ

��

(
e 0
0 1−e

)
// X ⊕X

κ

��

(
e 0
0 1−e

)
// · · ·

X ⊕X (
1 0
0 0

) // X ⊕X (
1 0
0 0

) // X ⊕X (
1 0
0 0

) // · · ·

(41)

κ =
(

e 1− e
1− e e

)
(42)

It follows that Y ⊕Z is isomorphic to the homotopy colimit of the bottom row, which as the direct
sum of the sequences in Lemma 81 and Lemma 82 is isomorphic to X. We therefore obtain an
isomorphism Y ⊕ Z ∼= X.

To be a little more careful, let our infinite coproduct
⊕∞

i=0X be chosen. Then we realise the
homotopy colimit of the sequence in Lemma 81 as the projection p :

⊕∞
i=0X −→ X from the

binary coproduct defined by u0 and 1−µ. Realise the homotopy colimit of Lemma 82 as the zero
morphism

⊕∞
i=0X −→ 0. Then the morphism (p 0) :

⊕∞
i=0X ⊕

⊕∞
i=0X −→ X is a homotopy

colimit for the bottom row of (41). If vY :
⊕∞

i=0X −→ Y and vZ :
⊕∞

i=0X −→ Z are the
respective homotopy colimits, then we choose the morphism vY ⊕ vZ as the homotopy colimit of
the top row of (41). The induced isomorphism (g g′) : Y ⊕Z −→ X makes the following diagram
commute ⊕∞

i=0X ⊕
⊕∞

i=0X
vY ⊕vZ //

L∞
i=0 κ

��

Y ⊕ Z

(g g′)

��⊕∞
i=0X ⊕

⊕∞
i=0X (p 0)

// X
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Expanding this out, we find that gvY ui = puie and g′vZui = pui(1−e), which says that g : Y −→
X and g′ : Z −→ X can play the role of the morphisms induced between the respective homotopy
colimits by the following morphisms of sequences

X

e

��

e // X

e

��

e // X
e //

e

��

· · ·

X
1
// X

1
// X

1
// · · ·

X

1−e
��

1−e // X

1−e
��

1−e // X
1−e //

1−e
��

· · ·

X
1
// X

1
// X

1
// · · ·

Let f : X −→ Y be the morphism vY u0 and f ′ : X −→ Z the morphism vZu0. Then since pu0 = 1
we obtain gf = e and g′f ′ = 1− e. The composite

X

0@f
f ′

1A
// Y ⊕ Z

“
g g′

”
// X

is the identity and since we already know (g g′) is an isomorphism, it follows that the first
morphism is the two-sided inverse of the latter. In particular fg = 1, which completes the proof
that e is split.

Corollary 84. Let T be a triangulated category and S a triangulated subcategory in which idem-
potents split. Then S is thick.

Proof. Suppose X ⊕Y belongs to S for some objects X,Y ∈ T . Let the structural morphisms for
the biproduct be u, p, v, q. Then θ = up is an idempotent, which must split in S by hypothesis.
Let g : X ⊕ Y −→ Q, f : Q −→ X ⊕ Y be such a splitting, so θ = fg and gf = 1. We deduce that
(1− θ)f = 0, so there is a morphism t : Q −→ X with ut = f . Since f is a monomorphism, so is
t. It is also a retraction, since

tgu = pfgu = pθu = pupu = 1

It follows that t is an isomorphism, and since S is replete this implies X ∈ S. By symmetry we
have Y ∈ S, so the proof is complete.

Corollary 85. Let T be a triangulated category with countable coproducts, and S a triangulated
subcategory closed under countable coproducts in T . Then S is thick.

Proof. It follows from the hypothesis that S is a triangulated category with countable coproducts.
Therefore by Proposition 83 any idempotent in S splits, and we can apply Corollary 84.

Corollary 86. Let T be a triangulated category with countable products, and S a triangulated
subcategory closed under countable products in T . Then S is thick.

3.2 Totalising a Complex

Given a bicomplex of objects in an abelian category, one useful thing we can do is to pass to the
total complex. Unfortunately this process of totalisation isn’t always defined for a sequence of
objects in a triangulated category. In special cases, however, there is still something useful to be
said. The results of this section are taken from [BN93]. Since we will not use this material until
(DTC2,Section 6) the reader can safely skip this section on a first reading.

Throughout this section let T be a triangulated category with countable coproducts. Suppose
we have a complex

· · · −→ X3 −→ X2 −→ X1 −→ X0 (43)

To be clear, this is a sequence of objects and morphisms with consecutive morphisms composing
to give zero. First we complete X1 −→ X0 to a triangle X1 −→ X0 −→ Y1 −→ ΣX1. Because the
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composite X2 −→ X1 −→ X0 is zero, there is an induced morphism ΣX2 −→ Y1 and we have a
sequence

· · · −→ ΣX3 −→ ΣX2 −→ Y1

If we are lucky, the composite ΣX3 −→ ΣX2 −→ Y1 will be zero so that this is also a complex,
and we can iterate to define an object Y2 and morphism Y1 −→ Y2. Assuming that this iteration
works at each stage, we produce a sequence in T

Y1 −→ Y2 −→ Y3 −→ · · · (44)

The following diagram attempts to describe what the iteration process looks like (labels indicate
the degree of morphisms)

· · · Y3
oo Y2

oo Y1
oo

· · · // X3
//

(−2)
==||||||||
X2

(−1)
==||||||||
// X1

// X0

aaBBBBBBBB

We define a totalisation of the complex (43) to be a homotopy colimit of the sequence (44). Of
course this totalisation is wildly noncanonical.

Proposition 87. Suppose we are given a sequence of objects and morphisms in T

· · · ++
Xnjj

in−1 ,,
Xn−1

jn−1

kk
++ · · ·ll

i1
**
X1

j1

jj
i0 // X0 (45)

such that ikik+1 = 0 and ikjkik = ik. Then this complex can be totalised in a functorial way.

Proof. To be clear, we mean that the sequence consisting of the morphisms . . . , i2, i1, i0 satisfies
the necessary condition at each stage of the above iteration, so we can produce the sequence of
Yi’s and therefore a totalisation. By functoriality we mean the following: given a morphism of
complexes of the above form (that is, vertical morphisms Xi −→ Yi commuting with the i’s and
j’s) there is a (noncanonical) morphism of any totalisations of the two complexes.

Extend X1 −→ X0 to a triangle

X1
// X0

// Y1
Σg // ΣX1

and let α : X2 −→ Σ−1Y1 be the induced morphism, so i1 = gα. If we replace α by α′ = αj1i1
then still i1 = gα′ and moreover α′i2 = 0 (also α′j1i1 = α′ which we will need in a moment). So
the following sequence has the form of the original (45)

· · ·
,,
ΣXn+1kk

Σin ,,
ΣXn

Σjn

ll
++ · · ·ll

Σi2 ++
ΣX2

Σj2

jj
Σα′ // Y1

This means that we can iterate, so (45) has a totalisation as claimed. Now suppose we have a
morphism {ψi : Xi −→ Pi}i≥0 of diagrams of the form (45) (so that the ψi commute with every
ik and jk). Fix a particular totalisation of each complex. Then from the following commutative
diagram

X1
//

ψ1

��

X0
//

ψ0

��

Y1

��

// ΣX1

Σψ1

��
P1

// P0
// Q1

h // ΣP1

(46)
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induces a morphism β : Y1 −→ Q1 making the diagram commute. Of course there is no assurance
that the diagram

X2

ψ2

��

α′ // Σ−1Y1

Σ−1β

��
P2

α′
// Σ−1Q1

(47)

commutes for this choice of β. But if we compose with Σ−1Q1 −→ P1 we get equality, which
means that γ = Σ−1βα′ − α′ψ2 vanishes on Σ−1Q1 −→ P1. If we set β′ = β − Σ(γj1g) then β′

also makes (46) commute, and moreover it makes (47) commute as well. Iterating we can define
a morphism of sequences

Y1
//

��

Y2

��

// Y3
//

��

· · ·

Q1
// Q2

// Q3
// · · ·

which induces the required morphism of the totalisations. It is clear that if each ψi is an isomor-
phism, then so is every morphism Yi −→ Qi, so isomorphisms of complexes yield isomorphisms of
the totalisations.

Remark 59. Suppose we are given two sequences of objects and morphisms of the form (45)

· · · ++
Xnjj

in−1 ,,
Xn−1

jn−1

kk
++ · · ·ll

i1
**
X1

j1

jj
i0 // X0 (48)

and

· · · **
Pnjj

rn−1
,,
Pn−1

sn−1

jj
** · · ·ll

r1
**
P1

s1

jj
r0 // P0 (49)

Taking the direct sum, we have a third diagram

Xn ⊕ Pn
in−1⊕rn−1..

Xn−1 ⊕ Pn−1

jn−1⊕sn−1

mm
++ · · ·nn

i1⊕r1 --
X1 ⊕ P1

j1⊕s1

kk
i0⊕r0 // X0 ⊕ P0 (50)

which also satisfies the two conditions given for (45). It can therefore be totalised. In fact, we
claim that if we choose totalisations X for (48) and Y for (49) then there is a way to construct a
totalisation Z of (50) such that the induced morphisms X −→ Z, Y −→ Z are a coproduct in T .
In fact this is obvious. Given extensions of i0, r0 to triangles

X1 −→ X0 −→ Y0 −→ ΣX1

P1 −→ P0 −→ Q0 −→ ΣP1

we can take the direct sum, which is an extension of i0⊕r0 to a triangle. In this way, the sequence
of objects constructed for (50) is just the direct sum of the sequences for (48) and (49). Homotopy
colimits commute with direct sums, so we deduce the claim.

Lemma 88. For any object X we have a sequence of the form (45)

· · ·
( 0 0
0 1 )

,,
X ⊕Xkk

( 1 0
0 0 )

,,
X ⊕X

1

ll

( 0 0
0 1 )

,,
X ⊕X

1

ll
( 1 0
0 0 )

// X ⊕X

This sequence can be totalised in such a way that the totalisation is X itself.
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Proof. This sequence is clearly the direct sum of the following two sequences

· · ·
0

**
X

1

jj
1
**
X

1

jj
0
**
X

1

jj
1 // X (51)

and

· · ·
1

**
X

1

jj
0
**
X

1

jj
1
**
X

1

jj
0 // X (52)

we show how to totalise the first to give zero and the second to give X, after which the result
follows from Remark 59. For the first sequence one checks easily that the induced sequence of Y ’s
is of the form

0 −→ Σ2X −→ 0 −→ Σ3X −→ 0 −→ · · · (53)

and the homotopy colimit of this sequence is clearly zero. For the second sequence the induced
sequence of Y ’s has the form

X ⊕ ΣX −→ X −→ X ⊕ Σ3X −→ X −→ X ⊕ Σ5X −→ · · · (54)

where the morphisms are all injections or projections from the coproducts. This sequence is the
direct sum of a sequence like (53) with the sequence

X
1 // X

1 // X
1 // X // · · ·

whose homotopy colimit is X by (TRC,Lemma 81). Therefore the homotopy colimit of (54) is X,
which is therefore also the totalisation of our original sequence.

Now we give a slightly different proof of Proposition 83. The reason we give two proofs is that
the second one will become useful in our notes on derived categories of rings.

Proposition 89. Let T be a triangulated category with countable coproducts. Then in T any
idempotent is split.

Proof. Let e : X −→ X be an idempotent in T and consider the three sequences

· · ·
1−e

**
X

1

jj
e
**
X

1

jj
1−e

**
X

1

jj
e // X

· · ·
e

**
X

1

jj
1−e

**
X

1

jj
e
**
X

1

jj
1−e // X

· · ·
( 0 0
0 1 )

,,
X ⊕Xkk

( 1 0
0 0 )

,,
X ⊕X

1

ll

( 0 0
0 1 )

,,
X ⊕X

1

ll
( 1 0
0 0 )

// X ⊕X

As in the proof of Proposition 83 it is easy to see that the direct sum of the first two sequences is
canonically isomorphic to the third. Let totalisations of the first two sequences be Y,Z respectively.
We deduce an isomorphism (g g′) : Y ⊕ Z ∼= X. Proceeding as in the proof of Proposition 83 we
can now construct a morphism f : X −→ Y such that gf = e and fg = 1. Therefore e is split
and the proof is complete.

3.3 Homotopy Limits

One defines homotopy limits in the obvious way, dual to the definition of homotopy colimits. For
the reader’s convenience and future reference, we write down the definition here.
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Definition 36. Let T be a triangulated category with countable products. Suppose we are given
a sequence of objects and morphisms in T

· · · // X3
j3 // X2

j2 // X1
j1 // X0

Let µ :
∏∞
i=0Xi −→

∏∞
i=0Xi be the morphism induced into the second product by the morphisms

ji+1 : Xi+1 −→ Xi. That is, piµ = ji+1pi+1 where pi is the projection onto Xi from the product.
A homotopy limit of the sequence, denoted holim←−−−Xi, is a homotopy kernel of 1− µ. That is, it is
a morphism k : holim←−−−Xi −→

∏∞
i=0Xi fitting into a distinguished triangle

holim←−−−Xi
k // ∏∞

i=0Xi
1−µ // ∏∞

i=0Xi
// Σholim←−−−Xi

The homotopy limit is unique up to (non-canonical) isomorphism, and as part of the definition
there are morphisms holim←−−−Xi −→ Xi compatible with the sequence morphisms ji. A morphism
of sequences gives rise to a morphism of the homotopy limits, and isomorphic sequences have
isomorphic homotopy limits.

