The Proj Construction

Daniel Murfet

May 16, 2006

Contents

1 Basic Properties ... 1
2 Functorial Properties 2
3 Products ... 6
4 Linear Morphisms .. 9
5 Projective Morphisms 9
6 Dimensions of Schemes 11
7 Points of Projective Space 12

1 Basic Properties

Definition 1. Let A be a ring. A graded A-algebra is an A-algebra R which is also a graded ring in such a way that if $r \in R_d$ then $ar \in R_d$ for all $a \in A$. That is, R_d is an A-submodule of R for all $d \geq 0$. Equivalently a graded A-algebra is a morphism of graded rings $A \rightarrow R$ where we grade A by setting $A_0 = A$, $A_n = 0$ for $n > 0$. A morphism of graded A-algebras is a morphism of A-algebras which preserves grade. Equivalently, this is a morphism of graded rings which is also a morphism of A-modules, or a morphism of graded rings $R \rightarrow S$ making the following diagram commute

\[
\begin{array}{c}
R \\
\downarrow \searrow \searrow A \\
\nearrow \nearrow \nearrow S \\
\end{array}
\]

Let S be a graded A-algebra, and let $X = ProjS$. Then there is a canonical morphism of rings $\theta : A \rightarrow \Gamma(X, ProjS)$ defined by $\theta(a)(p) = a/1 \in S(p)$. Where as usual, a denotes the element $a \cdot 1$ of S. By Ex 2.4 this induces a morphism of schemes $f : ProjS \rightarrow SpecA$. If $\gamma : A \rightarrow S$ gives the A-algebra structure on S, then an element $a \in A$ is mapped to the maximal ideal of $O_{ProjS,p}$ via $A \rightarrow \Gamma(X, ProjS) \rightarrow O_{ProjS,p}$ if and only if $a \in \gamma^{-1}p$. We denote this prime ideal by $A \cap p$. Let $\kappa_p : A_{f(p)} \rightarrow S(p)$ be defined by $\kappa_p(a/s) = a/s$. Then

\[
f : ProjS \rightarrow SpecA \\
f(p) = p \cap A \\
f^*_U(t)(p) = \kappa_p(t(f(p)))
\]
So the projective space over any graded A-algebra is a scheme over A. In particular there is a canonical morphism of schemes $\mathbb{P}^n_A \to \text{Spec}A$. Notice that if $e \in S_+$ is homogenous then the composite of the open immersion $\text{Spec}(S_{(e)}) \cong D_+(e) \to \text{Proj}S$ with f is the morphism of schemes corresponding to the canonical map $A \to S_{(e)}$ defined by $a \mapsto a/1$.

Proposition 1. If S is a graded A-algebra then the morphism $f : \text{Proj}S \to \text{Spec}A$ is separated. In particular $\text{Proj}S$ is separated for any graded ring S.

Proof. The open sets $D_+(a)$ for homogenous $a \in S_+$ are an open cover of $\text{Proj}S$. Therefore the open sets $D_+(a) \times_A D_+(b)$ are an open cover of $\text{Proj}S \times_A \text{Proj}S$, and the inverse image of this open set under the diagonal $\text{Proj}S \to \text{Proj}S \times_A \text{Proj}S$ is clearly $D_+(a) \cap D_+(b) = D_+(ab)$. Since the property of being a closed immersion is local on the base, we reduce to showing that the morphism $D_+(ab) \to D_+(a) \times_A D_+(b)$ is a closed immersion. Since we know that this gives the canonical morphisms $D_+(ab) \to D_+(a)$, $D_+(ab) \to D_+(b)$ when composed with the projections, the corresponding morphism of A-algebras is the morphism $\alpha : S(a) \otimes_A S(b) \to S(ab)$ induced by the canonical morphisms $S(a) \to S(ab)$. Since α is clearly surjective, the proof is complete.

Proposition 2. If S is a noetherian graded ring then $\text{Proj}S$ is a noetherian scheme.

