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1 Tor on the Right

Throughout this note R is a ring (not necessarily commutative). The abelian category ModR
has enough projectives and enough injectives.

Definition 1. Let B be a left R-module, so that −⊗RB : ModR −→ Ab is a right exact functor.
For i ≥ 0 we define the abelian groups

TorR
i (A,B) = Li(−⊗R B)(A)

We usually drop the ring from the notation. The functor Tori(−, B) is additive and covariant for
i ≥ 0. Since −⊗R B is right exact the functors Tor0(−, B) and −⊗R B are naturally equivalent.
We simply write Tor(−, B) for Tor1(−, B).

The group Tori(A,B) is only determined up to isomorphism, and to calculate it we find a
projective resolution · · · −→ P1 −→ P0 −→ A −→ 0 and calculate the homology of the sequence

· · · −→ P2 ⊗R B −→ P1 ⊗R B −→ P0 ⊗R B −→ 0

We think of Tori as assigning to any pair A,B consisting of a right R-module A and a left
R-module B an isomorphism class of abelian groups, which has the following properties:

• For any projective module P we have Tori(P,B) = 0 for i 6= 0, since this is a property of
any left derived functor.

• For any flat module F we have Tori(A,F ) = 0 for i 6= 0, since the higher left derived functors
of the exact functor −⊗RF are zero. In particular this is true for free and projective modules.
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For any exact sequence of right R-modules

0 −→ A′ −→ A −→ A′′ −→ 0

there are morphisms ω1 : Tor(A′′, B) −→ A′ ⊗R B and ωn : Torn(A′′, B) −→ Torn−1(A′, B) for
n ≥ 2 which are canonical and make the following sequence exact

· · · −→ Tor2(A′, B) −→ Tor2(A,B) −→ Tor2(A′′, B) −→
−→ Tor(A′, B) −→ Tor(A,B) −→ Tor(A′′, B) −→
−→ A′ ⊗R B −→ A⊗R B −→ A′′ ⊗R B −→ 0

This sequence is called the long exact Tor sequence in the first variable. It is natural in the
exact sequence, in the sense that if we have a commutative diagram with exact rows

0 // A′

��

// A

��

// A′′

��

// 0

0 // C ′ // C // C ′′ // 0

Then the following diagrams commute for n ≥ 2

Tor(A′′, B)

��

// A′ ⊗R B

��
Tor(C ′′, B) // C ′ ⊗R B

Torn(A′′, B)

��

ωn // Torn−1(A′, B)

��
Torn(C ′′, B)

ωn

// Torn−1(C ′, B)

The long exact sequence is also natural in the module B. Let β : B −→ B′ be a morphism
of modules, and let − ⊗ β denote the natural transformation − ⊗R B −→ − ⊗R B′ defined by
(− ⊗ β)A = A ⊗ β. Let P be a fixed assignment of projective resolutions. Then there is a
natural transformation Ln(−⊗ β) : Ln(−⊗R B) −→ Ln(−⊗R B′) and we denote by Torn(A, β)
the morphism Ln(− ⊗ β)A : Torn(A,B) −→ Torn(A,B′). Note that for another morphism
γ : B′ −→ B′′, Ln(−⊗R γ)Ln(−⊗R β) = Ln(−⊗R γβ) so for any object A

Torn(A, γ)Torn(A, β) = Torn(A, γβ)

This defines a covariant additive functor Torn(A,−) : RMod −→ Ab. For any exact sequence
0 −→ A′ −→ A −→ A′′ −→ 0 we obtain the following commutative diagram

· · · // Torn(A′, B)

��

// Torn(A,B)

��

// Torn(A′′, B)

��

ωn // Torn−1(A′, B)

��

// · · ·

· · · // Torn(A′, B′) // Torn(A,B′) // Torn(A′′, B′)
ωn

// Torn−1(A′, B′) // · · ·

Proposition 1. For n ≥ 0 and a morphism α : A −→ A′ of right R-modules and a morphism
β : B −→ B′ of left R-modules

Torn(A′, β)Torn(α, B) = Torn(α, B′)Torn(A, β) (1)

It follows that Torn defines a functor ModR × RMod −→ Ab for n ≥ 0, with Torn(α, β) :
Torn(A,B) −→ Torn(A′, B′) given by the equivalent expressions in (1). The partial functors are
the functors Torn(A,−) and Torn(−, B) defined above.

Proof. This follows for arbitrary β and monomorphisms (or epimorphisms) α by commutativity of
(1). Since ModR has epi-mono factorisations it then follows for arbitrary α. If we use a different
assignment of projective resolutions to calculate the bifunctor Torn the results will be canonically
naturally equivalent.
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For a short exact sequence 0 −→ B′ −→ B −→ B′′ −→ 0 of left R-modules the corresponding
sequence of natural transformations −⊗B′ −→ −⊗B −→ −⊗B′′ is exact on projectives. Then
for every object A there are canonical connecting morphisms ωn : Torn(A,B′′) −→ Torn−1(A,B′)
for n ≥ 1 which fit into an exact sequence

· · · −→ Torn(A,B′) −→ Torn(A,B) −→ Torn(A,B′′) −→ Torn−1(A,B′) −→ · · ·

This sequence is called the long exact Tor sequence in the second variable. It is natural in both A
and the exact sequence. For a morphism α : A −→ A′ of right R-modules the following diagram
is commutative

· · · // Torn(A,B′)

��

// Torn(A,B)

��

// Torn(A,B′′)

��

ωn // Torn−1(A,B′)

��

// · · ·

· · · // Torn(A′, B′) // Torn(A′, B) // Torn(A′, B′′)
ωn

// Torn−1(A′, B′) // · · ·

And for a commutative diagram of left R-modules with exact rows

0 // B′

��

// B

��

// B′′

��

// 0

0 // C ′ // C // C ′′ // 0

The following diagram commutes for any right R-module A

· · · // Torn(A,B′)

��

// Torn(A,B)

��

// Torn(A,B′′)

��

ωn // Torn−1(A,B′)

��

// · · ·

· · · // Torn(A,C ′) // Torn(A,C) // Torn(A,C ′′)
ωn

// Torn−1(A,C ′) // · · ·

We have shown that for every assignment of projective resolutions P to ModR we obtain
a bifunctor TorPn (−,−) : ModR × RMod −→ Ab for n ≥ 0 with the property that short
exact sequences in either variable lead to a long exact sequence which is natural with respect
to morphisms of the exact sequence and morphisms in the remaining variable. The connecting
morphisms for these sequences depend only on P.