4 Localising Subcategories

Definition 37. A triangulated subcategory S of a triangulated category T is called localising if
it is closed under coproducts in T . That is, given any nonempty family {Si}i∈I of objects of S,
any coproduct

⊕
i∈I Si in T belongs to S. Dually we say that S is colocalising if it is closed under

products in T . If T has coproducts then any localising subcategory S is a triangulated category
with coproducts, and is in particular a thick subcategory of T by Corollary 85. Dually if T has
products then any colocalising subcategory is thick.

Definition 38. Let T be a triangulated category and S a triangulated subcategory. We say
that an object X ∈ T is S-local if Hom(Y,X) = 0 for every Y ∈ S. The full subcategory of T
consisting of the S-local objects is denoted S⊥. We have S ∩S⊥ = 0. That is, the only objects in
both subcategories are the zero objects.

Dually we say that an object X is S-colocal if Hom(X,Y ) = 0 for every Y ∈ S, and denote
the full subcategory of S-colocal objects by ⊥S. As before S ∩ ⊥S = 0. Clearly an object X
is S-local if and only if it is Sop-colocal in T op. That is, (S⊥)op = ⊥(Sop) and dually of course
(⊥S)op = (Sop)⊥.

Lemma 90. Let T be a triangulated category and S a triangulated subcategory. Then S⊥,⊥S are
thick triangulated subcategories of T which are respectively colocalising and localising.

Proof. By duality it suffices to prove the statement for S⊥. The full subcategory S⊥ is clearly
additive and replete. If X ∈ S⊥ and Y ∈ S then Hom(Y,ΣX) ∼= Hom(Σ−1Y,X) so we deduce
that S⊥ is closed under Σ and its inverse. Suppose we are given a distinguished triangle

X −→ Y −→ Z −→ ΣX

with X,Y ∈ S⊥. Then for any S ∈ S we deduce from the long exact sequence associated
to the homological functor Hom(S,−) that Hom(S,Z) = 0. Therefore Z ∈ S⊥ and S⊥ is a
triangulated subcategory of T . Thickness is easily checked. From the equality Hom(X,

∏
i Yi) =∏

iHom(X,Yi) we infer that S⊥ is closed under arbitrary products in T .

Lemma 91. Let D be a triangulated category with coproducts and C a localising subcategory. Then
the portly triangulated category D/C has coproducts and the canonical functor F : D −→ D/C
preserves coproducts.

Proof. It clearly suffices to show that F preserves coproducts. Let {Xi}i∈I be a nonempty family
of objects of D and suppose we are given a coproduct ui : Xi −→

⊕
iXi in D. We have to show
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(a) Given morphisms fi : Xi −→ Y in D/C there is a morphism f :
⊕

iXi −→ Y in D/C
satisfying f ◦ F (ui) = fi for each i ∈ I.

(b) If a morphism f :
⊕

iXi −→ Y in D/C satisfies f ◦ F (ui) = 0 for every i ∈ I, then f = 0.

Proof of (a). We can represent each fi as a diagram of the following form

Wi
αi

yyssssss βi

%%JJJJJJ

Xi Y

where αi belongs to MorC . Taking coproducts we obtain a diagram⊕
iWi

⊕αi

wwoooooo

&&LLLLLLL⊕
iXi Y

By Remark 9 arbitrary coproducts of triangles are triangles. Since C is localising, it follows that
⊕αi is in MorC , so this diagram is a morphism f :

⊕
iXi −→ Y in D/C. It is easily checked that

f ◦ F (ui) = fi, so the proof of (a) is complete.
Proof of (b). Suppose we are given a morphism f with the stated propertly. We can write f

as F (b)−1F (a) for some diagram of the following form, with b ∈MorC⊕
iXi

a
""F

FFFFFFF Y

b��~~
~~

~~
~~

W

Then since f ◦ F (ui) = 0 for every i ∈ I, we deduce that F (aui) = 0 for every i ∈ I. By Lemma
55 the morphism aui : Xi −→ W then factors through some object Ci ∈ C. It follows that a
factors through

⊕
i Ci, which is in C since this category is localising. Therefore F (a) = 0 and

consequently f = 0, which completes the proof.

Proposition 92. Let D be a triangulated category and C a triangulated subcategory. Then for
every pair of objects X,Y ∈ D with X ∈ ⊥C or Y ∈ C⊥ the canonical functor F : D −→ D/C
induces an isomorphism

HomD(X,Y ) −→ HomD/C(X,Y ) (55)

Proof. By duality it suffices to prove the result in the case where X ∈ D, Y ∈ C⊥. Suppose we
are given a morphism γ : X −→ Y in D/C, which we can write as γ = [f, g] for some morphisms
f : W −→ X, g : W −→ Y with f ∈MorC . That is, there is a triangle with Z ∈ C

W
f // X // Z // ΣW

But then we have an exact sequence

HomD(Z, Y ) −→ HomD(X,Y ) −→ HomD(W,Y ) −→ HomD(Σ−1Z, Y )

in which the two endpoints are zero, so HomD(X,Y ) −→ HomD(W,Y ) is an isomorphism. In
other words, there is a unique morphism t : X −→ Y in D with tf = g. Then F (t) = [f, g] = γ
so the map (55) is surjective. To see that it is injective, suppose F (t) = 0 for some morphism
t : X −→ Y . Then by Lemma 55 the morphism t factors through some object Z ∈ C, and the
factorisation Z −→ Y can only be zero, so t = 0 as required.

Corollary 93. Let D be a triangulated category and C a triangulated subcategory. The canonical
functors C⊥ −→ D −→ D/C and ⊥C −→ D −→ D/C are full embeddings of triangulated categories.
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Proof. The full subcategory C⊥ is a triangulated subcategory of D by Lemma 90, so the inclusion
C⊥ −→ D is a triangulated functor. We certainly have a triangulated functor C⊥ −→ D/C which
is distinct on objects, and by Proposition 92 this functor must be fully faithful, therefore a full
embedding. The argument for ⊥C is identical.

The property given in Proposition 92 actually characterises objects of the orthogonal subcat-
egories ⊥C and C⊥.

Lemma 94. Let D be a triangulated category and C a triangulated subcategory. For an object
Y ∈ D the following are equivalent:

(i) Y ∈ C⊥.

(ii) For any X ∈ D the map HomD(X,Y ) −→ HomD/C(X,Y ) is an isomorphism.

(iii) For any diagram of morphisms in D

W
s

~~}}
}}

}}
}} f

  A
AA

AA
AA

A

X Y

with s ∈MorC, there is a morphism g : X −→ Y in D such that gs = f in D.

(iv) Every morphism Y −→ X in MorC is a coretraction in D.

Proof. (i) ⇒ (ii) is Proposition 92. (ii) ⇒ (iii), (iii) ⇒ (iv) are trivial. See Proposition 12 for a
list of conditions on a morphism in D which are equivalent to being a coretraction. Suppose that
(iv) is satisfied and let f : C −→ Y be a morphism in D with C ∈ C. We can extend this to a
triangle in D

C −→ Y −→ Z −→ ΣC

so that Y −→ Z belongs toMorC . By (iv) this is a coretraction, so C −→ Y is zero as required.

Dually, we have

Lemma 95. Let D be a triangulated category and C a triangulated subcategory. For an object
X ∈ D the following are equivalent:

(i) X ∈ ⊥C.

(ii) For any Y ∈ D the map HomD(X,Y ) −→ HomD/C(X,Y ) is an isomorphism.

(iii) For any diagram of morphisms in D

W

X

f
>>}}}}}}}}

Y

s

``AAAAAAAA

with s ∈MorC, there is a morphism g : X −→ Y in D such that sg = f in D.

(iv) Every morphism Y −→ X in MorC is a retraction in D.

Example 5. The canonical example is the triangulated category K(A) for an abelian category
A with exact coproducts. Then K(A) has coproducts and the exact complexes Z form a local-
ising subcategory, whose category Z⊥ of local objects includes the bounded below complexes of
injectives (DTC,Corollary 50).

Definition 39. Let T be a triangulated category. A localisation in T is a pair (`, η) where
` : T −→ T is a triangulated functor and η : 1 −→ ` is a trinatural transformation such that for
any X ∈ T , `(ηX) = η`X and this morphism `X −→ ``X is an isomorphism. We will often refer
to ` as a localisation functor in T , leaving η implicit.

59

file:"DerivedCategories.pdf"


For the next few results we work with a fixed triangulated category T and localisation (`, η).

Lemma 96. For any object X of T we have `X = 0 if and only if Hom(X, `Y ) = 0 for every
Y ∈ T .

Proof. If `X = 0 then since every morphism X −→ `Y composed with `Y ∼= ``Y factors through
`X, we deduce that Hom(X, `Y ) = 0. Conversely, setting Y = `X implies the canonical isomor-
phism `X −→ ``X is the zero morphism, which shows `X = 0.

Proposition 97. The kernel L of ` is a thick localising subcategory of T .

Proof. The kernel of any triangulated functor is a thick triangulated subcategory, so it suffices
to show that L is closed under arbitrary coproducts in T . Given a nonempty family {Xi}i∈I of
objects of L and Y ∈ T we have (assuming the coproduct in T exists)

Hom(
⊕
i

Xi, `Y ) =
∏
i∈I

Hom(Xi, `Y ) = 0

so by Lemma 96 we have
⊕

i∈I Xi ∈ L, as required.

Corollary 98. For an object X ∈ T the following conditions are equivalent

(i) X ∈ L⊥.

(ii) The morphism ηX : X −→ `X is an isomorphism.

(iii) X is in the essential image of `. That is, X ∼= `Y for some Y ∈ T .

Proof. (ii)⇒ (iii) and (iii)⇒ (i) are trivial, so it suffices to prove (i)⇒ (ii). We can extend the
morphism ηX to a triangle in T

X −→ `X −→ Z −→ ΣX (56)

and to show ηX is an isomorphism it suffices by Lemma 9 to show that Z = 0. Since ` is a
triangulated functor we have another triangle in T

`X −→ ``X −→ `Z −→ Σ`X

Since the first morphism is an isomorphism, we deduce that Z ∈ L. For any object S ∈ L we can
apply Hom(S,−) to the triangle (56) to obtain an exact sequence

Hom(S, `X) −→ Hom(S,Z) −→ Hom(S,ΣX)

The two outside groups are zero, the first by (iii) ⇒ (i) and the last since L⊥ is a triangulated
subcategory of T . We conclude that Hom(S,Z) = 0 and therefore Z ∈ L⊥. But then Z ∈ L∩L⊥
must be a zero object, as required.

Remark 60. Let Im` denote the essential image of `. Then by Corollary 98 we have L⊥ = Im`
and one can interpret Lemma 96 as saying that L = ⊥Im`, so we have L = ⊥(L⊥).

We have seen that any localisation (`, η) gives rise to a localising subcategory L which has
some nice additional properties. It is useful to have a list of equivalent characterisations of those
localising subcategories that arise in this way.

Proposition 99. Let T be a triangulated category, L a thick subcategory. Denote by i : L −→ T
and j : L⊥ −→ T the inclusions and by Q : T −→ T /L the verdier quotient. Then the following
are equivalent

(i) There is a localisation (`, η) whose kernel is L.

(ii) The functor Q has a right adjoint.
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(iii) The composition Qj is an equivalence of categories.

(iv) The functor j has a left adjoint and ⊥(L⊥) = L.

(v) The functor i has a right adjoint.

(vi) For every M ∈ T there is a distinguished triangle

NM −→M −→ BM −→ ΣNM

with NM ∈ L and BM ∈ L⊥.

Proof. (i)⇒ (ii) The functor ` certainly contains L in its kernel, so by the universal property of
Q there is a unique triangulated functor R : T /L −→ T with RQ = `. We show that R is a right
adjoint for Q with unit η : 1 −→ ` = RQ. First observe that by the argument of Corollary 98 the
morphism ηX : X −→ `X is in MorL, and consequently Q(ηX) is an isomorphism, for any object
X ∈ T . Given a morphism f : X −→ RY = `Y we define a morphism g : X −→ Y in T /L by
g = Q(ηY )−1Q(f). This is represented by the following diagram

X

f %%KKKKKK Y

ηYyyssssss

`Y

One checks that g is the unique morphism in T /L for which the following diagram commutes

X
ηX //

f ""E
EE

EE
EE

EE
RQX

R(g)

��
RY

which proves that η is the unit of an adjunction Q � R .
(ii) ⇒ (iii) From Corollary 93 we already know that Qj is a full embedding of triangulated

categories. Suppose that Q has a right adjoint R : T /L −→ T . The key observation is that for
X ∈ L

HomT (X,RQY ) ∼= HomT /L(QX,QY ) = 0

so R sends every object of T /L into an object of L⊥ ⊆ T . We show that Qj is an equivalence by
showing that the counit εY : QRY −→ Y is an isomorphism for any Y ∈ T /L. Using Proposition
92 we have for any X,Y ∈ T

HomT /L(QX,QRY ) ∼= HomT (X,RY ) ∼= HomT /L(QX,Y )

One checks that this map is just composition with εY , and by a standard argument this implies
that εY is an isomorphism.