Proof. For any homogenous $f \in S_+$ the ring $S_{(f)}$ is noetherian (GRM, Corollary 15). Since S is noetherian the ideal S_+ admits a finite set of homogenous generators f_1, \ldots, f_p and the schemes $D_+(f_i) \cong \text{Spec}S_{(f_i)}$ cover $\text{Proj}S$. Therefore $\text{Proj}S$ is noetherian.

Proposition 3. If S is a finitely generated graded A-algebra, then the scheme $\text{Proj}S$ is of finite type over $\text{Spec}A$.

Proof. The hypothesis imply that S_0 is a finitely generated A-algebra, and that S is a finitely generated S_0-algebra. Therefore S_+ is a finitely generated ideal (GRM, Corollary 8). So using the argument of Proposition 2 we reduce to showing that for homogenous $f \in S_+$, $S_{(f)}$ is a finitely generated A-algebra. By (GRM, Proposition 14) it suffices to show that $S^{(d)}$ is a finitely generated A-algebra, which follows from (GRM, Lemma 11).

Proposition 4. If S is a graded domain with $S_+ \neq 0$ then $\text{Proj}S$ is an integral scheme.

Proof. By (3.1) it is enough to show that $\text{Proj}S$ is reduced and irreducible. By assumption the zero ideal 0 is a homogenous prime ideal, so $\text{Proj}S$ has a generic point and is therefore irreducible. The scheme $\text{Proj}S$ is covered by open subsets isomorphic to schemes $\text{Spec}S_{(f_i)}$ for nonzero homogenous $f \in S_+$, and it is clear that $S_{(f)}$ is an integral domain. This shows that $\text{Proj}S$ is reduced and therefore integral.

Corollary 5. Let A be a ring and consider the scheme \mathbb{P}^n_A for $n \geq 1$. Then

(i) The morphism $\mathbb{P}^n_A \to \text{Spec}A$ is separated and of finite type.

(ii) If A is noetherian then so is \mathbb{P}^n_A.

(iii) If A is an integral domain, then \mathbb{P}^n_A is an integral scheme.

2 **Functorial Properties**

Let $\varphi : S \to T$ be a morphism of graded rings, $G(\varphi)$ the open subset $\{p \in \text{Proj}T | p \not\subseteq \varphi(S_+)\}$ and induce the following morphism of schemes using Ex 2.14:

$$\Phi : G(\varphi) \to \text{Proj}S$$

$$\Phi(p) = \varphi^{-1}p$$

$$\Phi^*(s)(p) = \varphi(p)(s(\varphi^{-1}p))$$
Here \(\varphi(p) : S(\varphi^{-1}p) \longrightarrow T(p) \) is defined by \(a/s \mapsto \varphi(a)/\varphi(s) \). If \(\varphi \) is an isomorphism of graded rings with inverse \(\psi \) then clearly \(G(\varphi) = \text{Proj}T, G(\psi) = \text{Proj}S \) and one checks that if \(\Psi : \text{Proj}S \longrightarrow \text{Proj}T \) is induced by \(\psi \) then \(\Phi \Psi = 1 \) and \(\Psi \Phi = 1 \) so that \(\text{Proj}S \cong \text{Proj}T \). More generally, let \(\varphi : S \longrightarrow T \) and \(\psi : T \longrightarrow S \) be morphisms of graded rings. Then \(G(\psi \varphi) \subseteq G(\psi) \). Let \(\Phi : G(\varphi) \longrightarrow \text{Proj}S \) and \(\Psi : G(\psi) \longrightarrow \text{Proj}T \) be induced as above, and let \(\Omega \) be induced by the composite \(\psi \varphi \). Then \(\Psi G(\psi \varphi) \subseteq G(\varphi) \) and it is readily checked that the following diagram of schemes commutes:

\[
\begin{array}{ccc}
\text{Proj} S & \xrightarrow{\Omega} & G(\psi \varphi) \\
\Phi \downarrow & & \Psi_{|G(\psi \varphi)} \downarrow \\
G(\varphi) & & \\
\end{array}
\]

If \(\varphi : S \longrightarrow T \) is a morphism of graded \(A \)-algebras for some ring \(A \), then \(\Phi : G(\varphi) \longrightarrow \text{Proj}S \) is a morphism of schemes over \(A \), where \(G(\varphi), \text{Proj}S \) are \(A \)-schemes in the canonical way. Also if \(\varphi : S \longrightarrow S \) is the identity, clearly \(G(\varphi) = \text{Proj}S \) and \(\Phi \) is the identity.