IfQ is another assignment of resolutions to ModR then we obtain another bifunctor TorQn (−,−)
for n ≥ 0 which is canonically naturally equivalent to TorPn (−,−). The connecting morphisms
for the two assignments P,Q agree in the following sense: for an object B and an exact sequence
0 −→ A′ −→ A −→ A′′ −→ 0 the following diagram commutes

· · · // TorPn (A′, B)

��

// TorPn (A,B)

��

// TorPn (A′′, B)

��

ωPn // TorPn−1(A
′, B) //

��

· · ·

· · · // TorQn (A′, B) // TorQn (A,B) // TorQn (A′′, B)
ωQn

// TorQn−1(A
′, B) // · · ·

Similarly for an object A and an exact sequence 0 −→ B′ −→ B −→ B′′ −→ 0 the following
diagram commutes

· · · // TorPn (A,B′) //

��

TorPn (A,B)

��

// TorPn (A,B′′)

��

ωPn // TorPn−1(A,B′) //

��

· · ·

· · · // TorQn (A,B′) // TorQn (A,B) // TorQn (A,B′′)
ωQn

// TorQn−1(A,B′) // · · ·

Both these claims follow direct from our Derived Functor notes.
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2 Tor on the Left

Definition 2. Let A be a right R-module, so that A ⊗R − : RMod −→ Ab is a right exact
functor. For i ≥ 0 we define the abelian groups

Tori(A,B) = Li(A⊗R −)(B)

We usually drop the ring from the notation. The functor Tori(A,−) is additive and covariant for
i ≥ 0. Since A⊗R − is right exact the functors Tor0(A,−) and A⊗R − are naturally equivalent.
We simply write Tor(A,−) for Tor1(A,−)

The group Tori(A,B) is only determined up to isomorphism, and to calculate it we find a
projective resolution · · · −→ P1 −→ P0 −→ B −→ 0 and calculate the homology of the sequence

· · · −→ A⊗R P2 −→ A⊗R P1 −→ A⊗R P0 −→ 0

We think of Tori as assigning to any pair A,B consisting of a right R-module A and a left
R-module B an isomorphism class of abelian groups, which has the following properties:

• For any projective module P we have Tori(A,P ) = 0 for i 6= 0, since this is a property of
any left derived functor.

• For any flat module F we have Tori(F,B) = 0 for i 6= 0, since the higher left derived functors
of the exact functor F⊗R− are zero. In particular this is true for free and projective modules.

For any exact sequence of left R-modules

0 −→ B′ −→ B −→ B′′ −→ 0

there are morphisms ω1 : Tor(A,B′′) −→ A ⊗R B′ and ωn : Torn(A,B′′) −→ Torn(A,B′) for
n ≥ 2 which are canonical and make the following sequence exact

· · · −→ Tor2(A,B′) −→ Tor2(A,B) −→ Tor2(A,B′′) −→
−→ Tor(A,B′) −→ Tor(A,B) −→ Tor(A,B′′) −→
−→ A⊗R B′ −→ A⊗R B −→ A⊗R B′′ −→ 0

This sequence is called the long exact Tor sequence in the second variable. It is natural in the
exact sequence, in the sense that if we have a commutative diagram with exact rows

0 // B′

��

// B

��

// B′′

��

// 0

0 // C ′ // C // C ′′ // 0

Then the following diagrams commute for n ≥ 2

Tor(A,B′′)

��

// A⊗R B′

��
Tor(A,C ′′) // A⊗R C ′

Torn(A,B′′)

��

ωn // Torn−1(A,B′)

��
Torn(A,C ′′)

ωn

// Torn−1(A,C ′)

This long exact sequence is also natural in the module A. Let α : A −→ A′ be a morphism
of modules, and let α ⊗ − denote the natural transformation A ⊗R − −→ A′ ⊗R − defined by
(α ⊗ −)B = α ⊗ B. Let P be a fixed assignment of projective resolutions. Then there is a
natural transformation Ln(α⊗−) : Ln(A⊗R −) −→ Ln(A′ ⊗R −) and we denote by Torn(α, B)
the morphism Ln(α ⊗ −)B : Torn(A,B) −→ Torn(A′, B). Note that for another morphism
γ : A′ −→ A′′, Ln(γ ⊗R −)Ln(α⊗R −) = Ln(γα⊗R −) for for any object B

Torn(γ, B)Torn(α, B) = Torn(γα,B)
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This defines a covariant additive functor Torn(−, B) : ModR −→ Ab. For any exact sequence
0 −→ B′ −→ B −→ B′′ −→ 0 we obtain the following commutative diagram

· · · // Torn(A,B′) //

��

Torn(A,B) //

��

Torn(A,B′′)

��

ωn
// Torn−1(A,B′)

��

// · · ·

· · · // Torn(A′, B′) // Torn(A′, B) // Torn(A′, B′′)
ωn

// Torn−1(A
′, B′) // · · ·

Proposition 2. For n ≥ 0 and a morphism α : A −→ A′ of right R-modules and a morphism
β : B −→ B′ of left R-modules

Torn(A′, β)Torn(α, B) = Torn(α, B′)Torn(A, β) (2)

It follows that Torn defines a functor ModR × RMod −→ Ab for n ≥ 0, with Torn(α, β) :
Torn(A,B) −→ Torn(A′, B′) given by the equivalent expressions in (2). The partial functors are
the functors Torn(A,−) and Torn(−, B) defined above.

Proof. The proof is straightforward. Once again if we use a different assignment of projective
resolutions to calculate the bifunctor Torn the results are canonically naturally equivalent.

For a short exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0 of right R-modules the corresponding
sequence of natural transformations A′ ⊗− −→ A⊗− −→ A′′ ⊗− is exact on projectives. Then
for every object B there are canonical connecting morphisms ωn : Torn(A′′, B) −→ Torn−1(A

′, B)
for n ≥ 1 with the property that the following sequence is exact

· · · −→ Torn(A′, B) −→ Torn(A,B) −→ Torn(A′′, B) −→ Torn−1(A
′, B) −→ · · ·

This sequence is called the long exact Tor sequence in the first variable. It is natural in both B
and the exact sequence. For a morphism β : B −→ B′ of left R-modules the following diagram is
commutative

· · · // Torn(A′, B) //

��

Torn(A,B)

