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Consider the category Top, which is complete and cocomplete and has a terminal object 1
consisting of the singleton set {∗} with the discrete topology. Hence we can apply the ideas
of this Chapter to topological spaces. This example is particularly important since the axioms
for a Gabriel topology (and hence for Grothendieck topologies) arise naturally in the study of
topological rings.

1 Topological Groups

To begin with, we define a topological group to be a group object in Top. Since any morphism
1 −→ A is continuous, this reduces to the following definition:

Definition 1. A topological group is an abelian group A together with a topology on A such that
the maps

a : A×A −→ A, (a, b) 7→ a+ b

v : A −→ A, a 7→ −a

are continuous. For any subsets U, V ⊆ A we define U + V = {u + v |u ∈ U, v ∈ V }, and
−U = {−u |u ∈ U}. The map v is clearly a homeomorphism, so if U is open then −U is also
open.

Lemma 1. Let A be a topological group. If c ∈ A then the map A −→ A defined by x 7→ c+ x is
a homeomorphism.

Proof. The subspace {c} × A of A × A is clearly homeomorphic to A via (c, b) 7→ b, and the
restriction of a to {c} × A is continuous, and obviously bijective. Thus there is a continuous
bijection A −→ A defined by x 7→ c+ x. Clearly the morphism x 7→ −c+ x is an inverse, and so
we have a homeomorphism x 7→ c+ x for each c ∈ A.

Remark 1. Let A be a topological group. If U ⊆ A is open and c ∈ A then the set U + c =
{u+ c |u ∈ U} is also open. Taking unions, we see that the sum U + V of any two open sets U, V
is open. If c ∈ A then U is an open neighborhood of c if and only if U − c is an open neighborhood
of 0, so the topology of A is completely determined by the open neighborhoods of 0.

Definition 2. Let X be a topological space. If x ∈ X then a fundamental system of neighborhoods
of x is a nonempty set M of open neighborhoods of x with the property that if U is open and
x ∈ U , then there is V ∈M with V ⊆ U .

Proposition 2. Let A be a topological group. Then the set N of open neighborhoods of 0 satisfies

N0. For U ∈ N and c ∈ U there exists V ∈ N such that c+ V ⊆ U .

N1. For each U ∈ N , there exists V ∈ N such that V + V ⊆ U .

N2. If U ∈ N then −U ∈ N .
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If A is any abelian group and N a nonempty set of subsets of A which satisfies N0, N1, N2 and
has the property that (a) every element of N contains 0 and (b) if U, V ∈ N then there is W ∈ N
with W ⊆ U ∩ V then there is a unique topology on A making A into a topological group in such
a way that N is a fundamental system of neighborhoods of 0.

Proof. Let A be a topological group with N as described. Condition N0 follows from the fact
that the map x 7→ x− c is a homeomorphism. For N1, let U ∈ N be given. Since a is continuous
and (0, 0) ∈ a−1U , there are open sets V1, V2 with (0, 0) ∈ V1× V2 ⊆ a−1U . Set V = V1 ∩ V2. The
condition N2 follows from the fact that v is continuous.

For the converse, let A be an abelian group and N a nonempty set of subsets of A with the
given properties. We define a subset U ⊆ A to be open if for every x ∈ U there is W ∈ N with
x +W ⊆ U . It is easy to check that this is a topology. Condition N0 implies that the elements
of N are open sets.

Next, we claim that if U is open then c+U is open for any c ∈ A. This is clear since if b ∈ c+U
then b− c ∈ U and so there is V ∈ N with b− c+V ⊆ U . Thus b+V ⊆ c+U , and c+U is open.

To show that A is a topological group we have to show that the maps a : A × A −→ A and
v : A −→ A are continuous. Let U be an open set, and suppose (c, d) ∈ a−1U . Then c+ d ∈ U , so
there is W ∈ N such that c+ d+W ⊆ U . Using N1, let Q ∈ N be such that Q+Q ⊆W . Then

(c, d) ∈ (c+Q)× (d+Q) ⊆ a−1U

which shows that a−1U is open. Therefore a is continuous. To see that v is continuous, we have to
show that if U is open then so is −U . But if c ∈ −U there is V ∈ N such that −c+V ⊆ U . Hence
c+−V ⊆ −U , and since −V ∈ N by N2, we are done. This shows that A is a topological group.
Suppose that J is another topology on A with respect to which A is a topological group, and
suppose further that the set N is a fundamental system of neighborhoods of 0 in this topology.
It is not hard to see that this topology must agree with the one we have just defined, which is
therefore unique with these properties.

2 Topological Rings

Definition 3. A topological ring is a ring A with a topology making A into an additive topological
group, such that the multiplication m : A × A −→ A, (b, c) 7→ bc is a continuous map. For any
subsets V,W ⊆ A we define V ·W = {vw | v ∈ V,w ∈W}.

Lemma 3. Let A be a topological ring. If c ∈ A then the maps A −→ A defined by x 7→ cx and
x 7→ xc are continuous.

Proof. The subspace {c} × A of A × A is clearly homeomorphic to A via (c, b) 7→ b, and the
restriction of m to {c} ×A is continuous. The same argument works on the right.

Proposition 4. Let A be a topological ring. Then the set N of open neighborhoods of 0 satisfies
N0, N1, N2 and also

N3. For c ∈ A and U ∈ N there is V ∈ N such that cV ⊆ U and V c ⊆ U .

N4. For each U ∈ N there is V ∈ N such that V · V ⊆ U .

