Topological Rings

Daniel Murfet

July 9, 2005

Consider the category **Top**, which is complete and cocomplete and has a terminal object **1** consisting of the singleton set $\{*\}$ with the discrete topology. Hence we can apply the ideas of this Chapter to topological spaces. This example is particularly important since the axioms for a Gabriel topology (and hence for Grothendieck topologies) arise naturally in the study of topological rings.

1 Topological Groups

To begin with, we define a *topological group* to be a group object in **Top**. Since any morphism $\mathbf{1} \longrightarrow A$ is continuous, this reduces to the following definition:

Definition 1. A topological group is an abelian group A together with a topology on A such that the maps

$$\begin{array}{ll} a:A\times A \longrightarrow A, & (a,b)\mapsto a+b\\ & v:A \longrightarrow A, & a\mapsto -a \end{array}$$

are continuous. For any subsets $U, V \subseteq A$ we define $U + V = \{u + v | u \in U, v \in V\}$, and $-U = \{-u | u \in U\}$. The map v is clearly a homeomorphism, so if U is open then -U is also open.

Lemma 1. Let A be a topological group. If $c \in A$ then the map $A \longrightarrow A$ defined by $x \mapsto c + x$ is a homeomorphism.

Proof. The subspace $\{c\} \times A$ of $A \times A$ is clearly homeomorphic to A via $(c, b) \mapsto b$, and the restriction of a to $\{c\} \times A$ is continuous, and obviously bijective. Thus there is a continuous bijection $A \longrightarrow A$ defined by $x \mapsto c + x$. Clearly the morphism $x \mapsto -c + x$ is an inverse, and so we have a homeomorphism $x \mapsto c + x$ for each $c \in A$.

Remark 1. Let A be a topological group. If $U \subseteq A$ is open and $c \in A$ then the set $U + c = \{u + c \mid u \in U\}$ is also open. Taking unions, we see that the sum U + V of any two open sets U, V is open. If $c \in A$ then U is an open neighborhood of c if and only if U - c is an open neighborhood of 0, so the topology of A is completely determined by the open neighborhoods of 0.

Definition 2. Let X be a topological space. If $x \in X$ then a fundamental system of neighborhoods of x is a nonempty set \mathcal{M} of open neighborhoods of x with the property that if U is open and $x \in U$, then there is $V \in \mathcal{M}$ with $V \subseteq U$.

Proposition 2. Let A be a topological group. Then the set \mathcal{N} of open neighborhoods of 0 satisfies

- No. For $U \in \mathcal{N}$ and $c \in U$ there exists $V \in \mathcal{N}$ such that $c + V \subseteq U$.
- N1. For each $U \in \mathcal{N}$, there exists $V \in \mathcal{N}$ such that $V + V \subseteq U$.
- N2. If $U \in \mathcal{N}$ then $-U \in \mathcal{N}$.

If A is any abelian group and \mathcal{N} a nonempty set of subsets of A which satisfies N0, N1, N2 and has the property that (a) every element of \mathcal{N} contains 0 and (b) if $U, V \in \mathcal{N}$ then there is $W \in \mathcal{N}$ with $W \subseteq U \cap V$ then there is a unique topology on A making A into a topological group in such a way that \mathcal{N} is a fundamental system of neighborhoods of 0.

Proof. Let A be a topological group with \mathcal{N} as described. Condition N0 follows from the fact that the map $x \mapsto x - c$ is a homeomorphism. For N1, let $U \in \mathcal{N}$ be given. Since a is continuous and $(0,0) \in a^{-1}U$, there are open sets V_1, V_2 with $(0,0) \in V_1 \times V_2 \subseteq a^{-1}U$. Set $V = V_1 \cap V_2$. The condition N2 follows from the fact that v is continuous.

For the converse, let A be an abelian group and \mathcal{N} a nonempty set of subsets of A with the given properties. We define a subset $U \subseteq A$ to be open if for every $x \in U$ there is $W \in \mathcal{N}$ with $x + W \subseteq U$. It is easy to check that this is a topology. Condition N0 implies that the elements of \mathcal{N} are open sets.

Next, we claim that if U is open then c+U is open for any $c \in A$. This is clear since if $b \in c+U$ then $b-c \in U$ and so there is $V \in \mathcal{N}$ with $b-c+V \subseteq U$. Thus $b+V \subseteq c+U$, and c+U is open.