��

// Torn(A′′, B) ωn
//

��

Torn−1(A
′, B) //

��

· · ·

· · · // Torn(A′, B′) // Torn(A,B′) // Torn(A′′, B′)
ωn

// Torn−1(A
′, B′) // · · ·

And for a commutative diagram of right R-modules with exact rows

0 // A′

��

// A

��

// A′′

��

// 0

0 // C ′ // C // C ′′ // 0

The following diagram commutes for any left R-module B

· · · // Torn(A′, B) //

��

Torn(A,B) //

��

Torn(A′′, B) ωn
//

��

Torn−1(A
′, B) //

��

· · ·

· · · // Torn(C ′, B) // Torn(C,B) // Torn(C ′′, B)
ωn

// Torn−1(C
′, B) // · · ·

We have shown that for every assignment of projective resolutions P to RMod we obtain
a bifunctor TorPn (−,−) : ModR × RMod −→ Ab for n ≥ 0 with the property that short
exact sequences in either variable lead to a long exact sequence which is natural with respect
to morphisms of the exact sequence and morphisms in the remaining variable. The connecting
morphisms for these sequences depend only on P.
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IfQ is another assignment of resolutions to RMod then we obtain another bifunctor TorQn (−,−)
for n ≥ 0 which is canonically naturally equivalent to TorPn (−,−). The connecting morphisms
for the two assignments P,Q agree in the following sense: for an object A and an exact sequence
0 −→ B′ −→ B −→ B′′ −→ 0 the following diagram commutes

· · · // TorPn (A,B′) //

��

TorPn (A,B)

��

// TorPn (A,B′′)

��

ωPn // TorPn−1(A,B′) //

��

· · ·

· · · // TorQn (A,B′) // TorQn (A,B) // TorQn (A,B′′)
ωQn

// TorQn−1(A,B′) // · · ·

Similarly for an object B and an exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0 the following
diagram commutes

· · · // TorPn (A′, B)

��

// TorPn (A,B)

��

// TorPn (A′′, B)

��

ωPn // TorPn−1(A
′, B) //

��

· · ·

· · · // TorQn (A′, B) // TorQn (A,B) // TorQn (A′′, B)
ωQn

// TorQn−1(A
′, B) // · · ·

Both these claims follow directly from our Derived Functor notes.

3 Balancing Tor

We choose once and for all assignments of projective resolutions P for ModR and Q for RMod,
with respect to which all derived functors are calculated. We have defined two bifunctors Torn(−,−)
and Torn(−,−) for n ≥ 0. The first is calculated by taking the left derived functors of the functors
−⊗R B and the second by taking the left derived functors of the functors A⊗R−. We claim that
these two bifunctors are naturally equivalent. We begin with the case n = 0.

Lemma 3. There are canonical natural equivalences of bifunctors Tor0(−,−) ∼= − ⊗R − and
−⊗R − ∼= Tor0(−,−).

Proof. It is clear what we mean by the bifunctor −⊗R − : ModR×RMod −→ Ab. We already
know there are canonical natural equivalences Tor0(−, B) ∼= − ⊗R B and Tor0(A,−) ∼= A ⊗R −
and it is not hard to check that these isomorphisms are natural in the other variable.

Proposition 4. For n ≥ 0 there is a canonical natural equivalence of bifunctors Φn : Torn(−,−) ∼=
Torn(−,−).

Proof. We proceed by induction on n, having already proved the result for n = 0. Assume that
there is a canonical natural equivalence Φn and let a right R-module A and a left R-module B be
given. We have to define a canonical isomorphism Φn+1

A,B which is natural in A and B. Choose a
projective presentation of B

0 −→ K −→ P −→ B −→ 0

We know that Tori(A,P ) = 0 = Tori(A,P ) for i 6= 0. Now we show how to define the isomorphism
Φn+1

A,B : Torn+1(A,B) −→ Torn(A,B). There are two cases: if n = 1 then the long exact sequences
for Tor and Tor in the second variable give a commutative diagram with exact rows

0 // Tor(A,B)

Φ1
A,B

��

ω1 // Tor0(A,K) //

Φ0
A,K

��

Tor0(A,P )

��

// Tor0(A,B)

��

// 0

0 // Tor(A,B)
ω1

// Tor0(A,K) // Tor0(A,P ) // Tor0(A,B) // 0
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This induces a unique isomorphism Φ1
A,B making the diagram commute. For n > 1 the con-

necting morphisms Torn(A,B) −→ Torn−1(A,K) and Torn(A,B) −→ Torn−1(A,K) in the two
sequences are isomorphisms, and we define Φn+1

A,B to be the unique morphism fitting into the
following commutative diagram

Torn+1(A,B) +3

Φn+1
A,B

��

Torn(A,K)

Φn
A,K

��
Torn+1(A,B) +3 Torn(A,K)

Next we have to show that the isomorphism Φn+1
A,B does not depend on the chosen presentation.

Suppose we have a commutative diagram with exact rows and middle objects projective:

0 // K //

��

P //

��

B //

��

0

0 // M // Q // B′ // 0

Consider the following cube for n ≥ 1

Torn+1(A,B′) //

��

Torn(A,M)

Φn
A,M

��

Torn+1(A,B)

66mmmmmmmmmmmmm
//

��

Torn(A,K)

Φn
A,K

��

77oooooooooooo

Torn+1(A,B′) // Torn(A,M)

Torn+1(A,B) //

66mmmmmmmmmmmm
Torn(A,K)

77oooooooooooo

If we use the above technique to produce isomorphisms Torn+1(A,B) −→ Torn+1(A,B) and
Torn+1(A,B′) −→ Torn+1(A,B′) using the given presentations then in either case (n = 1 or
otherwise) these morphisms make the front and back squares commute. The top and bottom
squares commute by naturality of the connecting morphisms, and the right square commutes by
the inductive hypothesis. Since Torn+1(A,B′) −→ Torn(A,M) is a monomorphism, it follows
that the left square also commutes. This implies that Φn+1

A,B is independent of the chosen resolution
and natural in B.

To prove naturality in A we construct a similar diagram and use naturality with respect to
morphisms of the long exact Tor and Tor sequences in the second variable. Since by the inductive
hypothesis Φn depends only on the assignments of resolutions P,Q, it follows that this is true of
Φn+1 as well.

For any ring R and assignments P,Q of projective resolutions to ModR and RMod respec-
tively, there is a natural equivalence of the bifunctors TorPn (−,−) and TorQn (−,−) for n ≥ 0. So
every pair A,B consisting of a right R-module A and a left R-module B together with an integer
n ≥ 0 determines an isomorphism class of abelian groups. We can calculate a representative of
this class in the following ways

• Choose a projective resolution · · · −→ P1 −→ P0 −→ A −→ 0 of A and calculate the
homology of the following chain complex of abelian groups

· · · −→ P2 ⊗R B −→ P1 ⊗R B −→ P0 ⊗R B −→ 0
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• Choose a projective resolution · · · −→ Q1 −→ Q0 −→ B −→ 0 of B and calculate the
homology of the following chain complex of abelian groups

· · · −→ A⊗R Q2 −→ A⊗R Q1 −→ A⊗R Q0 −→ 0

If there is no chance of confusion we simply refer to any of these groups by Torn(A,B) and drop
Tor from the notation. Occasionally, however, we will insist on the distinction.