Conversely, if A is any ring and N a nonempty set of subsets of A which satisfies N0, N1, N2, N3
and N4 and has the property that (a) every element of N contains 0 and (b) if U, V ∈ N then
there is W ∈ N with W ⊆ U ∩V then there is a unique topology on A making A into a topological
ring in such a way that N is a fundamental system of neighborhoods of 0.

Proof. Suppose that A is a topological ring. Then by Proposition 2 the set N satisfies N0, N1, N2.
ConditionN3 follows easily from continuity of the maps x 7→ cx and x 7→ xc. ForN4, let U ∈ N be
given and use the fact that m is continuous to find V1, V2 ∈ N such that (0, 0) ∈ V1×V2 ⊆ m−1U .
Then set V = V1 ∩ V2.
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Conversely, suppose we are given a ring A and a nonempty set of subsets of A with the given
properties. With the topology defined in Proposition 2, A becomes a topological group. We have
to show that with this topology, A is a topological ring.

First we show that for c ∈ A the map θ : A −→ A defined by x 7→ cx is continuous. Let
U ⊆ A be open and suppose that x ∈ θ−1U , that is, cx ∈ U . By definition there is W ∈ N with
cx+W ⊆ U . Let V ∈ N be such that cV ⊆W . Then x+V ⊆ θ−1U . Therfore θ−1U is open and
θ is continuous. Similarly we show that the map x 7→ xc is continuous.

We are now ready to show that the product m : A × A −→ A is continuous. Let U ⊆ A be
open and suppose (c, d) ∈ m−1U . Let θ : A −→ A be left multiplication by c and ψ : A −→ A
right multiplication by d. Then cd ∈ U , so there is W ∈ N such that cd +W ⊆ U . Let Q ∈ N
satisfy Q+Q ⊆ W , and using N4, let V ∈ N be such that V · V ⊆ Q. Let P ∈ N be such that
P + P ⊆ Q, and set Pd = ψ−1(P ) ∩Q ∩ V and Pc = θ−1(P ) ∩Q ∩ V . Then

(c, d) ∈ (c+ Pd)× (d+ Pc) ⊆ m−1U

since for v ∈ Pd, v
′ ∈ Pc, (c+ v)(d+ v′) = cd+ cv′ + vd+ vv′ ∈ cd+W ⊆ U . It follows that m is

continuous, as required. It follows from Proposition 2 that this topology is the unique topology
making A into a topological group with N a fundamental system of neighborhoods of 0.

Definition 4. Let A be a ring. A nonempty set N of subsets of A is fundamental if it satisfies
the following conditions

(a) Every element of N contains 0.

(b) If U, V ∈ N then there is W ∈ N with W ⊆ U ∩ V .

N0. For U ∈ N and c ∈ U there exists V ∈ N such that c+ V ⊆ U .

N1. For each U ∈ N , there exists V ∈ N such that V + V ⊆ U .

N2. If U ∈ N then −U ∈ N .

N3. For c ∈ A and U ∈ N there is V ∈ N such that cV ⊆ U and V c ⊆ U .

N4. For each U ∈ N there is V ∈ N such that V · V ⊆ U .

By Proposition 4 if A is a topological ring, then the set N of open neighborhoods of 0 is funda-
mental. Conversely, if A is a ring and N a fundamental set of subsets of A, then there is a unique
topology on A making A into a topological ring in such a way that N is a fundamental system of
neighborhoods of 0. We call this the topology generated by N .

Proposition 5. Let A be a ring and G a nonempty set of right ideals. Suppose that the following
conditions are satisfied

T1. If a ∈ G and a ⊆ b for a right ideal b, then b ∈ G.

T2. If a and b belong to G, then a ∩ b ∈ G.

T3. If a ∈ G and a ∈ A, then (a : a) ∈ G.

Then the set G is fundamental, and G is precisely the set of open right ideals in the generated
topology on A.

Proof. The axioms (a), N0, N1, N2, N4 are trivially verified and (b) follows from T2. To check
N3, let a ∈ A and a ∈ N be given. By assumption the right ideal (a : a) = {x ∈ A | ax ∈ a}
belongs to G. Set d = (a : a)∩a, which is in G by T2. Clearly ad ⊆ a and da ⊆ a, which shows that
G is fundamental. Give A the topology generated by G. Every ideal in G is open in this topology.
If b is an open right ideal of A then b ⊇ a for some a ∈ G, and therefore b ∈ G by T1.

Lemma 6. Let A be a topological ring. Then the set G of all open right ideals of A satisfies the
conditions T1, T2, T3.
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Proof. If a is open and a ⊆ b, then for x ∈ b we have x+ a ⊆ b. As the union of such open sets,
b is open. The condition T2 is trivial. If a is open, a ∈ A and x ∈ (a : a), then ax ∈ a, and
since the whole collection of open neighborhoods of 0 satisfies the condition N3, we may find a
neighborhood V of 0 such that aV ⊆ a. Hence x+ V ⊆ (a : a), which is thus open.

Definition 5. A right linear topological ring is a topological ring A which admits a fundamental
system of neighborhoods of 0 consisting of right ideals (necessarily open).

Lemma 7. Let A be a topological ring. Then A is right linear topological if and only if the topology
on A is the one generated by the set of all open right ideals.

Proof. Let A be a topological ring, and let G be the set of all open right ideals. If the topology
on A is the one generated by G, then of course A is a right linear topological ring. For the
converse, suppose that A is right linear topological. Then G must be a fundamental system of
open neighborhoods of 0, and the uniqueness part of Proposition 4 implies that the topology on
A must be the one generated by G.
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