For any graded ring \(S \) and homogenous \(f \in S_+ \) there is an isomorphism of schemes \(\text{Spec}(S(f)) \cong D_+(f) \). We claim that this isomorphism is natural with respect to morphisms of graded rings, in the following sense.

Lemma 6. Let \(\varphi : S \longrightarrow T \) be a morphism of graded rings and \(\Phi : G(\varphi) \longrightarrow \text{Proj}S \) the induced morphism of schemes. If \(f \in S_+ \) is homogenous then \(\Phi^{-1}D_+(f) = D_+(\varphi(f)) \) and the following diagram commutes:

\[
\begin{array}{ccc}
\text{Spec}(T(\varphi(f))) & \longrightarrow & \text{Spec}(S(f)) \\
\bigg\downarrow & & \bigg\downarrow \\
D_+(\varphi(f)) & \longrightarrow & D_+(f) \\
\end{array}
\]

where the top morphism corresponds to \(\varphi(f) : S(f) \longrightarrow T(\varphi(f)) \) defined by \(s/f^n \mapsto \varphi(s)/\varphi(f)^n \), and the bottom morphism is the restriction of \(\Phi \).

Proof. By (H, Ex.2.4) it suffices to check that the diagram commutes on global sections of \(\text{Spec}(S(f)) \), which follows immediately from the definition of \(\Phi \) and the explicit form of the vertical isomorphisms given in our Section 2.2 notes.

Lemma 7. Let \(S \) be a graded ring and \(f, g \in S_+ \) homogenous elements. Then the following diagram commutes

\[
\begin{array}{ccc}
\text{Spec}(S(f)) & \longrightarrow & D_+(f) \\
\bigg\downarrow & & \bigg\downarrow \\
\text{Spec}(S(fg)) & \longrightarrow & D_+(fg) \\
\end{array}
\]

where the vertical morphism on the left corresponds to the ring morphism \(S(f) \longrightarrow S(fg) \) defined by \(s/f^n \mapsto sg^n/(fg)^n \).

Proof. By (H, Ex.2.4) it suffices to check that the diagram commutes on global sections of \(\text{Spec}(S(f)) \). But this is easy to check, using the explicit form of the isomorphisms given in our Section 2.2 notes.
Lemma 8. Let $\varphi : S \to T$ be a morphism of graded rings and suppose $f \in T_0$ is a unit. Let $\varphi_f : S \to T$ be the following morphism of graded rings

$$
\varphi_f(s) = \sum_{d \geq 0} f^d \varphi(s_d)
$$

Then $G(\varphi) = G(\varphi_f)$ and the induced morphisms $G(\varphi) \to \text{Proj} S$ are the same.

Proposition 9. Let S be a graded ring and $e > 0$. The morphism of graded rings $\varphi : S^{[e]} \to S$ induces an isomorphism of schemes $\Phi : \text{Proj} S \to \text{Proj} S^{[e]}$ natural in S.

Proof. We defined the graded ring $S^{[e]}$ in (GRM, Definition 6). The inclusion $\varphi : S^{[e]} \to S$ is a morphism of graded rings. It is clear that $G(\varphi) = \text{Proj} S$, so we get a morphism of schemes $\Phi : \text{Proj} S \to \text{Proj} S^{[e]}$. If a is a homogenous ideal of S then $a \cap S^{[e]}$ is homogenous ideal of $S^{[e]}$, and it is not hard to see that for a homogenous prime ideal p we have $p \supseteq a$ if and only if $p \cap S^{[e]} \supseteq a \cap S^{[e]}$. In particular this shows that Φ is injective.