4 Properties of Tor

4.1 Dimension Shifting

Let B be a left R-module. Then any flat right R-module acyclic for the additive functor −⊗R B :
ModR −→ Ab. Similarly for any left R-module A, any flat left R-module is acyclic for the
functor A⊗R − : RMod −→ Ab. Hence the following results are immediate consequences of our
notes on dimension shifting.

Proposition 5. Let B be a left R-module, and suppose we have an exact sequence of right R-
modules with all Fi flat and m ≥ 0

0 −→ M −→ Fm −→ Fm−1 −→ · · · −→ F0 −→ A −→ 0

Then there are canonical isomorphisms ρn : Torn(A,B) −→ Torn−m−1(M,B) for n ≥ m+2, and
an exact sequence

0 −→ Torm+1(A,B) −→ M ⊗R B −→ Fm ⊗R B

These are both natural in B, in the sense that for a morphism B −→ B′ the following two diagrams
commute for n ≥ m + 2 and m ≥ 0

Torn(A,B) //

��

Torn−m−1(M,B)

��
Torn(A,B′) // Torn−m−1(M,B′)

0 // Torm+1(A,B) //

��

M ⊗R B //

��

Fm ⊗R B

��
0 // Torm+1(A,B′) // M ⊗R B′ // Fm ⊗R B′

Proposition 6. Let A be a right R-module, and suppose we have an exact sequence of left R-
modules with all Fi flat and m ≥ 0

0 −→ M −→ Fm −→ Fm−1 −→ · · · −→ F0 −→ B −→ 0

Then there are canonical isomorphisms ρn : Torn(A,B) −→ Torn−m−1(A,M) for n ≥ m + 2 and
an exact sequence

0 −→ Torm+1(A,B) −→ A⊗R M −→ A⊗R Fm

These are both natural in A, in the sense that for a morphism A −→ A′ the following two diagrams
commute for n ≥ m + 2 and m ≥ 0

Torn(A,B) //

��

Torn−m−1(A,M)

��
Torn(A′, B) // Torn−m−1(A

′,M)

0 // Torm+1(A,B) //

��

A⊗R M //

��

A⊗R Fm

��
0 // Torm+1(A

′, B) // A′ ⊗R M // A′ ⊗R Fm
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4.2 Tor and Colimits

Proposition 7. Let R be a ring. For a left R-module B and a right R-module A, the functors
Torn(A,−) : RMod −→ Ab and Torn(−, B) : ModR −→ Ab preserve coproducts and direct
limits.

Proof. The functors A ⊗R − and − ⊗R B preserve all colimits, so this follows immediately from
our Derived Functor notes.

Corollary 8. Let R be a ring. For a left R-module B and a right R-module A, we have

Torn(A,B) = lim−→Torn(A,Bα) = lim−→Torn(Aα, B)

where the direct limits are over all the finitely generated submodules Aα, Bα of A and B respectively.

5 Tor for Commutative Rings

Let R be a commutative ring and U : RMod −→ Ab the forgetful functor, which is faithful and
exact. This functor maps the canonical kernels, cokernels, images, zero and biproducts of RMod
to the corresponding canonical structure on Ab. So if X is a (co)chain complex in RMod then
the (co)homology modules have as underlying groups the (co)homology groups of the sequence
considered as a complex of groups.

Given a left R-module B tensoring with B defines a right exact functor S : −⊗RB : ModR −→
RMod. Denote by T the functor −⊗R B : ModR −→ Ab, so that T = US. Given n ≥ 0 and an
assignment of projective resolutions P to ModR the functors LnT and U ◦LnS are equal. So for
a right R-module A the Tor group Torn(A,B) becomes an R-module in a canonical way, and for
α : A −→ A′ the morphism of groups Torn(α, B) : Torn(A,B) −→ Torn(A′, B) is a morphism of
these modules. Similarly if β : B −→ B′ is a morphism of modules then the morphism of groups
Torn(A,B) −→ Torn(A,B′) is a morphism of modules, so Torn(A,−) lifts to a covariant additive
functor ModR −→ RMod. Also Tor0(−, B) : ModR −→ RMod is canonically naturally
equivalent to S.

For a fixed assignment of projective resolutions P the bifunctor Torn(−,−) becomes a bifunctor
Torn(−,−) : ModR×RMod −→ RMod. If Q is another assignment of projective resolutions to
ModR then the resulting bifunctors (with values in RMod) are canonically naturally equivalent.
Given an exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0 of right R-modules the connecting
morphisms Torn(A′′, B) −→ Torn−1(A′, B) are all module morphisms, so the long exact sequence
of Tor in the first variable

· · · −→ Torn(A′, B) −→ Torn(A,B) −→ Torn(A′′, B) −→ Torn−1(A′, B) −→ · · ·

is a long exact sequence of modules. Similarly if 0 −→ B′ −→ B −→ B′′ −→ 0 is an exact
sequence then the connecting morphisms Torn(A,B′′) −→ Torn−1(A,B′) are module morphisms
and the long exact sequence of Tor in the second variable

· · · −→ Torn(A,B′) −→ Torn(A,B) −→ Torn(A,B′′) −→ Torn−1(A,B′) −→ · · ·

is a long exact sequence of modules. If r ∈ R let α : A −→ A and β : B −→ B the module
morphisms obtained from multiplication by r. Then Torn(α, B) = Torn(A, β) : Torn(A,B) −→
Torn(A,B) give the action of r on the abelian group Torn(A,B).

Similarly, if we replace S by the right exact functor A ⊗R − : RMod −→ RMod and T by
A ⊗R − : RMod −→ Ab for a right R-module A, then all the above remains true with Tor
replaced by Tor. That is, Torn(−,−) lifts to a functor ModR × RMod −→ RMod which (up
to a canonical natural equivalence) is independent of the assignment of projective resolutions to
RMod, and the two long exact sequences are long exact sequences of modules. With r, α, β as
above, the group morphisms Torn(α, B) = Torn(A, β) : Torn(A,B) −→ Torn(A,B) give the
action of r on the abelian group Torn(A,B).
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The canonical natural equivalences Tor0(−,−) ∼= − ⊗R − ∼= Tor0(−,−) give natural equiv-
alences of the module-valued bifunctors. Then our earlier proof shows that for n ≥ 0 there is
a canonical natural equivalence Torn(−,−) ∼= Torn(−,−) of bifunctors ModR × RMod −→
RMod.