To show that A is a topological group we have to show that the maps $a : A \times A \longrightarrow A$ and $v : A \longrightarrow A$ are continuous. Let U be an open set, and suppose $(c, d) \in a^{-1}U$. Then $c + d \in U$, so there is $W \in \mathcal{N}$ such that $c + d + W \subseteq U$. Using N1, let $Q \in \mathcal{N}$ be such that $Q + Q \subseteq W$. Then

$$(c,d) \in (c+Q) \times (d+Q) \subseteq a^{-1}U$$

which shows that $a^{-1}U$ is open. Therefore a is continuous. To see that v is continuous, we have to show that if U is open then so is -U. But if $c \in -U$ there is $V \in \mathcal{N}$ such that $-c+V \subseteq U$. Hence $c+-V \subseteq -U$, and since $-V \in \mathcal{N}$ by N^2 , we are done. This shows that A is a topological group. Suppose that \mathcal{J} is another topology on A with respect to which A is a topological group, and suppose further that the set \mathcal{N} is a fundamental system of neighborhoods of 0 in this topology. It is not hard to see that this topology must agree with the one we have just defined, which is therefore unique with these properties.

2 Topological Rings

Definition 3. A topological ring is a ring A with a topology making A into an additive topological group, such that the multiplication $m : A \times A \longrightarrow A$, $(b, c) \mapsto bc$ is a continuous map. For any subsets $V, W \subseteq A$ we define $V \cdot W = \{vw \mid v \in V, w \in W\}$.

Lemma 3. Let A be a topological ring. If $c \in A$ then the maps $A \longrightarrow A$ defined by $x \mapsto cx$ and $x \mapsto xc$ are continuous.

Proof. The subspace $\{c\} \times A$ of $A \times A$ is clearly homeomorphic to A via $(c, b) \mapsto b$, and the restriction of m to $\{c\} \times A$ is continuous. The same argument works on the right. \Box

Proposition 4. Let A be a topological ring. Then the set \mathcal{N} of open neighborhoods of 0 satisfies N0, N1, N2 and also

N3. For $c \in A$ and $U \in \mathcal{N}$ there is $V \in \mathcal{N}$ such that $cV \subseteq U$ and $Vc \subseteq U$.

N4. For each $U \in \mathcal{N}$ there is $V \in \mathcal{N}$ such that $V \cdot V \subseteq U$.

Conversely, if A is any ring and \mathcal{N} a nonempty set of subsets of A which satisfies N0, N1, N2, N3 and N4 and has the property that (a) every element of \mathcal{N} contains 0 and (b) if $U, V \in \mathcal{N}$ then there is $W \in \mathcal{N}$ with $W \subseteq U \cap V$ then there is a unique topology on A making A into a topological ring in such a way that \mathcal{N} is a fundamental system of neighborhoods of 0.

Proof. Suppose that A is a topological ring. Then by Proposition 2 the set \mathcal{N} satisfies N0, N1, N2. Condition N3 follows easily from continuity of the maps $x \mapsto cx$ and $x \mapsto xc$. For N4, let $U \in \mathcal{N}$ be given and use the fact that m is continuous to find $V_1, V_2 \in \mathcal{N}$ such that $(0,0) \in V_1 \times V_2 \subseteq m^{-1}U$. Then set $V = V_1 \cap V_2$. Conversely, suppose we are given a ring A and a nonempty set of subsets of A with the given properties. With the topology defined in Proposition 2, A becomes a topological group. We have to show that with this topology, A is a topological ring.

First we show that for $c \in A$ the map $\theta : A \longrightarrow A$ defined by $x \mapsto cx$ is continuous. Let $U \subseteq A$ be open and suppose that $x \in \theta^{-1}U$, that is, $cx \in U$. By definition there is $W \in \mathcal{N}$ with $cx + W \subseteq U$. Let $V \in \mathcal{N}$ be such that $cV \subseteq W$. Then $x + V \subseteq \theta^{-1}U$. Therfore $\theta^{-1}U$ is open and θ is continuous. Similarly we show that the map $x \mapsto xc$ is continuous.

We are now ready to show that the product $m : A \times A \longrightarrow A$ is continuous. Let $U \subseteq A$ be open and suppose $(c, d) \in m^{-1}U$. Let $\theta : A \longrightarrow A$ be left multiplication by c and $\psi : A \longrightarrow A$ right multiplication by d. Then $cd \in U$, so there is $W \in \mathcal{N}$ such that $cd + W \subseteq U$. Let $Q \in \mathcal{N}$ satisfy $Q + Q \subseteq W$, and using N4, let $V \in \mathcal{N}$ be such that $V \cdot V \subseteq Q$. Let $P \in \mathcal{N}$ be such that $P + P \subseteq Q$, and set $P_d = \psi^{-1}(P) \cap Q \cap V$ and $P_c = \theta^{-1}(P) \cap Q \cap V$. Then

$$(c,d) \in (c+P_d) \times (d+P_c) \subseteq m^{-1}U$$

since for $v \in P_d$, $v' \in P_c$, $(c+v)(d+v') = cd + cv' + vd + vv' \in cd + W \subseteq U$. It follows that m is continuous, as required. It follows from Proposition 2 that this topology is the unique topology making A into a topological group with \mathcal{N} a fundamental system of neighborhoods of 0.