(iii) ⇒ (iv) Suppose that Qj is an equivalence and let r : T /L −→ L⊥ be a functor together
with specific natural equivalences rQj ∼= 1, Qjr ∼= 1. We claim that rQ is left adjoint to j. By
assumption for any object X ∈ T we have in T /L an isomorphism X −→ Qjr(X). By Proposition
92 this is the image of a morphism ηX : X −→ jr(X) in T , and together these morphisms form a
natural transformation η : 1 −→ jrQ. For X ∈ T , Y ∈ L⊥ we have an isomorphism

HomL⊥(rQX, Y ) ∼= HomT /L(QrQX,QY )
= HomT /L(Qjr(QX), QY )
∼= HomT /L(QX,QY )
∼= HomT (X, jY )

which one checks is defined by composition with η. This shows that η is the unit of an adjunction
rQ � j , as required. It remains to show that ⊥(L⊥) = L. The inclusion ⊇ is trivial, so suppose
X ∈ ⊥(L⊥). Then for any Y ∈ T

HomT /L(QX,QY ) ∼= HomL⊥(rQX, rQY ) ∼= HomT (X, jrQY ) = 0
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and therefore QX = 0. Since L was assumed to be thick, this implies X ∈ L.
(iv) ⇒ (v) Suppose that the functor j′ : T −→ L⊥ is left adjoint to j with unit η : 1 −→ jj′.

Using this adjunction one checks that for any Y ∈ L⊥ and X ∈ T the following maps, induced
respectively by ηX and ΣηX , are isomorphisms

HomT (jj′X, jY ) −→ HomT (X, jY ) (57)
HomT (Σjj′X, jY ) −→ HomT (ΣX, jY ) (58)

For each object X ∈ T we simultaneously choose a particular extension of ηX to a distinguished
triangle

X
ηX // jj′X // NX

wX // ΣX (59)

Firstly we claim that NX ∈ L. If Y ∈ L⊥ then we can apply Hom(−, jY ) to the triangle
(59) and use the isomorphisms (57), (58) in the resulting long exact sequence to deduce that
Hom(NX , jY ) = 0. Therefore NX ∈ ⊥(L⊥) = L, as required. Suppose we are given a morphism
f : X −→ Y in T , so that we have a commutative diagram in T with triangles for rows

X

f

��

// jj′X

jj′(f)

��

// NX // ΣX

Σf

��
Y // jj′Y // NY // ΣY

Since Hom(NX , jj′Y ) = 0 there is by Lemma 15 a unique morphism Nf : NX −→ NY making
this diagram commute. We define a functor i′ : T −→ L by i′(X) = Σ−1NX and i′(f) = Σ−1Nf .
We define the natural transformation ε′ : ii′ −→ 1 by ε′X = −Σ−1wX , and claim that this is the
counit of an adjunction i

�
i′ .

Suppose are given T ∈ L, X ∈ T and a morphism α : iT −→ X. Then ηXα = 0 since
Hom(iT, jj′X) = 0. As ε′X is a homotopy kernel of ηX , there is a morphism q : T −→ i′X
in L with ε′Xq = α. We claim this factorisation is unique. Suppose that there are morphisms
q, q′ : T −→ i′X with ε′Xq = α, ε′Xq

′ = α. Then ε′X(q − q′) = 0, and q − q′ must factor through
the homotopy kernel of ε′X . This is a morphism Σ−1jj′X −→ i′X, so the factorisation belongs to
Hom(iT,Σ−1jj′X) = 0. This shows that q = q′, and from this we infer that ε′ is the counit of
the required adjunction. As an aside, observe that by construction we have the following triangle
in T for every object X

ii′X
ε′X // X

ηX // jj′X // Σii′X

(v) ⇒ (vi) Let i′ : T −→ L be right adjoint to i, with counit ε′ : ii′ −→ 1. Then for M ∈ T
we can extend ε′M to a triangle

ii′M
ε′M // M // B // Σii′M (60)

For every object X ∈ L the following maps, induced respectively by ε′M and Σε′M , are isomor-
phisms

HomT (iX, ii′M) −→ HomT (iX,M) (61)
HomT (iX,Σii′M) −→ HomT (iX,ΣM) (62)

Applying Hom(iX,−) to the triangle (60) we deduce that Hom(iX,B) = 0, hence B ∈ L⊥, which
completes the proof.

(vi)⇒ (i) Choose for every M ∈ T a specific triangle

NM
uM // M

vM // BM
wM // ΣNM
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with NM ∈ L and BM ∈ L⊥. The slightly amazing thing is that NM , BM are already functorial
in M . Given a morphism f : M −→M ′ consider the following diagram

NM

Nf

��

uM // M

f

��

vM // BM

Bf

��

wM // ΣNM

ΣNf

��
NM ′

uM′
// M ′

vM′
// BM ′

wM′
// ΣNM ′

Since vM ′fuM ∈ Hom(NM , BM ′) = 0, we use the fact that vM is a homotopy cokernel of uM
and that uM ′ is a homotopy kernel of vM ′ to induce morphisms Nf : NM −→ NM ′ and Bf :
BM −→ BM ′ making the first two squares above commute. In fact, using Remark 13 and the
arguments given in the proof of Lemma 15 one checks that these morphisms are unique making
their respective diagrams commute. This uniqueness together with TR3 shows that the third
square must also commute.

We define a functor ` : T −→ T by `(M) = BM and `(f) = Bf . This functor is certainly
additive. We also define `a : T −→ T by `a(M) = NM and `a(f) = Nf , which is again an additive
functor. Given an object M ∈ T we have the following diagram in which both rows are triangles

NΣM

ψM

��

uΣM // ΣM

1

��

vΣM // BΣM
wΣM //

φM

��

ΣNΣM

ΣψM

��
ΣNM

ΣuM

// ΣM
ΣvM

// ΣBM −ΣwM

// Σ2NM

Repeating the same arguments, we find there are unique morphisms ψM : NΣM −→ ΣNM and
φM : BΣM −→ ΣBM making this diagram commute (to be precise, ψ is unique making the first
square commute, φ is unique making the second square commute). By symmetry these must
be isomorphisms, and one checks that they are natural in M , so we have natural equivalences
ψ : `aΣ −→ Σ`a and φ : `Σ −→ Σ`.

Given an object M ∈ T we say a morphism j : M −→ B is a L-localisation if B ∈ L⊥
and if every morphism from M to a L-local object factors uniquely through j. Similarly we say
k : N −→ M is a L-acyclisation if N ∈ L and if every morphism from an object of L to M
factors uniquely through k. In particular one checks that vM : M −→ BM is a L-localisation and
uM : NM −→M is a L-acyclisation.

We claim that the pairs (`, φ) and (`a, ψ) are triangulated functors T −→ T . That is, given a
triangle

X
u // Y

v // Z
w // ΣX

we have to show that the following two candidate triangles are distinguished

BX −→ BY −→ BZ −→ BΣX
∼= ΣBX

NX −→ NY −→ NZ −→ NΣX
∼= ΣNX

We give the proof for the functor `, with the other proof being similar. Extend the morphism
BX −→ BY to a triangle BX −→ BY −→ C −→ ΣBX and induce a morphism of triangles

X

��

// Y

��

// Z

j

��

// ΣX

��
BX // BY // C // ΣBX

Since L⊥ is a triangulated subcategory, we have C ∈ L⊥. Given an object B′ ∈ L⊥ apply
the functor Hom(−, B′) to this diagram and use the 5-Lemma to deduce that Hom(C,B′) −→
Hom(Z,B′) is an isomorphism. In other words, j : Z −→ C is a L-localisation. We deduce an

63



isomorphism C ∼= BZ compatible with the morphisms j, vZ and one checks that the following
diagram commutes (use the fact that the homotopy kernel of a L-localisation must belong to L)

BX

1

��

// BY

1

��

// C

��

// ΣBX

1

��
BX // BY // BZ

φX`(w)
// ΣBX

From this we deduce that the bottom row is a triangle, so (`, φ) is a triangulated functor as
claimed. By construction we have trinatural transformations u : `a −→ 1 and v : 1 −→ ` and one
checks easily that (`, v) is a localisation in T with kernel L.

Remark 61. It follows from Proposition 99 that if T is a triangulated category with thick
subcategory L, such that the inclusion L −→ T has a right adjoint, then L must be localising.

The next result follows formally from Proposition 99 and Corollary 48, but we will find it
useful later to have actually worked through the proof of Proposition 99 and observed that the
various adjoints were in fact triadjoints.

Corollary 100. With the notation of Proposition 99 the following are equivalent

(i) There is a localisation (`, η) whose associated localising subcategory is L.

(ii) The triangulated functor Q has a right triadjoint.

(iii) The triangulated functor Qj is a triequivalence.

(iv) The triangulated functor j has a left triadjoint and ⊥(L⊥) = L.

(v) The triangulated functor i has a right triadjoint.

Proof. We simply go through Proposition 99 and observe how the various adjoints we constructed
are actually triadjoints. (i)⇒ (ii) The right adjoint to Q was the triangulated functor R, and the
unit was η : 1 −→ ` which is trinatural by assumption. Therefore R is right triadjoint to Q.

(ii) ⇒ (iii) Let R be right triadjoint to Q with triadjunction (η, ε). We know from the proof
of Proposition 99 that the image of R is actually contained in L⊥, so R factors as a triangulated
functor R′ : T /L −→ L⊥ followed by the inclusion. It is clear that R′ is right triadjoint to Qj,
with the adjunction (η′, ε′) just being the restriction of the original adjunction. We showed in the
earlier proof that ε′ is a trinatural equivalence QjR′ −→ 1. Since ε′Qj ◦Qjη′ = 1 we deduce that
Qj(ηL) is an isomorphism for every L ∈ L⊥. But Qj is fully faithful, so ηL is an isomorphism and
η′ is therefore a trinatural equivalence 1 −→ R′Qj. Therefore Qj is a triequivalence, as claimed.

(iii) ⇒ (iv) Suppose that Qj is a triequivalence with r : T /L −→ L⊥ a triangulated functor
and trinatural equivalences rQj ∼= 1, Qjr ∼= 1. We showed in the proof of Proposition 99 that rQ is
left adjoint to j, and it is clear from the construction that the natural transformation η : 1 −→ jrQ
is trinatural, so rQ is left triadjoint to j.

(iv)⇒ (v) Suppose that the triangulated functor j′ : T −→ L⊥ is left triadjoint to j with unit
η : 1 −→ jj′ and that ⊥(L⊥) = L. For each X ∈ T we have the following triangle (the shift of
(59))

Σ−1NX
−Σ−1wX // X

ηX // jj′X // NX (63)

where NX ∈ L and jj′X ∈ L⊥. In the proof of Proposition 99 part (iv) ⇒ (v) we proceeded
to construct a functor i′ : T −→ L defined by i′(X) = Σ−1NX . In fact it is clear that i′ is the
factorisation through L of the triangulated functor `a defined in the proof of Proposition 99 part
(vi)⇒ (i), with respect to the triangles (63). Therefore i′ is a triangulated functor in a canonical
way, and moreover the right adjunction ε′ : ii′ −→ 1 of (iv) ⇒ (v) agrees with the trinatural
transformation u : `a −→ 1 of (vi) ⇒ (i). Therefore ε′ is a right triadjunction and the proof is
complete.

(v)⇒ (i) If i has a right triadjoint then in particular it has a right adjoint, so by Proposition
99 the condition (i) is satisfied.
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Remark 62. With the notation of Proposition 99, let us extract one useful observation from
the proof of Corollary 100. Given a localisation (`, η) with kernel L, the triangulated functor `
factors through T /L via some triangulated functor R, which is right triadjoint to Q with unit η.
Conversely, suppose we are given a right triadjoint R to Q with unit η : 1 −→ RQ. Let ` : T −→ T
be the triangulated functor RQ.

Firstly one checks that any morphism X −→ M in T with M ∈ L⊥ factors uniquely through
ηX : X −→ `X. Given X ∈ T extend ηX to a triangle in T

L // X
ηX // `X // ΣL

To show that L ∈ L = ⊥(L⊥) one applies Hom(−, T ) to this triangle for any T ∈ L⊥. Then the
proof of part (vi) ⇒ (i) of Proposition 99 proves that the pair (`, η) is a localisation of T with
kernel L. If ε : QR −→ 1 is the counit of the triadjunction Q

�
R then we have also shown

that ε is a trinatural equivalence. In particular R must be fully faithful.