So associated to any pair of R-modules M,N is an isomorphism class of R-modules TorR
n (M,N).

We can find a representative of this class by choosing a projective resolution P of N and calculat-
ing the homology modules of · · · −→ M⊗P1 −→ M⊗P0 −→ 0 or choosing a projective resolution
Q of M and calculating the homology modules of · · · −→ Q1 ⊗N −→ Q0 ⊗N −→ 0.

Lemma 9. For a commutative ring R and module A the additive functors {Torn(A,−)}n≥0 form
a universal homological δ-functor between RMod and RMod.

Proof. We have just shown that {Torn(A,−)}n≥0 is a homological δ-functor. Since every module
is the quotient of a free module, the functors Torn(A,−) are coeffaceable for n > 0 and so by
(DF,Theorem 74) our δ-functor is universal.

Lemma 10. For a commutative ring R and module A the functors Torn(A,−) : RMod −→
RMod and Torn(−, A) : ModR −→ RMod preserve all coproducts and direct limits.

Lemma 11. For a commutative ring R and modules A,B we have an isomorphism of R-modules
Torn(A,B) ∼= Torn(B,A) for n ≥ 0.

Proof. Let · · · −→ P1 −→ P0 −→ B −→ 0 be a projective resolution of B (considered as a left
R-module). Then the chain complex · · · −→ A ⊗ P1 −→ A ⊗ P0 −→ 0 is isomorphic to the
chain complex · · · −→ P1 ⊗ A −→ P0 ⊗ A −→ 0, so both sequences have the homology. Hence
Torn(B,A) ∼= Tor(A,B).

Example 1. Suppose that x ∈ R is regular and that M is an R-module. We compute the groups
TorR

i (R/(x),M). The short exact sequence

0 // R
x // R // R/(x) // 0

is a projective resolution of R/(x). So the group TorR
i (R/(x),M) is the ith homology group of

the complex
0 // M

x // M // 0

Hence TorR
i (R/(x),M) = 0 for i > 1, while TorR

1 (R/(x),M) = (0 : x) = {m |xm = 0} and
TorR

0 (R/(x),M) = M/xM .

Proposition 12. Let R be a principal ideal domain. Then

(a) TorR
1 (A,B) is a torsion module.

(b) TorR
n (A,B) = 0 for n ≥ 2.

Proof. First consider the case where A is finitely generated. Then either A ∼= Rm for some
m ≥ 0 or A ∼= Rm ⊕ R/(x1) ⊕ · · · ⊕ R/(xk) for m ≥ 0 and nonzero xi. In the first case
TorR

n (A,B) = TorR
n (R,B)m and in the second case

TorR
n (A,B) ∼= TorR

n (R,B)m ⊕ TorR
n (R/(x1), B)⊕ · · · ⊕ TorR

n (R/(x2), B)

The module A is the direct limit of its finitely generated submodules Aα, so TorR
n (A,B) is the

direct limit of the modules Torn(Aα, B). Since the direct limit of torsion modules is torsion, (a)
and (b) follow easily from the previous Example.

Let m, d 6= 0, 1 be elements of Z and assume that d|m. Then A = Z/d is a R = Z/m-module,
and the following is a free resolution of A as an R-module

· · · // Z/m
d // Z/m

m/d // Z/m
d // Z/m // Z/d // 0

10
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Hence for any Z/m-module B we have

TorZ/m
n (Z/d, B) =


B/dB if n = 0
{b ∈ B | db = 0}/(m/d)B if n is odd , n > 0
{b ∈ B | (m/d)b = 0}/dB if n is even , n > 0

Proposition 13. Let R be a commutative noetherian ring and suppose A,B are finitely generated
R-modules. Then TorR

i (A,B) is a finitely generated R-module.

Proof. Since R is noetherian and A is finitely generated, we can find a projective resolution
· · · −→ F1 −→ F0 −→ A −→) with all the Fi finite free modules. Then in the following sequence
every module is finitely generated

· · · −→ F1 ⊗B −→ F0 ⊗B −→ 0

so the homology modules TorR
i (A,B) will also be finitely generated.

5.1 Tor for Bimodules

Let R,S be rings and B an R-S-bimodule. Then tensoring with B gives right exact functors
− ⊗R B : ModR −→ ModS and B ⊗S − : SMod −→ RMod, so that tensor products with
B inherit a module structure. We would like to extend this structure to the Tor groups. Let
RModS denote the abelian category of R-S-bimodules.

Let P be an assignment of projective resolutions to the category ModR. Let B be an R-S-
bimodule and let A be a right R-module with assigned resolution P . There are two ways to define
a right S-module structure on the abelian group TorR

i (A,B):

• Taking the ith left derived functor of − ⊗R B : ModR −→ ModS defines a functor
TorR

i (−, B) : ModR −→ ModS, and by the same argument used for commutative rings
the functor TorR

i (−, B) : ModR −→ Ab is equal to TorR
i (−, B) : ModR −→ ModS

followed by the forgetful functor ModS −→ Ab. In this way TorR
i (A,B) acquires a right

S-module structure, which we calculate by taking the homology of the following sequence of
right S-modules

· · · −→ P2 ⊗R B −→ P1 ⊗R B −→ P0 ⊗R B −→ 0

• For s ∈ S right multiplication by s defines a morphism of left R-modules β : B −→ B, and
this gives rise to a morphism of abelian groups TorR

i (A, β) : TorR
i (A,B) −→ TorR

i (A,B)
which is the effect on homology of the following morphism of chain complexes of groups

· · · // P2 ⊗R B

1⊗β

��

// P1 ⊗R B //

1⊗β

��

P0 ⊗R B //

1⊗β

��

0

· · · // P2 ⊗R B // P1 ⊗R B // P0 ⊗R B // 0

In this way TorR
i (A,B) acquires a second right S-module structure, which is clearly the

same as the first.

So given resolutions for ModR, a right R-module A and an R-S-bimodule B there is a canonical
right S-module structure on TorR

i (A,B). It is not hard to check that the morphisms induced on
the Tor groups by right R-module morphisms A −→ A′ and bimodule morphisms B −→ B′ are
also morphisms of right S-modules. So the bifunctor TorR

i (−,−) : ModR×RMod −→ Ab lifts
canonically to a bifunctor TorR

i (−,−) : ModR×RModS −→ ModS. The bifunctor TorR
0 (−,−)

is canonically naturally equivalent to − ⊗R − : ModR × RModS −→ ModS. If you choose
two different assignments of resolutions to ModR then you get canonically naturally bifunctors
ModR×RModS −→ ModS.