To see that it is surjective, let q' be a homogenous prime ideal of $S^{[e]}$. Then the ideal q generated by q' in S is homogenous and it is not difficult to check that $q \cap S^{[e]} = q'$. We claim that the homogenous ideal $p = \sqrt{q}$ is prime. If $a \in S_m$ and $b \in S_n$ are such that $ab \in p$ then $(ab)^{ke} \in q'$ for some $k > 0$ and therefore either $a^{ke} \in q'$ or $b^{ke} \in q'$, which shows that $a \in p$ or $b \in p$. Clearly $p \cap S^{[e]} = q'$ and if $q' \not\supseteq S^{[e]}$ then $p \not\supseteq S^+$, which shows that Φ is surjective. Our arguments in the previous paragraph also imply that $\Phi(V(a)) = V(a \cap S^{[e]})$ for any homogenous ideal a, so Φ is in fact a homeomorphism.

For homogenous $f \in S^+$ we have $D_+(f) = D_+(f^e)$ and it is clear that for $f \in S^+_e$ we have $\Phi(D_+(f)) = D_+(f)$. The induced morphism of rings $S^{[e]}_{(f)} \to S_{(f)}$ is the morphism $\varphi_f(f)$ which is clearly an isomorphism. This proves that $\Phi : \text{Proj} S \to \text{Proj} S^{[e]}$ is an isomorphism.

This isomorphism is natural in S in the following sense. Suppose $\psi : S \to T$ is a morphism of graded rings, $\psi^{[e]} : S^{[e]} \to T^{[e]}$ the induced morphism of graded rings. It is not hard to check that the isomorphism $\text{Proj} T \cong \text{Proj} T^{[e]}$ identifies the open subsets $G(\psi)$ and $G(\psi^{[e]})$ and that the following diagram commutes:

$$
\begin{array}{ccc}
G(\psi) & \xrightarrow{\psi} & \text{Proj} S \\
\downarrow & & \downarrow \\
G(\psi^{[e]}) & \xrightarrow{\psi^{[e]}} & \text{Proj} S^{[e]}
\end{array}
$$

which completes the proof.

Definition 2. Let S be a graded ring and $e > 0$. Let $S[e]$ denote the graded ring with the same ring structure as S, but with the inflated grading

$$
S[e] = S_0 \oplus 0 \oplus \cdots \oplus 0 \oplus S_1 \oplus 0 \oplus \cdots
$$

so $(S[e])_0 = S_0$, $(S[e])_e = S_1$, $(S[e])_{2e} = S_2$ and so on. It is not hard to see that an ideal $a \subseteq S$ is homogenous in S iff. it is homogenous in $S[e]$, so as topological spaces we have $\text{Proj} S = \text{Proj} S[e]$. Moreover for a homogenous prime ideal p we have an equality of rings $S[p] = (S[e])[p]$, and therefore the sheaves of rings are also the same. Hence we have an equality of schemes $\text{Proj} S = \text{Proj} S[e]$.

Example 1. For a graded ring S and $e > 0$ it is clear that $S^{[e]}[e] = S[e]$. Therefore as schemes there is an equality $\text{Proj} S^{[e]} = \text{Proj} S[e]$.

Corollary 10. Let S be a graded ring and $e > 0$. There is a canonical isomorphism of schemes $\Phi : \text{Proj} S \to \text{Proj} S^{[e]}$ natural in S.

\[\square\]
Proof. The isomorphism is the equality $\text{Proj}S^{(e)} = \text{Proj}S^{[e]}$ followed by the isomorphism of Proposition 9. Naturality in S means that for a morphism of graded rings $\theta : S \to T$ with induced morphism of graded rings $\theta^{(e)} : S^{(e)} \to T^{(e)}$ the isomorphism $\text{Proj}S \cong \text{Proj}S^{(e)}$ identifies $G(\theta)$ and $G(\theta^{(e)})$ and the following diagram commutes

\[
\begin{array}{ccc}
G(\theta) & \cong & \text{Proj}S \\
\downarrow & & \downarrow \\
G(\theta^{(e)}) & \cong & \text{Proj}S^{(e)}
\end{array}
\]

This follows easily from the naturality of Proposition 9.