Definition 40. Let T be a triangulated category and L a thick subcategory. We say that L is
a bousfield subcategory if the canonical triangulated functor T −→ T /L has a right adjoint. In
other words, the equivalent conditions of Proposition 99 and Corollary 100 are satisfied. Note
that a bousfield subcategory is automatically localising.

Remark 63. Observe that if S is a thick triangulated subcategory of a triangulated category T
for which the functor T −→ T /S has a right adjoint, then S must be localising and is therefore
a bousfield subcategory. So there is no generality to be gained in considering subcategories which
are not localising.

Proposition 101. Let T be a triangulated category and L ⊆ T a triangulated subcategory. Sup-
pose that we are given a triangle

N
ε // X

η // B
` // ΣN

such that N ∈ L and every morphism Y −→ X with Y ∈ L factors uniquely through N . Then
B ∈ L⊥.

Proof. Given a morphism f : Y −→ B with Y ∈ L we can extend the composite `f to a triangle
and then induce a morphism of triangles of the form

N

1

��

h // W

g

��

// Y

f

��

`f // ΣN

1

��
N ε

// X η
// B

`
// ΣN

By definition of a triangulated subcategory we have W ∈ L. Therefore g factors uniquely through
ε, and in particular h is a coretraction. Therefore `f = 0 so f factors through η. As Y ∈ L this
factorisation then factors through N , from which it follows that f = 0 as required.

4.1 Colocalising Subcategories

Proposition 102. Let T be a triangulated category and L a colocalising subcategory. Denote by
i : L −→ T , j : ⊥L −→ T the inclusions and by Q : T −→ T /L the verdier quotient. Then the
following are equivalent

(i) The functor Q has a left adjoint.

(ii) The composition Qj is an equivalence of categories.

(iii) The functor j has a right adjoint and (⊥L)⊥ = L.

(iv) The functor i has a left adjoint.
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(v) For every M ∈ T there is a distinguished triangle

XM −→M −→ YM −→ ΣXM

with XM ∈ ⊥L and YM ∈ L.

Proof. This follows from Proposition 99 by duality.

Definition 41. Let T be a triangulated category and L a thick subcategory. We say that L is
a cobousfield subcategory if the canonical triangulated functor T −→ T /L has a left adjoint. In
other words, the equivalent conditions of Proposition 102 are satisfied.

4.2 Localisation Sequences

In Proposition 99 we identified a certain class of triangulated subcategories of a triangulated cat-
egory T , the so-called bousfield subcategories. These subcategories possess many good properties
and are also very abundant in applications (see for example (DTC,Theorem 117)). Intuitively
the bousfield subcategories L play the role of triangulated subcategories which are “direct sum-
mands” of the ambient triangulated category, with the orthogonal ⊥L ∼= T /L playing the role of
the complement.

In this section we study sequences of triangulated functors L −→ T −→ T /L which are the
inclusion and quotient respectively by a bousfield subcategory. It will be necessary for applications
to work in the generality of a fully faithful triangulated functor L −→ T whose essential image
(see Definition 21) is a bousfield subcategory, and a quotient T −→ T /L that is only a weak
verdier quotient in the sense of Section 2.3. This leads us to the notion of a localisation sequence
(using the notation of Verdier [Ver96]) which is intuitively a “split exact sequence” of triangulated
categories.

Our exposition of localisation sequences follows [Ver96], [Kra05] and we adopt the convenient
notation used in [Kra05], where a right adjoint acquires a subscript (−)ρ and a left adjoint the
subscript (−)λ.

Remark 64. Given a triangulated functor F : T −→ S recall that the kernel Ker(F ) is a thick
triangulated subcategory of T by Lemma 38, and provided F is full, the essential image Im(F )
is a triangulated subcategory of S by Remark 29.

Remark 65. Let F : T −→ S be a triangulated functor. Intuitively we think of F as being a
“monomorphism” if it is fully faithful, so that up to equivalence it is the inclusion of a triangulated
subcategory. We think of F as being an “epimorphism” if it is a weak verdier quotient of S by
some triangulated subcategory, in which case we simply say that F is a weak verdier quotient.
Note that F is a weak verdier quotient if and only if it is the weak verdier quotient of T by its
own kernel.

Observe that if F is a verdier quotient in the sense of Definition 29 then it really is an epi-
morphism among morphisms of triangulated categories. A weak verdier quotient has the lesser
property described in Remark 52.

Definition 42. We say that a sequence of triangulated functors

T ′ F // T G // T ′′ (64)

is an exact sequence if the following holds

(E1) The functor F is fully faithful.

(E2) The functor G is a weak verdier quotient.

(E3) There is an equality of triangulated subcategories Im(F ) = Ker(G).
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In particular G is a weak verdier quotient of T by Im(F ). It is clear that the sequence (64) is
exact if and only if the dual sequence

(T ′)op F op
// T op Gop

// (T ′′)op

is an exact sequence.

In applications the most useful kind of exact sequence are those that are “split exact”. These
are known as localisation sequences in [Ver96]. We begin with the definition given there, and then
later show that a localisation sequence is a special type of exact sequence.

Definition 43. We say that a sequence of triangulated functors

T ′ F // T G // T ′′ (65)

of is a localisation sequence if the following holds

(L1) The functor F is fully faithful and has a right adjoint.

(L2) The functor G has a fully faithful right adjoint.

(L3) There is an equality of triangulated subcategories Im(F ) = Ker(G).

The sequence (F,G) of functors is called a colocalisation sequence if the sequence (F op, Gop) of
opposite functors is a localisation sequence. That is, we replace “right” by “left” in (L1) and (L2).

Remark 66. We make the following remarks

(i) By (AC,Proposition 21) the following are equivalent to (L1),(L2) respectively.

(L1’) F has a right adjoint Fρ : T −→ T ′ whose unit 1 −→ FρF is a natural equivalence.
(L2’) G has a right adjoint Gρ : T ′′ −→ T whose counit GGρ −→ 1 is a natural equivalence.

(ii) Choose right adjoints Fρ for F and Gρ for G. Then Fρ ◦Gρ is right adjoint to the composite
G ◦ F = 0, so we deduce Fρ ◦Gρ = 0 also.

(iii) Given a localisation sequence let Im(F ) be the essential image of F and Im(Gρ) the essential
image of the right adjoint of G (this does not depend on the specific choice of adjoint). These
are triangulated subcategories of T . If we choose right adjoints Fρ, Gρ then

X ∈ Im(F )⇔ εX : FFρ(X) −→ X is an isomorphism
X ∈ Im(Gρ)⇔ ηX : X −→ GρG(X) is an isomorphism

and one checks that Im(F ) = ⊥Im(Gρ).

(iv) Localisation sequences are stable under composition with a triequivalence on either end.
Given a pair of functors as in (65) and a triequivalence U : T ′′ −→ S ′′, the pair (F,UG) is
a localisation sequence if and only if the pair (F,G) is a localisation sequence.

Similarly if V : S ′ −→ T ′ is a triequivalence the pair (FV,G) is a localisation sequence if
and only if (F,G) is a localisation sequence. The same statements hold for colocalisation
sequences. If you have a pair of triangulated functors (65) and trinatural equivalences
F ′ ∼= F,G′ ∼= G then (G,F ) is a (co)localisation sequence if and only if (G′, F ′) is.

It is a surprising but very useful fact that any adjunction in which one functor is triangu-
lated can be upgraded to a triadjunction between triangulated functors (see Proposition 47). In
particular an arbitrary right adjoint to a triangulated functor commutes with translation.

Lemma 103. Suppose we have a localisation sequence (65) and fix right adjoints Fρ, Gρ. Then
for every X ∈ T there is a canonical triangle in T natural in X

FFρ(X)
εX // X

ηX // GρG(X) // ΣFFρ(X) (66)
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Proof. We can extend the unit X −→ GρG(X) to a triangle

C −→ X −→ GρG(X) −→ ΣC

Since any morphism X −→ GρT factors uniquely through X −→ GρG(X) one checks by applying
HomT (−, GρT ) to this triangle that C ∈ ⊥Im(Gρ) = Im(F ). Therefore the unit FFρ(C) −→ C is
an isomorphism. Applying Fρ to this triangle we deduce that Fρ(C) −→ Fρ(X) is an isomorphism,
so from the commutative diagram

FFρ(C)

��

+3 FFρ(X)

��
C // X

we conclude that there exists a triangle (66) in T . Observe that the third morphism of the triangle
is uniquely determined by the other two (TRC,Lemma 15). Naturality in X is easily checked.

Remark 67. Given a localisation sequence (65) we use Lemma 103 to deduce the following

(i) Given right triadjoints Fρ, Gρ the pair

T ′ T
Fρoo T ′′

Gρoo

is a colocalisation sequence.

(ii) Let Im(F ) be the essential image of F and Im(Gρ) the essential image of the right ad-
joint of G. Then Im(Gρ) = Im(F )⊥. In particular Im(F ) = ⊥(Im(F )⊥) and Im(Gρ) =
(⊥Im(Gρ))⊥.

Lemma 104. Any localisation sequence or colocalisation sequence of triangulated functors is an
exact sequence.

Proof. It is clearly enough to prove that any localisation sequence

T ′ F // T G // T ′′ (67)

is an exact sequence. Choose a right triadjoint Gρ of G, so that the unit η : 1 −→ GρG and counit
ε : GGρ −→ 1 are trinatural transformations. By definition the kernel of G contains Im(F ), so
there is certainly a triangulated functor M : T /Im(F ) −→ T ′′ making the following diagram
commute

T

Q $$I
IIIIIIII

G // T ′′

T /Im(F )

M

OO

We show that M is an equivalence. Let N be the composite Q ◦ Gρ. Then we have a trivial
trinatural equivalence MN = MQGρ = GGρ ∼= 1. After applying Q to the triangle of Lemma
103 it is clear that Qη : Q −→ QGρG is also a trinatural equivalence. Therefore

NMQ = NG = QGρG ∼= Q

and since Q is itself a weak verdier quotient we deduce from (TRC,Remark 52) a trinatural
equivalence NM ∼= 1, as claimed. It follows from Proposition 76 that G is a weak verdier quotient
of T by Im(F ), which means that our localisation sequence is exact.

The next result classifies the localisation sequences as those exact sequences which “split”. As
with an exact sequence in an abelian category, an exact sequence splits at both ends if it splits at
either end.
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Proposition 105. Suppose we have an exact sequence of triangulated functors

T ′ F // T G // T ′′ (68)

Then the following are equivalent:

(a) The sequence (68) is a localisation sequence.

(b) The functor F has a right adjoint.

(c) The functor G has a right adjoint.

Proof. (a) ⇒ (b) is trivial. (b) ⇒ (c) From Proposition 99 we deduce that T −→ T /Im(F ) has
a right adjoint, and T ′′ is equivalent to this quotient, hence G has a right adjoint. (c) ⇒ (a)
Consulting Proposition 99 we see that F has a right adjoint and that the right adjoint to G is
fully faithful. Hence (68) is a localisation sequence.

The following result gives a useful criterion for finding localisation sequences.

Lemma 106. Let F : T −→ S be a triangulated functor with a fully faithful right adjoint. Then
Ker(F ) is bousfield and we have a localisation sequence

Ker(F ) // T F // S

In particular there is a canonical triequivalence T /Ker(F ) −→ S.

Proof. Given X ∈ T extend the unit morphism X −→ FρF (X) to a triangle in T

Y −→ X −→ FρF (X) −→ ΣY

Since Fρ is fully faithful the counit of the adjunction is an isomorphism, so applying F to this
triangle we deduce F (Y ) = 0. That is, Y ∈ Ker(F ). One checks that FρF (X) ∈ Ker(F )⊥ so it
follows from Proposition 99 thatKer(F ) is bousfield. The other claims are follow immediately.

Definition 44. Let T be a triangulated category and S,Q triangulated subcategories. Let S ?Q
denote the full subcategory of T consisting of objects X ∈ T that fit into triangles

S −→ X −→ Q −→ ΣS

with S ∈ S and Q ∈ Q. This is a replete subcategory that contains both S,Q and is closed under
Σ,Σ−1 and we call it the Verdier sum of S,Q.

Lemma 107. Let T be a triangulated category and S,Q triangulated subcategories such that
HomT (S,Q) = 0. Then S ?Q is a triangulated subcategory of T .

Proof. When we write HomT (S,Q) = 0 we mean that Q ⊆ S⊥. It suffices to show that S ?Q is
closed under mapping cones, so let a morphism f : X −→ Y in S ?Q be given and find triangles

SX −→ X −→ QX −→ ΣSX
SY −→ Y −→ QY −→ ΣSY

with SX , SY ∈ S and QX , QY ∈ Q. Since HomT (SX , QY ) = 0 we deduce a morphism SX −→ SY
making a commutative diagram

SX

��

// SY

��
X

f
// Y

which by Corollary 32 we can extend to a large diagram, whose third column shows that any
mapping cone on f belongs to S ?Q.
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Lemma 108. Let T be a triangulated category and S,Q triangulated subcategories such that

HomT (S,Q) = 0 and HomT (Q,S) = 0

Then S ? Q = Q ? S is a triangulated subcategory of T , and an object X ∈ T belongs to this
subcategory if and only if it can be written as X = S ⊕Q for some S ∈ S, Q ∈ Q.