Using our Derived Functor notes on change of base, the two types of long exact sequence in
TorR(−,−) are sequences of right S-modules. That is, if we have an exact sequence of right
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R-modules 0 −→ A′ −→ A −→ A′′ −→ 0 then for an R-S-bimodule B the connecting morphisms
TorR

i (A′′, B) −→ TorR
i−1(A

′, B) are morphisms of right S-modules and we have a long exact
sequence of S-modules

· · · −→ TorR
i (A′, B) −→ TorR

i (A,B) −→ TorR
i (A′′, B) −→ TorR

i−1(A
′, B) −→ · · ·

And if we have an exact sequence of R-S-bimodules 0 −→ B′ −→ B −→ B′′ −→ 0 then for a right
R-module A the connecting morphisms TorR

i (A,B′′) −→ TorR
i−1(A,B′) are morphisms of right

S-modules and we have a long exact sequence of S-modules

· · · −→ TorR
i (A,B′) −→ TorR

i (A,B) −→ TorR
i (A,B′′) −→ TorR

i−1(A,B′) −→ · · ·

Now suppose we are given an assignment of projective resolutions Q to the category RMod,
let B be an R-S-bimodule whose assigned resolution as a left R-module is Q and let A be a right
R-module. We can define a right S-module structure on the abelian group TorR

i (A,B) as follows:

• For s ∈ S right multiplication by s defines a morphism of left R-modules β : B −→ B, and
this gives rise to a morphism of abelian groups TorR

i (A, β) : TorR
i (A,B) −→ TorR

i (A,B)
which is calculated in the following way: lift β to a morphism of chain complexes ϕ : Q −→ Q
and consider the effect on homology of the following morphism of chain complexes of groups

· · · // A⊗R Q2

1⊗ϕ2

��

// A⊗R Q1

1⊗ϕ1

��

// A⊗R Q0
//

1⊗ϕ0

��

0

· · · // A⊗R Q2
// A⊗R Q1

// A⊗R Q0
// 0

This defines a right S-module structure on the group TorR
i (A,B).

So given resolutions for RMod, a right R-module A and an R-S-bimodule B there is a canonical
right S-module structure on TorR

i (A,B). It is a consequence of the fact that Tor is balanced that
the canonical isomorphism of groups TorR

i (A,B) ∼= TorR
i (A,B) is actually an isomorphism of

S-modules, with the structures just defined. It follows that bifunctor TorR
i (−,−) : ModR ×

RMod −→ Ab lifts canonically to a bifunctor TorR
i (−,−) : ModR×RModS −→ ModS which

is naturally equivalent to TorR
i (−,−) : ModR×RModS −→ ModS defined earlier. Also TorR

0

is naturally equivalent to −⊗R − : ModR×RModS −→ ModS.

Remark 1. We would like to say that the two types of long exact sequences in Tor are long exact
sequences of right S-modules. This would follow if we knew that the isomorphism of Tor and Tor
was natural with respect to connecting morphisms.

Next we study the case where the bimodule is in the first variable. Let P be an assignment
of projective resolutions to the category RMod. Let A be an S-R-bimodule and let B be a left
R-module with assigned resolution P . There are two ways to define a left S-module structure on
the abelian group TorR

i (A,B):

• Taking the ith left derived functor of A ⊗R − : RMod −→ SMod defines a functor
TorR

i (A,−) : RMod −→ SMod, and the functor TorR
i (A,−) : RMod −→ Ab is equal to

TorR
i (A,−) : RMod −→ SMod followed by the forgetful functor SMod −→ Ab. In this

way TorR
i (A,B) acquires a left S-module structure, which we calculate by taking homology

of the following sequence of left S-modules

· · · −→ A⊗R P2 −→ A⊗R P1 −→ A⊗R P0 −→ 0

• For s ∈ S left multiplication by s defines a morphism of right R-modules α : A −→ A, and
this gives rise to a morphism of abelian groups TorR

i (α, B) : TorR
i (A,B) −→ TorR

i (A,B)
which is the effect on homology of the following morphism of chain complexes of groups

· · · // A⊗R P2

α⊗1

��

// A⊗R P1
//

α⊗1

��

A⊗R P0
//

α⊗1

��

0

· · · // A⊗R P2
// A⊗R P1

// A⊗R P0
// 0
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In this way TorR
i (A,B) acquires a second left S-module structure, which is clearly the same

as the first.

So given resolutions for RMod, a left R-module B and an S-R-bimodule A there is a canonical
left S-module structure on TorR

i (A,B). It is not hard to check that the morphisms induced on
the Tor groups by left R-module morphisms B −→ B′ and bimodule morphisms A −→ A′ are
also morphisms of left S-modules. So the bifunctor TorR

i (−,−) : ModR × RMod −→ Ab lifts
canonically to a bifunctor TorR

i (−,−) : SModR×RMod −→ SMod. The bifunctor TorR
0 (−,−)

is canonically equivalent to − ⊗R − : SModR × RMod −→ SMod. If you choose two different
assignments of resolutions to RMod then you get canonically naturally equivalent bifunctors
SModR×RMod −→ SMod.

Using our Derived Functor notes on change of base, the two types of long exact sequence in
TorR(−,−) are sequences of left S-modules. That is, if we have an exact sequence of left R-
modules 0 −→ B′ −→ B −→ B′′ −→ 0 then for an S-R-bimodule A the connecting morphisms
TorR

i (A,B′′) −→ TorR
i−1(A,B′) are morphisms of left S-modules and we have a long exact se-

quence of S-modules

· · · −→ TorR
i (A,B′) −→ TorR

i (A,B) −→ TorR
i (A,B′′) −→ TorR

i−1(A,B′) −→ · · ·

And if we have an exact sequence of S-R-bimodules 0 −→ A′ −→ A −→ A′′ −→ 0 then for a
left R-module B the connecting morphisms TorR

i (A′′, B) −→ TorR
i−1(A

′, B) are morphisms of left
S-modules and we have a long exact sequence of S-modules

· · · −→ TorR
i (A′, B) −→ TorR

i (A,B) −→ TorR
i (A′′, B) −→ TorR

i−1(A
′, B) −→ · · ·

Now suppose we are given an assignment of projective resolutions Q to the category ModR, let
A be an S-R-bimodule whose assigned resolution as a right R-module is Q and let B be a left
R-module. We can define a left S-module structure on the abelian group TorR

i (A,B) as follows:

• For s ∈ S left multiplication by s defines a morphism of right R-modules α : A −→ A, and
this gives rise to a morphism of abelian groups TorR

i (α, B) : TorR
i (A,B) −→ TorR

i (A,B)
which is calculated in the following way: lift α to a morphism of chain complexes ϕ : Q −→ Q
and consider the effect on homology of the following morphism of chain complexes of groups

· · · // Q2 ⊗R B

ϕ2⊗1

��

// Q1 ⊗R B

ϕ1⊗1

��

// Q0 ⊗R B

ϕ0⊗1

��

// 0

· · · // Q2 ⊗R B // Q1 ⊗R B // Q0 ⊗R B // 0

This defines a left S-module structure on the group TorR
i (A,B).