\textbf{Proposition 11.} Let S be a graded A-algebra generated by S_1 as an A-algebra. Let S' be the graded A-algebra defined by $S'_0 = A$, $S'_d = S_d$ for $d > 0$. Then the canonical morphism of graded A-algebras $S' \to S$ induces an isomorphism of A-schemes $\text{Proj}S' \to \text{Proj}S$ natural in S.

Proof. We make the direct sum $S' = A \oplus \bigoplus_{d \geq 1} S_d$ into a graded A-algebra in the canonical way (see our note on Constructing Graded Algebras). Let $\varphi : S' \to S$ be induced by $A \to S$ and all the inclusions $S_d \to A$. This is a morphism of graded A-algebras. It is clear that $G(\varphi) = \text{Proj}S$, so let $\Phi : \text{Proj}S \to \text{Proj}S'$ be the induced morphism of schemes. It follows from (GRM, Lemma 17) that Φ is injective and from (GRM, Proposition 18), (GRM, Lemma 17) that Φ is surjective. For a homogenous ideal a of S we have $\Phi(V(a)) = V(\varphi^{-1}a)$ (GRM, Lemma 16) so Φ is a homeomorphism. To show that Φ is an isomorphism of schemes it suffices by Lemma 1 to show that for $d > 0$ and $f \in S_d$ the following ring morphism is bijective

\[
\varphi(f) : S'_{(f)} \to S_{(f)}
\]

This map is clearly surjective. To see that it is injective, suppose a/f^n maps to zero in $S_{(f)}$. If $n > 0$ then $a \in S_{nd}$ and $f^k a = 0$ for some $k \geq 0$ implies that $a/f^n = 0$ in $S'_{(f)}$. If $n = 0$ and $a \in A$ then we can write $a/1 = a/f$ and reduce to the case where $n > 0$. This shows that $\varphi(f)$ is an isomorphism and completes the proof that Φ is an isomorphism of schemes.

To prove naturality, let $\psi : S \to T$ be a morphism of graded A-algebras, where T is also generated by T_1 as an A-algebra. There is an induced morphism of graded A-algebras $\psi' = 1 \oplus \bigoplus_{d \geq 1} \psi_d : S' \to T'$ making the following diagram commute

\[
\begin{array}{ccc}
S & \xrightarrow{\psi} & T \\
\uparrow & & \uparrow \\
S' & \xrightarrow{\psi'} & T'
\end{array}
\]

We claim that the isomorphisms $\Phi_S : \text{Proj}S \to \text{Proj}S'$ and $\Phi_T : \text{Proj}T \to \text{Proj}T'$ are natural in the sense that Φ_T identifies the open subsets $G(\psi)$ and $G(\psi')$ and the following diagram commutes

\[
\begin{array}{ccc}
G(\psi) & \xrightarrow{\psi} & \text{Proj}S \\
\downarrow & & \downarrow \\
G(\psi') & \xrightarrow{\psi'} & \text{Proj}S'
\end{array}
\]

The details are easily checked.

\textbf{Definition 3.} Let $\varphi : S \to T$ be a morphism of graded rings. We say that φ is a quasi-monomorphism, quasi-epimorphism or quasi-isomorphism if it has this property as a morphism of graded S-modules (GRM, Definition 10).
Corollary 12. Let \(\varphi : S \rightarrow T \) be a morphism of graded \(A \)-algebras where \(S \) is generated by \(S_1 \) as an \(A \)-algebra and \(T \) is generated by \(T_1 \) as an \(A \)-algebra. If \(\Phi : G(\varphi) \rightarrow \text{Proj}S \) is the induced morphism of schemes then

(i) If \(\varphi \) is a quasi-epimorphism then \(G(\varphi) = \text{Proj}T \) and \(\Phi \) is a closed immersion.

(ii) If further \(\varphi \) is a quasi-isomorphism then \(\Phi \) is an isomorphism.