Proof. By Lemma 107 both S ?Q and Q ? S are triangulated subcategories. If X ∈ T belongs to
S ?Q then we have a triangle

S −→ X −→ Q −→ ΣS

with S ∈ S and Q ∈ Q. By hypothesis Hom(Q,ΣS) = 0 so this triangle splits, and therefore
X = S⊕Q. A similar argument applies if X ∈ Q ?S. The converse is trivial since any direct sum
in T yields a triangle.

Remark 68. Let T be a triangulated category and L a thick, localising subcategory. It follows
from Proposition 99 that L is bousfield if and only if L ? L⊥ = T , which reinforces the intuition
that the bousfield subcategories are precisely the direct summands.

Remark 69. Putting everything together, we arrive at our final understanding of bousfield sub-
categories and localisation sequences. Suppose we have a localisation sequence

T ′ F // T G // T ′′ (69)

Fix right triadjoints Fρ, Gρ for F,G respectively with units ηF , ηG and counits εF , εG. We have a
diagram of triangulated functors

T ′
F

44 T
Fρ

ss

G

33 T ′′
Gρ

tt

T ′ T ′′

T

Im(F )⊥

Im(F )

F G

Fρ Gρ

This diagram consists of a localisation sequence going to the right and a colocalisation sequence
going to the left. The triangulated subcategories Im(F ) and Im(Gρ) = Im(F )⊥ are respectively
bousfield and cobousfield and the functors F,Gρ factor through canonical triequivalences T ′ −→
Im(F ) and T ′′ −→ Im(F )⊥. The induced triangulated functors

T /Im(F ) −→ T ′′, T /Im(F )⊥ −→ T ′

are equivalences and we have T = Im(F ) ? Im(F )⊥. The analogy with a direct sum

T = T ′ ⊕ T ′′ ∼= Im(F )⊕ Im(F )⊥

is obvious. We have the following additional observations:

• Let F̂ : T ′ −→ Im(F ) be the factorisation of F and i : Im(F ) −→ T the inclusion. If we set
iρ = F̂Fρ the morphisms εF,X : iiρ(X) −→ X define the counit of a triadjunction i � iρ .
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• Let Ĝρ : T ′′ −→ Im(F )⊥ be the factorisation of Gρ and j : Im(F )⊥ −→ T the inclusion.
If we set jλ = ĜρG the morphisms ηG,X : X −→ jjλ(X) define the unit of a triadjunction
jλ

� j .

• The composite Im(F )⊥ −→ T −→ T ′′ is an equivalence.

4.3 Colocalisation Sequences

In this section we collect for later reference the duals of the results of Section 4.2. We also give
the definition of a recollement of triangulated categories. Suppose we are given a colocalisation
sequence

T ′ F // T G // T ′′ (70)

Choose left triadjoints Fλ, Gλ. By duality we can make the following remarks:

• We have Im(F ) = Im(Gλ)⊥ and Im(Gλ) = ⊥Im(F ).

• The pair T ′ TFλoo T ′′Gλoo is a localisation sequence.

Lemma 109. Suppose we have a colocalisation sequence (70) and fix left adjoints Fλ, Gλ. Then
for every X ∈ T there is a canonical triangle in T natural in X

GλG(X)
εX // X

ηX // FFλ(X) // ΣGλG(X) (71)

Proposition 110. Suppose we have an exact sequence of triangulated functors

T ′ F // T G // T ′′ (72)

Then the following are equivalent:

(a) The sequence (72) is a colocalisation sequence.

(b) The functor F has a left adjoint.

(c) The functor G has a left adjoint.

Remark 70. Putting everything together, we arrive at our final understanding of cobousfield
subcategories and colocalisation sequences. Suppose we have a colocalisation sequence

T ′ F // T G // T ′′ (73)

Fix left triadjoints Fλ, Gλ for F,G respectively with units ηF , ηG and counits εF , εG. We have a
diagram of triangulated functors

T ′
F

44 T
Fλ

ss

G

33 T ′′
Gλ

tt

T ′

T ′′

T

Im(F )

F

G

Fλ

Gλ

⊥Im(F )
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This diagram consists of a colocalisation sequence going to the right and a localisation sequence
going to the left. The triangulated subcategories Im(F ) and Im(Gλ) = ⊥Im(F ) are respectively
cobousfield and bousfield and the functors F,Gλ factor through canonical triequivalences T ′ −→
Im(F ) and T ′′ −→ ⊥Im(F ). The induced triangulated functors

T /Im(F ) −→ T ′′, T /⊥Im(F ) −→ T ′

are equivalences and we have T = ⊥Im(F )?Im(F ). We have the following additional observations:

• Let Ĝλ : T ′′ −→ ⊥Im(F ) be the factorisation of Ĝλ and k : ⊥Im(F ) −→ T the inclusion. If
we set kρ = ĜλG the morphisms εG,X : kkρ(X) −→ X define the counit of a triadjunction
k � kρ .

• Let F̂ : T ′ −→ Im(F ) be the factorisation of F and i : Im(F ) −→ T the inclusion. If we set
iλ = F̂Fλ the morphisms ηF,X : X −→ iiλ(X) define the unit of a triadjunction iλ

�
i .

• The composite ⊥Im(F ) −→ T −→ T ′′ is an equivalence.

The intuition is that a localisation sequence and colocalisation sequence both write T as a direct
sum T = T ′ ⊕ T /T ′, but in the first case the quotient embeds as the orthogonal Im(F )⊥ and in
the second case as ⊥Im(F ).

Definition 45. We say that a sequence of triangulated functors

T ′ F // T G // T ′′ (74)

is a recollement if it is both a localisation sequence and a colocalisation sequence. Fixing right
triadjoints Fρ, Gρ and left triadjoints Fλ, Gλ we have a diagram

T ′ F // T

Fρ

cc

Fλ

{{
G // T ′′

Gρ

cc

Gλ

{{
(75)

In which Gλ, Gρ are fully faithful and we have sequences

T ′ T
Fρoo T ′′

Gρoo (76)

T ′ T
Fλoo T ′′

Gλoo (77)

which are respectively a colocalisation and localisation sequence.

Remark 71. We make the following remarks

(i) The triangulated subcategory Im(F ) is both bousfield and cobousfield in T .

(ii) We have Im(Gρ) = Im(F )⊥ and Im(Gλ) = ⊥Im(F ) and induced triequivalences

T /Im(F )⊥ −→ T ′, T /⊥Im(F ) −→ T ′

T ′′ −→ Im(F )⊥, T ′′ −→ ⊥Im(F )

5 Right Derived Functors

Definition 46. Let D be a triangulated category and C a triangulated subcategory with verdier
quotient Q : D −→ D/C. Given a triangulated functor F : D −→ T a right derived functor of F
with respect to C is a pair consisting of a triangulated functor RF : D/C −→ T and a trinatural
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transformation ζ : F −→ RF ◦ Q, with the following universal property: given any triangulated
functor G : D/C −→ T and trinatural transformation ρ : F −→ G ◦Q there is a unique trinatural
transformation η : RF −→ G making the following diagram commute

F
ζ

wwppppppp ρ

&&MM
MMM

MM

RF ◦Q
ηQ

// G ◦Q

Clearly if a right derived functor exists it is unique up to canonical trinatural equivalence. We will
often abuse notation by dropping the subcategory C and the transformation ζ from the notation,
and saying simply that RF is a right derived functor of F .

Remark 72. Right derived functors are stable under trinatural equivalence. With the notation
of Definition 46 suppose that G : D/C −→ T is a triangulated functor and that τ : RF −→ G is a
trinatural equivalence. Then the pair (G, τQ ◦ ζ) is easily checked to be a right derived functor of
F . Similarly if E : T −→ T ′ is a triisomorphism the pair (E ◦ RF,Eζ) is a right derived functor
of E ◦ F .

Lemma 111. Let D be a triangulated category and C a triangulated subcategory. Let F : D −→ T
be a triangulated functor containing C in its kernel. Then the induced triangulated functor H :
D/C −→ T together with the identity transformation is a right derived functor of F .

Proof. Suppose we are given a triangulated functor G : D/C −→ T and a trinatural transformation
ρ : F −→ G ◦Q. Using the fact that morphisms in D/C can be written in the form Q(g)Q(f)−1

for morphisms f, g of D, it is easily checked that ηX = ρX defines a trinatural transformation
η : H −→ G which is unique such that ηQ = ρ, so the proof is complete.

Definition 47. Let D be a triangulated category, C a triangulated subcategory and F : D −→ T
a triangulated functor. A fragile triangulated subcategory A ⊆ D is right adapted for F and C if
it satisfies the following conditions

(i) Any object in C ∩ A belongs to the kernel of F .

(ii) For any object X ∈ D there exists a morphism f : X −→M with M ∈ A and f ∈MorC .

In other words, the restriction of F to A factors through the quotient A/(C ∩ A) and every
object of D admits a “resolution” by an object of A (one should think of morphisms in MorC
as being quasi-isomorphisms, in which case (ii) is akin to the existence of hoinjective resolutions
(DTC,Definition 25)). We say that F is right C-adaptable if there exists a fragile triangulated
subcategory A which is right adapted for F and C.

Theorem 112. Let D be a triangulated category, C a triangulated subcategory and F : D −→ T
a triangulated functor. If F is right C-adaptable then it has a right derived functor with respect to
C.

Proof. Let A be a fragile triangulated subcategory of D which is right adapted for F and C. We
observe that MorC∩A = MorC ∩A, so the condition (ii) of adaptability mean that the conditions
of Proposition 70 are satisfied, and the canonical triangulated functor

T : A/(C ∩ A) −→ D/C

is a full embedding. In fact, the hypothesis (ii) means that every object of D/C is isomorphic to
an object of A, so this functor is an equivalence and hence by Lemma 49 a triequivalence. We can
construct a triangulated functor (S, φS) : D/C −→ A/(C∩A) together with trinatural equivalences
η : 1 −→ TS, ε : ST −→ 1 such that ε is the identity (that is, ST = 1), and φS = SΣη. The
composite A −→ D −→ T sends objects of C ∩ A to zero, and therefore factors uniquely through
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the verdier quotient A/(C ∩ A). If the factorisation is H : A/(C ∩ A) −→ T then we claim the
composite RF = HS : D/C −→ T is a right derived functor of F with respect to C.

A

��

// D

Q

��
F

��

A/(C ∩ A)

H --

,, D/Cmm

T

Observe that the functor S is essentially an assignment of resolutions: for every object X ∈ D it
chooses an object SX ∈ A together with an isomorphism ηX : X −→ SX in D/C. This morphism
can be written as a diagram in D

W

X

b
99ssssss

SX

a
ffMMMMMM

(78)

with a ∈MorC . That is, ηX = Q(a)−1Q(b). By taking a morphism W −→ A in MorC with A ∈ A
we can assume that W ∈ A and consequently that a ∈MorC∩A. Therefore F (a) is an isomorphism
in T and we can define a morphism ζX : F (X) −→ FS(X) in T by ζX = F (a)−1F (b). One checks
that ζX is canonical: that is, it does not depend on the choice of diagram (78) used to represent
ηX . By construction of H we have HS(X) = FS(X) for any X ∈ D, and it is a little tedious but
not difficult to check that ζ is a trinatural transformation F −→ RF ◦Q.

It remains to show that (RF, ζ) possesses the universal property of a right derived functor.
Suppose we are given a triangulated functor G : D/C −→ T and a trinatural transformation
ρ : F −→ G ◦Q. We want to construct a trinatural transformation θ : RF −→ G, which consists
for X ∈ D of a morphism θX : FS(X) −→ G(X). Since ηX : X −→ SX is an isomorphism in
D/C we can define θX to be the composite θX = G(ηX)−1ρSX

FS(X)
ρSX // GS(X)

G(ηX)−1

// G(X)

It is fairly straightforward to check that this definition makes θ a trinatural transformation, and
that the following diagram commutes

F
ζ

wwppppppp ρ

&&MM
MMM

MM

RF ◦Q
θQ

// G ◦Q

To see that θ is unique with this property, let θ′ : RF −→ G be another trinatural transformation
making this diagram commute. We deduce immediately that θ′X = θX for any X ∈ A. For
arbitrary X ∈ D the following diagram commutes

HSX

θ′X
��

HS(ηX)// HSX

θ′SX

��
GX

G(θX)
// GSX

and therefore G(ηX)θ′X = θSXHS(ηX) = G(ηX)θX from which we deduce that θX = θ′X since
ηX is an isomorphism. This shows that (RF, ζ) is a right derived functor, and completes the
proof.
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Remark 73. With the notation of Theorem 112 and its proof, the right derived functor RF was
defined by “choosing resolutions” in A for every object of D (that is, defining the functor S) and
then setting RF (X) = F (SX). For convenience in the proof we chose S to be of a special form,
which chooses the identity resolution for every object of A. We will now show that this point is
not crucial.