So given resolutions for ModR, a left R-module B and an S-R-bimodule A there is a canonical
left S-module structure on TorR

i (A,B). It is a consequence of the fact that Tor is balanced that
the canonical isomorphism of groups TorR

i (A,B) ∼= TorR
i (A,B) is actually an isomorphism of

S-modules, with the structures just defined. It follows that the bifunctor TorR
i (−,−) : ModR×

RMod −→ Ab lifts canonically to a bifunctor TorR
i (−,−) : SModR×RMod −→ SMod which

is naturally equivalent to TorR
i (−,−) : SModR×RMod −→ SMod defined earlier. Also TorR

0

is naturally equivalent to −⊗R − : SModR×RMod −→ SMod.

Remark 2. Once again, we would like to say that the connecting morphisms for the left S-module
valued bifunctor TorR(−,−) were morphisms of left S-modules.

Since the contents of this section have the potential to confuse, we make some final com-
ments. Given a ring R, an assignment of projective resolutions to ModR gives you the bifunc-
tors TorR

n (−,−) and an assignment of projective resolutions to RMod gives you the bifunctors
TorR

n (−,−).
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• If B is an R-S-bimodule then you can define a right S-module structure on the groups
TorR

n (A,B) and TorR
n (A,B). These two structures agree via the canonical isomorphism

TorR
n (A,B) ∼= TorR

n (A,B) of groups. However, it is only for the bifunctor Tor that we could
show all the long exact sequences were sequences of right S-modules. So for bimodules in
the second variable, Tor plays the major role, with Tor used only as an alternative method
to calculate the S-module structure.

• If A is an S-R-bimodule then you can define a left S-module structure on the groups
TorR

n (A,B) and TorR
n (A,B). These two structures agree via the canonical isomorphism

TorR
n (A,B) ∼= TorR

n (A,B) of groups. However, it is only for the bifunctor Tor that we
could show all the long exact sequences were sequences of left S-modules. So for bimodules
in the first variable, Tor plays the major role, with Tor used only as an alternative method
to calculate the S-module structure.

Lemma 14. Let R,S be rings and A an S-R-bimodule. Then for every n ≥ 0 we have an
additive functor TorR

n (A,−) : RMod −→ SMod and the family {TorR
n (A,−)}n≥0 is a universal

homological δ-functor between RMod and SMod.

Proof. The results of this section show that {TorR
n (A,−)}n≥0 is a homological δ-functor. For the

rest, use the argument given in the proof of Lemma 9.

5.2 Criteria for Flatness

In this section all rings are commutative and all modules are left modules. Then

Proposition 15. Let R be a ring and M an R-module. If I is an ideal of R then the multiplication
map I ⊗R M −→ M is an injection if and only if TorR

1 (R/I,M) = 0. The module M is flat if
and only if this condition is satisifed for every finitely generated ideal I.

Proof. From the short exact sequence 0 −→ I −→ R −→ R/I −→ 0 we obtain a long exact Tor
sequence containing

TorR
1 (R,M) −→ TorR

1 (R/I,M) −→ I ⊗M −→ R⊗M

Since R is projective, TorR
1 (R,M) = 0 and the right hand term is M , so the first assertion is

proved. We have proved the second assertion in our Stenstrom notes.

Since TorR
1 (R,M) = TorR

1 (0,M) = 0 we need only check finitely generated, nonzero, proper
ideals I in the Proposition. If R is a ring and M an R-module, then for x ∈ R we let xM denote
the submodule (x)M = {xm |m ∈ M}.

Corollary 16. Let k be a field. If R = k[t]/(t2) and M is an R-module, then M is flat if and
only if multiplication by t from M to tM induces an isomorphism M/tM −→ tM .

Proof. Since t2 = 0 it is clear that tM is contained in the kernel of this map. We claim that
M is flat iff. tM is the kernel - so tm = 0 if and only if m = tn for some n ∈ M . The only
nonzero proper ideal in R is (t), which is isomorphism as an R-module to R/(t) by the map
R/(t) −→ (t) sending 1 to t. Applying the criterion of Proposition 15 we see that M is flat iff the
map (t)⊗M −→ M is injective, which is iff the composite

M/tM ∼= R/(t)⊗M ∼= (t)⊗M −→ M

is injective. But this is precisely the map M/tM −→ tM we are interested in.

If M is an R-module then an element a ∈ R is regular on M if it is nonzero and a ·m 6= 0 for
all nonzero m ∈ M .

Corollary 17. If a ∈ R is regular and M is a flat R-module, then a is regular on M . If R is a
principal ideal domain, then the converse is also true: M is flat as an R-module if and only if M
is torsion free.
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Proof. By assumption the map R −→ (a) defined by 1 7→ a is an isomorphism of R-modules. So
we obtain a morphism

M ∼= R⊗M ∼= (a)⊗M −→ R⊗M ∼= M

This composite is simply multiplication by a, and if M is flat it is a monomorphism, which proves
that a is regular on M .

If R is a PID, then every nonzero ideal is generated by a regular element, and we have seen
that for x regular, TorR(R/(x),M) = {m |xm = 0}. So M is flat if and only if every nonzero
element of R is regular on M , which is what we mean when we say M is torsion free.

Next we collect some results about flatness from our Stenstrom notes.

• A module isomorphic to a flat module is flat.

• If R −→ S is a ring morphism and M is a flat R-module then M ⊗R S is a flat S-module.

• If Fi are R-modules then any coproduct
⊕

i∈I Fi over a nonempty index set is flat iff. each
Fi is flat.

• Every projective module is flat.

• Direct limits of flat modules are flat.

• A module F is flat iff. HomZ(F, Q/Z) is injective.

• A module F is flat iff. whenever
∑n

i=1 bixi = 0 for bi ∈ R, xi ∈ F then there exist u1, . . . , um

in F and aij ∈ R (1 ≤ i ≤ n, 1 ≤ j ≤ m) such that

0 =
∑

i

biaij ∀j

xi =
∑

j

aijuj ∀i

• Every finitely presented flat module is projective.

• Let A be a subring of B. If M is a finitely generated flat A-module, and M ⊗A B is a
projective B-module, then M is projective over A. For example if A is an integral domain
with field of fractions K then every finitely generated flat module A-module is projective,
since M ⊗A K is always projective.