Proof. Using Proposition 11 we can assume that \(S_0 = A \) and \(T_0 = A \). If \(\varphi \) is a quasi-epimorphism (resp. quasi-isomorphism) then for some \(e > 0 \) the morphism \(\varphi^{(e)} : S^{(e)} \rightarrow T^{(e)} \) is surjective (resp. bijective) so by Corollary 10 we can reduce to proving that if \(\varphi \) is surjective then \(\Phi \) is a closed immersion, and further that if \(\varphi \) is an isomorphism then so is \(\Phi \). But we proved the former claim in our solution to (H,Ex.3.12) and the latter claim is trivial.

Remark 1. Note that if \(S \) is a graded \(A \)-algebra and \(S' \) denotes the graded \(A \)-algebra \(S'_0 = A, S'_d = S_d \) for \(d > 0 \) defined in Proposition 11 then the canonical morphism of graded \(A \)-algebras \(\varphi : S' \rightarrow S \) is trivially a quasi-isomorphism.

Proposition 13. Let \(\varphi : S \rightarrow T \) be a quasi-isomorphism of graded \(A \)-algebras with \(S_0 = A \) and \(T_0 = A \). Then there is an integer \(E > 0 \) such that for all \(e \geq E \), \(\varphi^{(e)} : S^{(e)} \rightarrow T^{(e)} \) is an isomorphism of graded \(A \)-algebras.

Proof. Let \(E > 0 \) be large enough that \(\varphi_n : S_n \rightarrow T_n \) is bijective for all \(n \geq E \). Then it is not hard to see that \(\varphi^{(e)} : S^{(e)} \rightarrow T^{(e)} \) is an isomorphism for \(e \geq E \).

3 Products

Lemma 14. Let \(A, B \) be rings, \(S \) a graded \(A \)-algebra, and \(T \) a graded \(B \)-algebra. Let \(\psi : A \rightarrow B \) be a morphism of rings and \(\varphi : S \rightarrow T \) a morphism of graded rings making the following diagram commute:

\[
\begin{array}{ccc}
A & \overset{\psi}{\longrightarrow} & B \\
\downarrow & & \downarrow \\
S & \overset{\varphi}{\longrightarrow} & T
\end{array}
\] \hspace{1cm} (2)

Then the following diagram commutes, where \(\Psi = \text{Spec}(\psi) \) and the vertical morphisms are canonical:

\[
\begin{array}{ccc}
G(\varphi) & \overset{\Phi}{\longrightarrow} & \text{Proj}S \\
\downarrow & & \downarrow \\
\text{Spec}B & \overset{\Psi}{\longrightarrow} & \text{Spec}A
\end{array}
\] \hspace{1cm} (3)

Proof. The open sets \(D_+(f) \subseteq \text{Proj}S \) for homogenous \(f \in S_+ \) are an open cover, so the open sets \(D_+(\varphi(f)) = \Phi^{-1}D_+(f) \) for homogenous \(f \in S_+ \) must be an open cover of \(G(\varphi) \). So it suffices to show that the two legs of the diagram agree when composed with \(\text{Spec}(T(\varphi(f))) \rightarrow G(\varphi) \) for every homogenous \(f \in S_+ \). Using the commutativity of (1), this reduces to checking commutativity of the following diagram of rings, where the vertical morphisms are canonical:

\[
\begin{array}{ccc}
T(\varphi(f)) & \overset{\varphi(f)}{\longleftarrow} & S(f) \\
\downarrow & & \downarrow \\
B & \overset{\varphi}{\longleftarrow} & A
\end{array}
\] \hspace{1cm} (4)

But this square is trivially commutative, completing the proof. Alternatively, use the fact that morphisms into \(\text{Spec}A \) are in bijection with ring morphisms out of \(A \) and just check the diagram on global sections. \(\square \)
Proposition 15. Let A, B be rings, S a graded A-algebra, $\psi : A \longrightarrow B$ a morphism of rings. Then $T = S \otimes_A B$ is a graded B-algebra and $\text{Proj} T = \text{Proj} S \times_A \text{Spec} B$.