We know that every object of D/C is isomorphic to an object of A. Choose for every X ∈ D
a particular object AX ∈ A and isomorphism µX : X −→ AX in D/C. As in Lemma 49 we can
construct a triangulated functor A : D/C −→ A/(C ∩A) with A(X) = AX such that µ : 1 −→ TA
is a trinatural equivalence.

Let S and η be constructed as in Theorem 112 (i.e. by the same process, but with the restricted
choices of resolutions). By Remark 36 the functors S,A are left triadjoint to T with respective
units η, µ. It follows from Lemma 43 that there is a canonical trinatural equivalence γ : S −→ A
such that Tγ ◦ η = µ. We have therefore a trinatural equivalence Hγ : RF −→ HA. Remark
72 implies that the pair (HA,HγQ ◦ ζ) is a right derived functor of F with respect to C. Given
X ∈ D/C write µX as a diagram of the form

W

X

b
99tttttt

AX

a
eeLLLLLL

withW ∈ A and a ∈MorC . Then it is easy to check that (HγQ◦ζ)X is the morphism F (a)−1F (b) :
F (X) −→ RFQ(X), so our right derived functor is calculated in the same way as before but with
arbitrary choices of resolutions.

Remark 74. With the same notation, suppose that for each X ∈ D the chosen isomorphism
X −→ AX in D/C is of the form Q(µX) for some morphism µX : X −→ AX in MorC . Let (RF, ζ)
be the right derived functor canonically constructed from these choices. By construction we have
ζX = F (µX) for every X ∈ D. Given a morphism f : X −→ Y in D suppose we have a diagram
in D

W

AX

a
99rrrrrr

AY

b
eeLLLLLL

with W ∈ A and b ∈ MorC , which represents a morphism γ : AX −→ AY of D/C making the
following diagram commute

X

Q(f)

��

Q(ηX)// AX

γ

��
Y

Q(ηY )
// AY

Then RFQ(f) = F (b)−1F (a). This is enough to calculate RF on morphisms of D/C. It remains
to give explicitly the natural equivalence φRF : RF ◦ Σ −→ Σ ◦ RF . For X ∈ D we have

φRF,X = φF,AX
F (µΣAX

)−1RFQ(ΣµX)

In practice this is awkward, because of the occurrence of the functor RF itself. But we can usually
reduce to the case where X ∈ A, and in that case we have

φRF,X = φF,AX
F (ΣµX)F (µΣX)−1

This discussion defines (RF, ζ) using only the chosen resolutions µX : X −→ AX .

Let us set up some notation for the next result. Suppose we have a diagram of triangulated
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categories and triangulated functors

C

��

C′

��
D

Q

��

F // D′

Q′

��

G // T

D/C
R(Q′F )

// D′/C′
RG

99ssssssssss

(79)

where the columns are verdier quotients of thick triangulated subcategories, and we assume that
there exist right derived functors (R(Q′F ), ζ), (RG,ω). Then we have a trinatural transformation

GF
ωF // R(G)Q′F

R(G)ζ // R(G)R(Q′F )Q

which we denote by µ : GF −→ R(G)R(Q′F )Q. If a right derived functor (R(GF ), ξ) exists, then
there is a unique trinatural transformation θ : R(GF ) −→ R(G)R(Q′F ) making the following
diagram commute

GF

ξ

��

ωF // R(G)Q′F

R(G)ζ

��
R(GF )Q

θQ
// R(G)R(Q′F )Q

In general the pair consisting of the triangulated functor R(G)R(Q′F ) and µ is not a right derived
functor of GF (that is, θ is not a trinatural equivalence). But it is true under some natural
hypothesis. With this notation,

Theorem 113. Assume that A ⊆ D is right adapted for Q′F and C, and that A′ ⊆ D′ is right
adapted for G and C′. If F sends objects of A to objects of A′, then the pair (R(G)R(Q′F ), µ) is
a right derived functor of GF . That is, the canonical trinatural transformation

θ : R(GF ) −→ R(G)R(Q′F )

is a trinatural equivalence.

Proof. To be clear, we assume that we are given a diagram (79) and two arbitrary right derived
functors (R(Q′F ), ζ), (RG,ω), and we prove that the pair (R(G)R(Q′F ), µ) is a right derived
functor of GF . It follows that given any other right derived functor R(GF ) the induced trinatural
transformation θ is a trinatural equivalence.

The hypothesis that F (A) ⊆ A′ together with thickness of C′ means that the subcategory A is
right adapted for GF and C, so a right derived functor of GF exists. Choose triangulated functors
S : D/C −→ A/(C ∩ A) and S′ : D′/C′ −→ A′/(C′ ∩ A′) as in the proof of Theorem 112. We can
immediately reduce to the case where our right derived functors

(R(Q′F ), ζ), (R(G), ω), (R(GF ), ξ)

are the canonical ones defined using the functors S, S′. For X ∈ A the morphism θX is the
following equality

R(GF )(X) = GF (X) = G(F (X)) = R(G)(F (X)) = R(G)R(Q′F )(X)

For arbitrary X ∈ D we have the isomorphism ηX : X −→ SX in D/C and a therefore a
commutative diagram in T with vertical isomorphisms

R(GF )(X)

R(GF )(ηX)

��

θX // R(G)R(Q′F )(X)

R(G)R(Q′F )(ηX)

��
R(GF )(SX)

θSX

// R(G)R(Q′F )(SX)
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Since the bottom row is an isomorphism it follows that θX is also an isomorphism, which is what
we wanted to show.

5.1 Acyclic Objects

Definition 48. Let F : D −→ T be a triangulated functor and C a triangulated subcategory of D.
An object X ∈ D is right F -acyclic with respect to C if whenever there is a morphism s : X −→ Y
in MorC there is another morphism t : Y −→ Z in MorC such that F (ts) is an isomorphism.
We simply say that X is right F -acyclic if there is no chance of confusion, and denote the full
subcategory of D consisting of such objects by AF,C .
Remark 75. With the above notation it is clear that any zero object is right F -acyclic with
respect to C, and that AF,C is a replete subcategory of D.

Later we will see that objects which are right acyclic for a functor can be used as “resolutions”
to calculate derived functors. The next observation is trivial, but it describes the most common
type of acyclic objects that we we will encounter in applications.

Lemma 114. Let D be a triangulated category and C a triangulated subcategory. An object X ∈ D
belongs to C⊥ if and only if it is right F -acyclic with respect to C for every triangulated functor
F : D −→ T .

Proof. Suppose that X ∈ C⊥ and let a triangulated functor F and morphism s : X −→ Y in
MorC be given. By Lemma 94 there exists a morphism t : Y −→ X with ts = 1, so it is clear
from Lemma 35 that X is right F -acyclic with respect to C. For the converse it is enough that X
be right acyclic for the identity 1 : D −→ D. Then any morphism s : X −→ Y in MorC admits
t : Y −→ Z with ts an isomorphism. In particular s is a coretraction, so by Lemma 94 we have
X ∈ C⊥.

Proposition 115. Let F : D −→ T be a triangulated functor and C a thick triangulated subcat-
egory of D. Then AF,C is a triangulated subcategory of D with the property that every object of
C ∩ AF,C belongs to the kernel of F .

Proof. It is easy to check that AF,C is closed under Σ−1, so by Lemma 33 to show that AF,C is a
triangulated subcategory it suffices to prove closure under mapping cones. It is enough to show
that given a triangle in D

X −→ Y −→ Z −→ ΣX

with Y, Z both in AF,C , then also X ∈ AF,C . Let s : X −→ Q be a morphism in MorC and form
the homotopy pushout

X

s

��

// Y //

t

��

Z // ΣX

Q // T

By Lemma 37 we have t ∈ MorC and by Lemma 29 we can extend the bottom row to a triangle
and then complete to a morphism of triangles of the following form

X

s

��

// Y

t

��

// Z //

1

��

ΣX

Σs

��
Q // T v

// Z // ΣQ

(80)

Now let t′ : T −→ T ′ be a morphism in MorC with F (t′t) an isomorphism. Form the homotopy
pushout of this morphism and T −→ Z and complete to a morphism of triangles

Q

s′

��

// T //

t′

��

Z //

q

��

ΣQ

��
Q′ // T ′

v′
// Z ′ // ΣQ′

(81)
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where q ∈MorC by Lemma 37. Composing with (80) we have a morphism of triangles

X //

s′s
��

Y //

t′t

��

Z //

q

��

ΣX

��
Q′ // T ′

v′
// Z ′ // ΣQ′

(82)

in which t′t, q belong to MorC and F (t′t) is an isomorphism. Let q′ : Z ′ −→ Z ′′ be a morphism in
MorC such that F (q′q) is an isomorphism. Then we can complete the morphism q′v′ to a triangle
and induce a morphism of triangles of the following form

Q′ //

s′′

��

T ′

1

��

v′ // Z ′

q′

��

// ΣQ′

��
Q′′ // T ′

q′v′
// Z ′′ // ΣQ′′

(83)

Composing with (82) finally yields a morphism of triangles

X

s′′s′s
��

// Y

t′t

��

// Z

q′q

��

// ΣX

��
Q′′ // T ′ // Z ′′ // ΣQ′′

where F (t′t), F (q′q) are isomorphisms. Mapping this morphism of triangles into T and applying
Proposition 6 we conclude that F (s′′s′s) is an isomorphism. Since C is thick, we can invoke Lemma
71 on the triangles (81), (83) to see that s′, s′′ ∈MorC . We have therefore constructed a morphism
s′′s′ : Q −→ Q′′ in MorC with F (s′′s′s) an isomorphism, which proves that X is right F -ayclic
with respect to C. Therefore AF,C is a triangulated subcategory of D. If an object X belongs to
C ∩ AF,C then the zero morphism X −→ 0 belongs to MorC , so it is clear that F (X) = 0.

Theorem 116. Let F : D −→ T be a triangulated functor, C a thick triangulated subcategory of
D. Suppose that for every object X ∈ D there exists a morphism ηX : X −→ AX in MorC with
AX right F -acyclic. Then F admits a right derived functor (RF, ζ) with the following properties

(i) For any object X ∈ D we have RF (X) = F (AX) and ζX = F (ηX).

(ii) An object X ∈ D is right F -acyclic if and only if ζX is an isomorphism in T .

Proof. From Proposition 115 we know thatAF,C is a triangulated subcategory of D with C∩AF,C ⊆
Ker(F ). By hypothesis the other condition of Definition 47 is satisfied, so AF,C is right adapted
for F and C. Choose for each X ∈ D a morphism ηX : X −→ AX in MorC with AX ∈ AF,C and
define RF to be the right derived functor constructed using these choices as in Remark 74, from
which we deduce the desired properties.

(ii) Suppose that ζX is an isomorphism and let s : X −→ Y be a morphism in MorC . The
following diagram commutes in T

F (X)

F (ηX)

��

F (s) // F (Y )

F (ηY )

��
F (AX)

RFQ(s)
+3 F (AY )

So ηY : Y −→ AY is a morphism in MorC such that F (ηY s) is an isomorphism, as required. It
remains to show that X ∈ AF,C implies that ζX is an isomorphism.

As in the proof of Theorem 112 let S be a triangulated inverse to T constructed so that
ST = 1 and let (HS, ζ ′) be the corresponding right derived functor of F . By construction ζ ′X
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is an isomorphism if X ∈ AF,C . Uniqueness of the right derived functor means that there is a
canonical trinatural equivalence τ : HS −→ RF such that τQ◦ ζ ′ = ζ, from which we deduce that
(ii) is true for the pair (RF, ζ).

Remark 76. With the notation of Proposition 116 let A be the smallest triangulated subcategory
of D containing AX for every X ∈ D. Then A ⊆ AF,C and it is not hard to see that A is right
adapted for F and C.

We know from (DF,Proposition 63) that taking right derived functors in the classical sense
commutes with composition with an exact functor. The next result proves the analogue for the
new version of derived functors.

Lemma 117. In the situation of Theorem 116 suppose that (RF, ζ) is a right derived functor of
F and G : T −→ S a triangulated functor. Then (G ◦ RF,Gζ) is a right derived functor of GF .

Proof. When we say that (RF, ζ) is a right derived functor of F , we mean that it is an arbitrary
right derived functor, not necessarily one constructed as in Theorem 116. Of course to prove the
result, it suffices to prove it in this case. That is, we choose morphisms ηX : X −→ AX and
obtain a canonical right derived functor (RF, ζ) defined by RF (X) = AX . Now it is clear that if
B ∈ D is right F -acyclic then it is also right GF -acyclic, so we can use these same morphisms ηX
to define a right derived functor (R(GF ), ζ ′). One checks from our explicit construction that in
fact R(GF ) = G ◦ RF as triangulated functors, and ζ ′ = Gζ, which completes the proof.