• If 0 −→ L −→ M −→ N −→ 0 is exact with N flat then L is flat iff. M is flat.

Theorem 18 (Local Criterion for Flatness). Suppose that (R,m) is a local noetherian ring,
and let (S, n) be a local noetherian R-algebra such that mS ⊆ n. If M is a finitely generated
S-module, then M is flat as an R-module if and only if TorR

1 (R/m,M) = 0.

Proof. Another way of expressing the setup is that we have a local morphism R −→ S of local
noetherian rings. If M is flat then TorR

1 (R/m,M) = 0 by Proposition 15.
Now suppose S and M are as stated and that TorR

1 (R/m,M) = 0. As a preliminary step
we show that if N is an R-module of finite length then TorR

1 (N,M) = 0. We may prove this
by induction on the length n. If N has length 1 then it is isomorphic to R/m, so this case
follows from the hypothesis. If N ′ is any proper nonzero submodule of N , then the exact sequence
0 −→ N ′ −→ N −→ N/N ′ −→ 0 gives rise to an exact sequence of Tor containing the terms

TorR
1 (N ′,M) −→ TorR

1 (N,M) −→ TorR
1 (N/N ′,M)

By induction on the length, TorR
1 (N ′,M) = 0 = TorR

1 (N/N ′,M) so TorR
1 (N,M) = 0 as required.

Now let I be an arbitrary proper nonzero ideal, and suppose that u ∈ I ⊗R M is in the kernel
of the multiplication map I ⊗R M −→ M . We shall prove that u = 0. The S-module structure
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on M gives I ⊗R M the structure of an S-module, and we have mn(I ⊗R M) ⊆ nn(I ⊗R M). It is
finitely generated as an S-module , so by the Krull intersection theorem

⋂
n nn(I ⊗R M) = 0, and

so
⋂

n mn(I ⊗R M) = 0. Thus it suffices to show that u ∈ mn(I ⊗R M) for every n ≥ 1.
With n ≥ 1 fixed, the module mn(I ⊗R M) is the image in I ⊗R M of (mnI) ⊗R M . By the

Artin-Rees lemma, mt ∩ I ⊆ mnI for sufficiently large t, so it suffices to show that u is in the
image of (mt ∩ I)⊗R M for all t. Tensoring the short exact sequence

0 −→ mt ∩ I −→ I −→ I/(mt ∩ I) −→ 0

with M produces the exact sequence

(mt ∩ I)⊗R M −→ I ⊗R M −→ I/(mt ∩ I)⊗R M −→ 0

It thus suffices to show that u goes to 0 in I/(mt ∩ I)⊗R M . Consider the following commutative
diagram

I

��

// I/(mt ∩ I)

ϕ

��
R // R/mt

Tensoring with M gives
I ⊗R M

��

// I/(mt ∩ I)⊗R M

ϕ⊗1

��
M // R/mt ⊗R M

Since u goes to zero under the left hand vertical map, we see that it suffices to show that the right-
hand vertical map ϕ⊗ 1 is injective. Using the isomorphism I/(mt ∩ I) ∼= (I + mt)/mt it suffices
to show that the left hand map in the following short exact sequence gives a monomorphism when
tensored with M

0 −→ (I + mt)/mt −→ R/mt −→ R/(I + mt) −→ 0

Applying Tor, we get a long exact sequence of which a part is

TorR
1 (R/(I + mt),M) −→ (I + mt)/mt ⊗R M −→ R/mt ⊗R M

so it is enough to show that TorR
1 (R/(I +mt),M) = 0. Since R/(I +mt) is annihilated by mt, it is

a module of finite length (see Corollary 2.17 in our written Eisenbud notes), and we are done.

Corollary 19. Suppose that (R,m) is a local noetherian ring and M a finitely generated R-module.
Then M is flat if and only if TorR

1 (R/m,M) = 0.

Let R −→ S be a ring morphism, M an R-module and N an S-module. What is the relationship
between the groups TorS

i (N,M⊗R S) and TorR
i (N,M)? At least in the case where the morphism

is R −→ R/(x) for a regular element x regular on M they are equal.

Lemma 20. If R is a ring, M an R-module and x ∈ R a regular element which is regular on M ,
then for any R/(x)-module N we have Tor

R/(x)
i (N,M/xM) = TorR

i (N,M) for any i ≥ 0.

Proof. The functor − ⊗R R/(x) : ModR −→ ModR/(x) has a right adjoint and therefore pre-
serves free modules. So if F is free over R then F/xF is free over R/(x). In particular take a free
resolution P of M

P : · · · −→ F2 −→ F1 −→ F0 −→ 0

Then the complex R/(x) ⊗R F : · · · −→ R/(x) ⊗R F0 −→ 0 at least consists of free objects.
We claim that R/(x) ⊗R F is a free resolution of R/(x) ⊗R M , in which case we may compute
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Tor
R/(x)
i (N,M/xM) as the homology of N ⊗R P which coincides with TorR

i (N,M) as claimed.
So we have to prove that the following sequence is exact

· · · −→ R/(x)⊗R F2 −→ R/(x)⊗R F1 −→ R/(x)⊗R F0 −→ R/(x)⊗R M −→ 0

Since R/(x) ⊗R − is right exact, it is exact in the last two nonzero places. The homology at
the higher places are the groups TorR

i (R/(x),M). Since x is regular these are zero for i > 1
and TorR

1 (R/(x),M) = 0 since x is regular on M . Since the homology groups are all zero, the
sequence is exact and the proof is complete.

Extending scalars preserves flatness, and the next result proves the converse in a special case.

Corollary 21. Suppose that (R,m) is a local noetherian ring, and let (S, n) be a local noetherian
R-algebra such that mS ⊆ n. If M is a finitely generated S-module and x ∈ m is a regular element
of R which is regular on M , then M is flat over R if and only if M/xM is flat over R/(x).

Proof. If M is flat then M/xM ∼= R/(x) ⊗R M is flat over R/(x) without any hypothesis, so
suppose that M/xM is flat over R/(x). Let k = R/m and use the previous Lemma to see that

TorR
1 (k,M) = Tor

R/(x)
1 (k,M/xM) = 0

It follows from Theorem 18 that M is a flat R-module.

We know that for a flat module M we have TorR
1 (M,N) = TorR

1 (N,M) = 0 for all modules
N . This actually characterises flat modules.

Corollary 22. Let R be a ring and M an R-module. Then the following are equivalent:

(i) M is flat.

(ii) TorR
1 (R/I,M) = 0 for any finitely generated ideal I.

(iii) TorR
1 (N,M) = 0 for any finitely generated module N .

(iv) The map I ⊗R M −→ M is injective for all finitely generated ideals I.
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