Definition 4. Let A be a ring. A nonempty set \mathcal{N} of subsets of A is *fundamental* if it satisfies the following conditions

- (a) Every element of \mathcal{N} contains 0.
- (b) If $U, V \in \mathcal{N}$ then there is $W \in \mathcal{N}$ with $W \subseteq U \cap V$.
- N0. For $U \in \mathcal{N}$ and $c \in U$ there exists $V \in \mathcal{N}$ such that $c + V \subseteq U$.
- N1. For each $U \in \mathcal{N}$, there exists $V \in \mathcal{N}$ such that $V + V \subseteq U$.
- N2. If $U \in \mathcal{N}$ then $-U \in \mathcal{N}$.
- N3. For $c \in A$ and $U \in \mathcal{N}$ there is $V \in \mathcal{N}$ such that $cV \subseteq U$ and $Vc \subseteq U$.
- N4. For each $U \in \mathcal{N}$ there is $V \in \mathcal{N}$ such that $V \cdot V \subseteq U$.

By Proposition 4 if A is a topological ring, then the set \mathcal{N} of open neighborhoods of 0 is fundamental. Conversely, if A is a ring and \mathcal{N} a fundamental set of subsets of A, then there is a unique topology on A making A into a topological ring in such a way that \mathcal{N} is a fundamental system of neighborhoods of 0. We call this the topology generated by \mathcal{N} .

Proposition 5. Let A be a ring and \mathcal{G} a nonempty set of right ideals. Suppose that the following conditions are satisfied

T1. If $\mathfrak{a} \in \mathcal{G}$ and $\mathfrak{a} \subseteq \mathfrak{b}$ for a right ideal \mathfrak{b} , then $\mathfrak{b} \in \mathcal{G}$.

- *T2.* If \mathfrak{a} and \mathfrak{b} belong to \mathcal{G} , then $\mathfrak{a} \cap \mathfrak{b} \in \mathcal{G}$.
- T3. If $\mathfrak{a} \in \mathcal{G}$ and $a \in A$, then $(\mathfrak{a} : a) \in \mathcal{G}$.

Then the set \mathcal{G} is fundamental, and \mathcal{G} is precisely the set of open right ideals in the generated topology on A.

Proof. The axioms (a), N0, N1, N2, N4 are trivially verified and (b) follows from T2. To check N3, let $a \in A$ and $\mathfrak{a} \in \mathcal{N}$ be given. By assumption the right ideal $(\mathfrak{a} : a) = \{x \in A \mid ax \in \mathfrak{a}\}$ belongs to \mathcal{G} . Set $\mathfrak{d} = (\mathfrak{a} : a) \cap \mathfrak{a}$, which is in \mathcal{G} by T2. Clearly $a\mathfrak{d} \subseteq \mathfrak{a}$ and $\mathfrak{d} a \subseteq \mathfrak{a}$, which shows that \mathcal{G} is fundamental. Give A the topology generated by \mathcal{G} . Every ideal in \mathcal{G} is open in this topology. If \mathfrak{b} is an open right ideal of A then $\mathfrak{b} \supseteq \mathfrak{a}$ for some $\mathfrak{a} \in \mathcal{G}$, and therefore $\mathfrak{b} \in \mathcal{G}$ by T1.

Lemma 6. Let A be a topological ring. Then the set \mathcal{G} of all open right ideals of A satisfies the conditions T1, T2, T3.

Proof. If \mathfrak{a} is open and $\mathfrak{a} \subseteq \mathfrak{b}$, then for $x \in \mathfrak{b}$ we have $x + \mathfrak{a} \subseteq \mathfrak{b}$. As the union of such open sets, \mathfrak{b} is open. The condition T2 is trivial. If \mathfrak{a} is open, $a \in A$ and $x \in (\mathfrak{a} : a)$, then $ax \in \mathfrak{a}$, and since the whole collection of open neighborhoods of 0 satisfies the condition N3, we may find a neighborhood V of 0 such that $aV \subseteq \mathfrak{a}$. Hence $x + V \subseteq (\mathfrak{a} : a)$, which is thus open. \Box

Definition 5. A *right linear topological ring* is a topological ring A which admits a fundamental system of neighborhoods of 0 consisting of right ideals (necessarily open).

Lemma 7. Let A be a topological ring. Then A is right linear topological if and only if the topology on A is the one generated by the set of all open right ideals.

Proof. Let A be a topological ring, and let \mathcal{G} be the set of all open right ideals. If the topology on A is the one generated by \mathcal{G} , then of course A is a right linear topological ring. For the converse, suppose that A is right linear topological. Then \mathcal{G} must be a fundamental system of open neighborhoods of 0, and the uniqueness part of Proposition 4 implies that the topology on A must be the one generated by \mathcal{G} .