5.2 Derived Transformations

Definition 49. Let D be a triangulated category and C a triangulated subcategory with verdier
quotient Q : D −→ D/C. Suppose that F,G : D −→ T are triangulated functors with right
derived functors RF,RG and let α : F −→ G be a trinatural transformation. Then the composite
ζGα : F −→ RG ◦ Q induces a unique trinatural transformation Rα : RF −→ RG making the
following diagram commute

F

ζF

��

α // G

ζG

��
RF ◦Q

(Rα)Q
// RG ◦Q

It is clear that given another trinatural transformation β : G −→ H we have R(βα) = Rβ ◦ Rα.
Similarly R(α+ α′) = R(α) + R(α′) and R1 = 1.

Let F,G : D −→ T be triangulated functors, C a thick triangulated subcategory of D and
ηX : X −→ AX a morphism in MorC with AX right F and G-acyclic for each X ∈ D. Define the
right derived functors RF,RG using these resolutions as in Theorem 116. Then given a trinatural
transformation α : F −→ G we can describe the trinatural transformation Rα explicitly.

Lemma 118. For any trinatural transformation α : F −→ G and X ∈ D we have (Rα)X = αAX
.

Proof. It suffices to show that γX = αAX
defines a trinatural transformation RF −→ RG such

that γQζF = ζGα. Using the explicit calculations of Remark 74 this is not difficult.

6 Left Derived Functors

Definition 50. Let D be a triangulated category and C a triangulated subcategory with verdier
quotient Q : D −→ D/C. Given a triangulated functor F : D −→ T a left derived functor of F
with respect to C is a pair consisting of a triangulated functor LF : D/C −→ T and a trinatural
transformation ζ : LF ◦ Q −→ F with the following universal property: given any triangulated

79

file:"DerivedFunctors.pdf"


functor G : D/C −→ T and trinatural transformation ρ : G ◦Q −→ F there is a unique trinatural
transformation η : G −→ LF making the following diagram commute

G ◦Q ηQ //

ρ
""E

EEEEEEE LF ◦Q

ζ
{{ww

ww
ww

ww
w

F

Clearly if a left derived functor exists it is unique up to canonical trinatural equivalence. We will
often abuse notation by dropping the subcategory C and the transformation ζ from the notation,
and saying simply that LF is a left derived functor of F .

Remark 77. Let D be a triangulated category and C a triangulated subcategory with verdier
quotient Q : D −→ D/C. Recall that Cop is a triangulated subcategory of Dop and the verdier
quotient Q′ : Dop −→ Dop/Cop fits into a commutative diagram of triangulated functors

Dop

Q′

vvnnnnnnn Qop

''PPPPPPP

Dop/Cop
Z

// (D/C)op

where Z is a triisomorphism. Let F : D −→ T be a triangulated functor and (LF, ζ) a left derived
functor of F . Then we can compose Z with the triangulated functor (LF )op : (D/C)op −→ T op

to obtain a triangulated functor RF op : Dop/Cop −→ T op and a trinatural transformation ζop :
F op −→ RF op ◦ Q′. It is striaghtforward to check that the pair (RF op, ζop) is a right derived
functor of F op. Similarly if (RF, ζ) is a right derived functor of F then we set LF op = (RF )opZ
and (LF op, ζop) is a left derived functor of F op. This means that by duality arguments the results
of Section 5 can be translated to statements about left derived functors.

Remark 78. Left derived functors are stable under trinatural equivalence. With the notation of
Definition 50 suppose that G : D/C −→ T is a triangulated functor and that τ : G −→ LF is a
trinatural equivalence. Then the pair (G, ζ ◦ τQ) is easily checked to be a left derived functor of
F .

Lemma 119. Let D be a triangulated category and C a triangulated subcategory. Let F : D −→ T
be a triangulated functor containing C in its kernel. Then the induced triangulated functor H :
D/C −→ T together with the identity transformation is a left derived functor of F .

Proof. Follows by duality from Lemma 111.

Definition 51. Let D be a triangulated category, C a triangulated subcategory and F : D −→ T
a triangulated functor. A fragile triangulated subcategory A ⊆ D is left adapted for F and C if it
satisfies the following conditions

(i) Any object in C ∩ A belongs to the kernel of F .

(ii) For any object X ∈ D there exists a morphism f : M −→ X with M ∈ A and f ∈MorC .

We say that F is left C-adaptable if there exists a fragile triangulated subcategory A which is
left adapted for F and C. It is clear that A is left adapted for F and C if and only if Aop is
right adapted for F op and Cop. In particular F is left C-adaptable if and only if F op is right
Cop-adaptable.

Theorem 120. Let D be a triangulated category, C a triangulated subcategory and F : D −→ T
a triangulated functor. If F is left C-adaptable then it has a left derived functor with respect to C.

Proof. Follows by duality from Theorem 112.
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Remark 79. Following Remark 74 we can describe explicitly how to construct a left derived
functor. With the notation of Theorem 120 let A be left adapted for F and C, and choose for
every X ∈ D a particular object AX ∈ A and a morphism µX : AX −→ X in MorC . In Dop this
is a morphism µX : X −→ AX in MorCop which allows us to define canonically a triangulated
functor A : Dop/Cop −→ Aop/(C ∩ A)op. Using this we construct a right derived functor of F op

which by duality yields a left derived functor (LF, ζ) of F . For X ∈ D we have LF (X) = F (AX)
and ζX = F (µX). Given a morphism f : X −→ Y in D suppose we have a diagram in D

W
b

yyrrrrrr a

%%LLLLLL

AX AY

with W ∈ A and b ∈ MorC , which represents a morphism γ : AX −→ AY of D/C making the
following diagram commute

AX

γ

��

Q(µX) // X

Q(f)

��
AY

Q(µY )
// Y

Then LFQ(f) = F (a)F (b)−1. This is enough to calculate LF on morphisms of D/C. It remains
to give explicitly the natural equivalence φLF : LF ◦ Σ −→ Σ ◦ LF . For X ∈ D we have

φLF,X = ΣLFQ(Σ−1µΣX)ΣF (µΣ−1AΣX
)−1φF,Σ−1AΣX

In the special case where X ∈ A this expression simplifies considerably to

φLF,X = ΣF (µX)−1ΣF (Σ−1µΣX)φF,Σ−1AΣX

This discussion defines (LF, ζ) using only the chosen resolutions µX : AX −→ X.

Let us set up some notation for the next result. Suppose we have a diagram of triangulated
categories and triangulated functors

C

��

C′

��
D

Q

��

F // D′

Q′

��

G // T

D/C
L(Q′F )

// D′/C′
LG

99ssssssssss

(84)

where the columns are verdier quotients of thick triangulated subcategories, and we assume that
there exist left derived functors (L(Q′F ), ζ), (LG,ω). Then we have a trinatural transformation

L(G)L(Q′F )Q
L(G)ζ // L(G)Q′F ωF // GF

which we denote by µ : L(G)L(Q′F )Q −→ GF . If a left derived functor (L(GF ), ξ) exists, then
there is a unique trinatural transformation θ : L(G)L(Q′F ) −→ L(GF ) making the following
diagram commute

L(G)Q′F ωF // GF

L(G)L(Q′F )Q

L(G)ζ

OO

θQ
// L(GF )Q

ξ

OO

81



In general the pair consisting of the triangulated functor L(G)L(Q′F ) and µ is not a left derived
functor of GF (that is, θ is not a trinatural equivalence). But it is true under some natural
hypothesis. With this notation,

Theorem 121. Assume that A ⊆ D is left adapted for Q′F and C, and that A′ ⊆ D′ is left
adapted for G and C′. If F sends objects of A to objects of A′, then the pair (L(G)L(Q′F ), µ) is
a left derived functor of GF . That is, the canonical trinatural transformation

θ : L(G)L(Q′F ) −→ L(GF )

is a trinatural equivalence.

Proof. This follows by duality from Theorem 113.

6.1 Derived Adjunctions

Let us set up some notation that we will use throughout this section. Suppose we have a diagram
of triangulated categories and triangulated functors

C

��

C′

��
D

F
++

Q

��

D′
G

kk

Q′

��
D/C

R(Q′F )
,, D′/C′

L(QG)

ll

where the columns are verdier quotients of thick triangulated subcategories, and we assume that
there exists a right derived functor (R(Q′F ), ζ) and left derived functor (L(QG), ω). With this
notation,

Theorem 122. Assume that Q′F is right C-adaptable and that QG is left C′-adaptable. If G
is left triadjoint to F , then L(QG) is left triadjoint to R(Q′F ). Moreover, given a triadjunction
(η, ε) : G �

F there is a canonical triadjunction L(QG) � R(Q′F ) represented by its unit

η♦ : 1 −→ R(Q′F )L(QG)

which is the unique trinatural transformation making the following diagram commute

Q′
η♦Q′ //

Q′η

��

R(Q′F )L(QG)Q′

R(Q′F )ω

��
Q′FG

ζG
// R(Q′F )QG

(85)

Proof. First we consider the special case where the derived functors are constructed from reso-
lutions. Let A ⊆ D be right adapted for Q′F and C, and A′ ⊆ D′ left adapted for QG and C′.
Choose for every Y ∈ D an object BY ∈ A and a morphism µY : Y −→ BY in MorC . Similarly,
for each X ∈ D′ choose AX ∈ A′ and a morphism τX : AX −→ X in MorC′ . Let (R(Q′F ), ζ) and
(L(QG), ω) be calculated with respect to these choices, as in Remark 73 and Remark 79. Suppose
that G is left triadjoint to F , with unit and counit

η : 1 −→ FG, ε : GF −→ 1 (86)
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We need to construct a natural bijection commuting with suspension

Λ : HomD/C(L(QG)(X), Y ) −→ HomD′/C′(X,R(Q′F )(Y ))

for any X ∈ D′, Y ∈ D. Our first step is to define a natural bijection

θ : HomD/C(G(X), Y ) −→ HomD′/C′(X,F (Y ))

in the special case where X ∈ A′, Y ∈ A. Let a morphism α : G(X) −→ Y in D/C be given, and
represent it by a diagram in D of the following form

W

G(X)

b
88qqqqqq

Y

a
ddJJJJJJ

(87)

with W ∈ A and a ∈MorC . Under the adjunction of G and F , b : G(X) −→W corresponds to a
morphism b′ : X −→ F (W ), and we define θ(α) to be the morphism in D′/C′ represented by the
following diagram in D′

F (W )

X

b′ 88rrrrrrr
F (Y )

F (a)ggOOOOOO

That is, θ(α) = Q′F (a)−1Q′(b′). Observe that since A is right adapted for Q′F , and a ∈MorC∩A,
the morphism F (a) belongs to MorC′ (here we use thickness of C′ and Proposition 64). One checks
that this definition is independent of the choice of diagram (87) representing α, so θ is well-defined.

To see that θ is injective, suppose that θ(α) = 0. Then Q′(b′) = 0, so by Lemma 55 there
exists a morphism m : T −→ X in MorC′ with b′m = 0 in D′. We may as well assume T ∈ A′, in
which case G(m) ∈ MorC (by thickness of C and Proposition 64) and by the adjunction we have
bG(m) = 0 in D. Applying Lemma 55 once more, we infer that Q(b) = 0 in D/C and therefore
α = 0.

To see that θ is surjective, let a morphism β : X −→ F (Y ) in D′/C′ be given, and represent it
by a diagram in D′ of the following form

T
r

zzuuuuuu s
&&LLLLLL

X F (Y )

with T ∈ A′ and r ∈ MorC′ . In fact r ∈ MorC′∩A′ , from which we deduce that G(r) ∈ MorC .
Hence if s′ : G(T ) −→ Y is adjoint to s : T −→ F (Y ), the following diagram in D represents a
morphism α : G(X) −→ Y in D/C

G(T )
G(r)

wwpppppp s′

%%KK
KKK

KK

G(X) Y

(88)

Taking a homotopy pushout and replacing the bottom vertex by an element of A, we have a
commutative diagram

G(T )
G(r)

wwpppppp s′

%%KK
KKK

KK

G(X)

b ''OOOOOOOO Y

ayyrrrrrrrr

Q

with Q ∈ A and a ∈MorC . Applying the definition of θ to this diagram, it is clear that θ(α) = β,
so θ is surjective. As a corollary, observe that every morphism G(X) −→ Y in D/C can be
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represented by a diagram of the form (88). One checks that the bijection θ is natural in both
variables.

Now let X ∈ D′, Y ∈ D be arbitrary. We have a bijection

Λ : HomD/C(L(QG)(X), Y ) = HomD/C(G(AX), Y )
∼= HomD/C(G(AX), BY )
∼= HomD′/C′(AX , F (BY ))
∼= HomD′/C′(X,F (BY ))
= HomD′/C′(X,R(Q′F )(Y ))

which is defined on a morphism α : L(QG)(X) −→ Y of D/C by the formula

Λ(α) = θ(Q(µY )α)Q′(τX)−1

To check naturality of Λ with respect to morphisms X −→ X ′ of D′/C′ and Y −→ Y ′ of D/C, it is
enough to check naturality for morphisms in D′ and D respectively. For this, we use the technique
of Remark 74 and Remark 79 to expand the value of R(Q′F ) and L(QG) on morphisms, and then
check commutativity of several smaller diagrams.

We have shown so far that Λ is a bijection natural in both variables. That is, we have defined
an adjunction L(QG) � R(Q′F ). Using the explicit formula for Λ one checks that the unit of
this adjunction is the following natural transformation

η♦ : 1 −→ R(Q′F )L(QG)

η♦
X = Q′F (µG(AX)) ◦Q′(ηAX

) ◦Q′(τX)−1

To proceed we must first make some observations. Suppose we are given a second assignment
of resolutions µ′Y : Y −→ B′Y and τ ′X : AX −→ X to the objects of D and D′ respectively.
Let (R′(Q′F ), ζ ′) and (L′(QG), ω′) be the derived functors calculated with these resolutions. We
deduce canonical trinatural equivalences

π : R(Q′F ) −→ R′(Q′F )
σ : L(QG) −→ L′(QG)

Run the above proof to obtain a natural bijection Λ′. Since θ doesn’t depend on the resolutions,
we can use the explicit construction of Λ′ from θ to check that the following diagram commutes
for X ∈ D′, Y ∈ D

HomD/C(L(QG)(X), Y ) Λ // HomD′/C′(X,R(Q′F )(Y ))

πY ◦−
��

HomD/C(L′(QG)(X), Y )

−◦σX

KS

Λ′
// HomD′/C′(X,R′(Q′F )(Y ))

(89)

Therefore to check that Λ commutes with suspension in the sense of Theorem 42, we can reduce
to the case where µY = 1 and τX = 1 for any X ∈ A′, Y ∈ A. It is enough to show that η♦ is
trinatural. That is, we have to show that the following diagram commutes for X ∈ D′

ΣX
η♦
ΣX //

Ση♦
X ))SSSSSSSSSSSSSSSSS R(Q′F )L(QG)ΣX

��
ΣR(Q′F )L(QG)X

We can reduce to the case X ∈ A′, which is straightforward using the explicit formulae of Remark
74 and Remark 79. This proves that Λ is a triadjunction LQG � RQ′F . One checks that η♦

is the unique trinatural transformation making (85) commute.
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Now we are ready for the general case. Instead of being defined using alternative resolutions,
now we let (R′(Q′F ), ζ ′) and (L′(QG), ω′) denote arbitrary derived functors. We have the trinat-
ural equivalences π, σ as above, and the diagram (89) allows us to define a bijection Λ′, which is
clearly a triadjunction L′(QG) � R′(Q′F ). If

η♦′ : 1 −→ R′(Q′F )L′(QG)

is the unit of this triadjunction, then using the properties of η♦ above one checks that η♦′ makes
the appropriate modification of (85) commute, and is unique with this property. Since the diagram
(85) depends only on the triadjunction (η, ε) this also shows that the triadjunction Λ′ is canonical
(that is, it does not depend on the many choices we made to construct it).

Remark 80. With the above notation, we have for X ∈ D′ and Y ∈ D two morphisms

ζY : F (Y ) −→ R(Q′F )(Y )
ωX : L(QG)(X) −→ G(X)

and the unique property of the unit η♦ means that the following diagram commutes

HomD(G(X), Y )

��

// HomD′(X,F (Y ))

��
HomD/C(G(X), Y )

��

HomD′C′(X,F (Y ))

��
HomD/C(L(QG)(X), Y ) // HomD′C′(X,R(Q′F )(Y ))

where the only nonobvious maps are composition with ζY and ωX . Setting X = F (Y ) and
chasing the identity 1F (Y ) around the diagram, we deduce that the counit ε♦ of the triadjunction
L(QG) � R(Q′F ) makes the following diagram commute

L(QG)Q′F

ωF

��

L(QG)ζ // L(QG)R(Q′F )Q

ε♦Q

��
QGF

Qε
// Q

In fact ε♦ : L(QG)R(Q′F ) −→ 1 is the unique trinatural transformation making this diagram
commute. If τ is another trinatural transformation making the diagram commute, then τY is
adjoint to some morphism ρY : R(Q′F )(Y ) −→ R(Q′F )(Y ) for every Y ∈ D′. One checks that ρ
defines a trinatural transformation with ρQ ◦ ζ = ζ, from which it follows that ρ = 1 and τ = ε♦.

6.2 Acyclic Objects

Definition 52. Let F : D −→ T be a triangulated functor and C a triangulated subcategory of D.
An object X ∈ D is left F -acyclic with respect to C if whenever there is a morphism s : Y −→ X
in MorC there is another morphism t : Z −→ Y in MorC such that F (st) is an isomorphism.
We simply say that X is left F -acyclic if there is no chance of confusion, and denote the full
subcategory of D consisting of such objects by F,CA.

Remark 81. With the above notation it is clear that any zero object is left F -acyclic with respect
to C, and that F,CA is a replete subcategory of D. An object X is left F -acyclic with respect to
C if and only if it is right F op-acyclic with respect to Cop.

Lemma 123. Let D be a triangulated category and C a triangulated subcategory. An object
X ∈ D belongs to ⊥C if and only if it is left F -acyclic with respect to C for every triangulated
functor F : D −→ T .
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Proof. Follows by duality from Lemma 123.

Proposition 124. Let F : D −→ T be a triangulated functor and C a thick triangulated subcat-
egory of D. Then F,CA is a triangulated subcategory of D with the property that every object of
C ∩ F,CA belongs to the kernel of F .

Proof. Follows by duality from Proposition 115.

Theorem 125. Let F : D −→ T be a triangulated functor, C a thick triangulated subcategory of
D. Suppose that for every object X ∈ D there exists a morphism ηX : AX −→ X in MorC with
AX left F -acyclic. Then F admits a left derived functor (LF, ζ) with the following properties

(i) For any object X ∈ D we have LF (X) = F (AX) and ζX = F (ηX).

(ii) An object X ∈ D is left F -acyclic if and only if ζX is an isomorphism in T .

Proof. The assumptions mean that F,CA is left adapted for F and C, so by Theorem 120 and
Remark 79 we can construct a left derived functor with the desired properties for any assignment
of morphisms ηX : AX −→ X in MorC with AX left F -acyclic.

Lemma 126. In the situation of Theorem 125 suppose that (LF, ζ) is a left derived functor of F
and G : T −→ S a triangulated functor. Then (G ◦ LF,Gζ) is a left derived functor of GF .

Proof. This follows by duality from Lemma 125.

6.3 Derived Transformations

Definition 53. Let D be a triangulated category and C a triangulated subcategory with verdier
quotient Q : D −→ D/C. Suppose that F,G : D −→ T are triangulated functors with left
derived functors LF,LG and let α : F −→ G be a trinatural transformation. Then the composite
αζF : LF ◦ Q −→ G induces a unique trinatural transformation Lα : LF −→ LG making the
following diagram commute

LF ◦Q

ζF

��

(Lα)Q // LG ◦Q

ζG

��
F α

// G

It is clear that given another trinatural transformation β : G −→ H we have L(βα) = Lβ ◦ Lα.
Similarly L(α+ α′) = L(α) + L(α′) and L1 = 1.

Let F,G : D −→ T be triangulated functors, C a thick triangulated subcategory of D and
ηX : AX −→ X a morphism in MorC with AX left F and G-acyclic for each X ∈ D. Define the
left derived functors LF,LG using these resolutions as in Theorem 125. Then given a trinatural
transformation α : F −→ G we can describe the trinatural transformation Lα explicitly.

Lemma 127. For any trinatural transformation α : F −→ G and X ∈ D we have (Lα)X = αAX
.

Proof. This follows by duality from Lemma 118.

7 Portly Considerations

Throughout the previous sections our main object of study has been triangulated categories.
Unfortunately it becomes necessary to allow portly triangulated categories in many of these results
(see Remark 37 for the definition of a portly triangulated category). To be clear, we have collected
here explicitly all the “portly” versions of results we will need. The proofs are all the same.

If T is a portly triangulated category, it is clear what we mean by a (co)homological functor
between T and an abelian category A. However, the functors Hom(U,−) and Hom(−, U) are not
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homological, because in general their values are not abelian groups. However, it is clear that for
any triangle in T

X −→ Y −→ Z −→ ΣX

the following sequences of (large) abelian groups are exact

Hom(U,X) −→ Hom(U, Y ) −→ Hom(U,Z)
Hom(Z,U) −→ Hom(Y, U) −→ Hom(X,U)

The notion of a decent homological functor on T makes sense, but is essentially useless without
these central examples. In any case, we really only use the notion of decent homological functors
to define pretriangles, and the definition we used in Section 1.1 is stronger than we really needed.

Definition 54. Let T be a portly pretriangulated category. A candidate triangle

X
u // Y

v // Z
w // ΣX

is called a portly pretriangle if for every object U ∈ T the following sequence of (large) abelian
groups is exact

· · · // H(Σ−1Z)
H(Σ−1w) // H(X)

H(u) // H(Y )
H(v) // H(Z)

H(w) // H(ΣX) // · · ·

where H(−) = Hom(U,−). Clearly any triangle is a portly pretriangle, and any direct summand
of a portly pretriangle is a portly pretriangle.

If we replace “pretriangle” by “portly pretriangle” and “pretriangulated category” by “portly
pretriangulated category” then the statements of Section 1.1 and Section 1.2 all remain true (even
the proofs are the same) with the exception of Lemma 1 and Lemma 2 which no longer make
sense.

Definition 55. Let C be a portly category. A portly subcategory is a functor F : A −→ C between
portly categories which on objects is the inclusion of a subconglomerate, and on morphisms is the
inclusion of a subconglomerate HomA(A,B) ⊆ HomC(A,B) for every pair of objects A,B.

Definition 56. Let T be a portly triangulated category. A full additive portly subcategory S in
T is called a portly triangulated subcategory if it is replete, ΣS = S, and if for every distinguished
triangle

X −→ Y −→ Z −→ ΣX

such that X,Y are in S, the object Z is also in S. As usual there is an induced structure of a
portly triangulated category on S so that the inclusion is a triangulated functor.

With “triangulated category” and “triangulated subcategory” replaced by their portly equiv-
alents, the statements of Section 1.3 hold, with the exception that MorS will in general be a
conglomerate, not necessarily a class.

We defined in Remark 37 what we mean by a triangulated functor between portly triangulated
categories, and by triadjunctions between such functors. One composes such triangulated functors
in the same way as before. A trinatural transformation is defined as before, with the exception
that the trinatural transformations form a “large” abelian group (that is, an abelian group whose
underlying conglomerate is not necessarily a set). It is clear what we mean by a triequivalence and
a triisomorphism of portly triangulated categories. Remark 27 and Remark 28 still hold in this
context. One defines a fragile portly triangulated subcategory of a portly triangulated category
in the obvious way, so that a inclusion of a portly triangulated subcategory is a fragile portly
triangulated subcategory. We define a thick portly triangulated subcategory in the obvious way,
and the kernel of a triangulated functor between portly triangulated categories is a thick portly
triangulated subcategory. We define triadjunctions of triangulated functors between portly trian-
gulated categories in the obvious way, and with this definition all the results of Section 2.1 are true.

87



If we fix a portly triangulated category D and a portly triangulated subcategory C then the
construction of the verdier quotient D/C goes through as before. This is a portly triangulated
category and there is a canonical triangulated functor F : D −→ D/C. All the results of Section
2.2 are true in our current context, with the exception of Proposition 69. In particular we have the
universal property of Theorem 68. The definition of a weak verdier quotient and all the results of
Section 2.3 remain valid when we replace triangulated categories by portly triangulated categories
(and triangulated subcategories by portly triangulated subcategories).

One checks that the contents of Section 3 work for portly triangulated categories. In particular
Corollary 85 is true with T a portly triangulated category and S a portly triangulated subcategory.
Given a portly triangulated category T is clearly what we mean if we say a portly triangulated
subcategory is localising or colocalising. Given a portly triangulated category T and a portly
triangulated subcategory S we define the thick portly triangulated subcategories S⊥,⊥S of S-
local and S-colocal objects as before. These are respectively colocalising and localising. If we
define a localisation, a portly bousfield subcategory and a portly cobousfield subcategory of a portly
triangulated category in the obvious way, then the results of Section 4 are still true.

The definitions of Section 5 and Section 6 have obvious translations for portly triangulated
categories and portly triangulated subcategories, and all the results remain correct.
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calization in categories of complexes and unbounded resolutions, Canad. J. Math. 52
(2000), no. 2, 225–247. MR MR1755776 (2001i:18019)

[BN93] Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories,
Compositio Math. 86 (1993), no. 2, 209–234. MR MR1214458 (94f:18008)

[Kra05] Henning Krause, The stable derived category of a Noetherian scheme, Compos. Math.
141 (2005), no. 5, 1128–1162. MR MR2157133 (2006e:18019)

[Nee01] Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148,
Princeton University Press, Princeton, NJ, 2001. MR MR1812507 (2001k:18010)

[Ver96] Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque
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