Proof. Consider A, B as graded rings in the canonical way. Then S and B become graded A-modules, so the tensor product $S \otimes_A B$ becomes a graded B-algebra (GRM, Section 6) with grading

$$(S \otimes_A B)_n = \left\{ \sum_i s_i \otimes b_i \mid s_i \in S_n, b_i \in B \right\}.$$

The map $\varphi : S \longrightarrow T$ defined by $\varphi(s) = s \otimes 1$ is a morphism of graded rings, which makes the diagram (2) commute. Since $T_+ = S_+ \otimes_A B$ is a B-module by $\varphi(S_+)$ it follows that $G(\varphi) = \text{Proj} T$ and we get a morphism of schemes $\Phi : \text{Proj} T \longrightarrow \text{Proj} S$ fitting into a commutative diagram

\[
\begin{array}{ccc}
\text{Proj} T & \xrightarrow{\Phi} & \text{Proj} S \\
\downarrow & & \downarrow \\
\text{Spec} B & \xrightarrow{\varphi} & \text{Spec} A \\
\end{array}
\]

(5)

We have to show that this diagram is a product of schemes over $\text{Spec} A$. The open sets $D_+(f)$ for homogenous $f \in S_+$ cover $\text{Proj} S$ and by our earlier notes on the local nature of products, it suffices to show that $D_+(\varphi(f)) = \Phi^{-1}D_+(f)$ is a product for $D_+(f)$ and $\text{Spec} B$ over $\text{Spec} A$ for all homogenous $f \in S_+$. Using commutativity of (1) we reduce this to showing that the following diagram is a pullback:

\[
\begin{array}{ccc}
\text{Spec}(T_{(\varphi(f))}) & \longrightarrow & \text{Spec}(S(f)) \\
\downarrow & & \downarrow \\
\text{Spec}(B) & \longrightarrow & \text{Spec}(A) \\
\end{array}
\]

Which is equivalent to showing that (4) is a pushout of rings. The map $S_f \times B \longrightarrow T_{(\varphi(f))}$ defined by $(s/f^n, b) \mapsto (s \otimes b)/\varphi(f)^n$ is well-defined and A-bilinear, so induces $S_f \otimes_A B \longrightarrow T_{(\varphi(f))}$, which is easily checked to be a morphism of rings. The canonical map $S \longrightarrow S_f$ is a morphism of A-modules, so there is a well-defined morphism $T = S \otimes_A B \longrightarrow S_f \otimes_A B$ defined by $s \otimes b \mapsto s/1 \otimes b$. This is a morphism of rings mapping multiples of $\varphi(f) = f \otimes 1$ to units, so it induces a morphism of rings $T_{(\varphi(f))} \longrightarrow S_f \otimes_A B$ defined by $(s \otimes b)/\varphi(f)^n \mapsto s/f^n \otimes b$. Since we have already constructed the inverse, this is an isomorphism of rings $T_{(\varphi(f))} \cong S_f \otimes_A B$.

The ring S_f is a \mathbb{Z}-graded ring, and thus can be considered as a graded A-module. The ring $S_f \otimes_A B$ is therefore also \mathbb{Z}-graded. Putting the canonical \mathbb{Z}-grading on $T_{(\varphi(f))}$ it is easily checked that $T_{(\varphi(f))} \cong S_f \otimes_A B$ is an isomorphism of \mathbb{Z}-graded rings, which restricts to give an isomorphism of the degree zero subrings $T_{(\varphi(f))} \cong (S_f \otimes_A B)_0$. We have to show that this latter ring is isomorphic as a ring to $S_{(f)} \otimes_A B$.

Let $\alpha : S_f \otimes_{\mathbb{Z}} B \longrightarrow S_f \otimes_A B$ be canonical (GRM, Section 6). The kernel of α is the abelian group P^\prime generated by elements $(a \cdot x) \otimes b - x \otimes (a \cdot b)$ where x is homogenous. The morphism of groups $S_{(f)} \otimes_{\mathbb{Z}} B \longrightarrow S_f \otimes_{\mathbb{Z}} B$ is injective since $S_{(f)}$ is a direct summand of S_f and tensor products preserve colimits. Therefore the group $S_{(f)} \otimes_{\mathbb{Z}} B$ is isomorphic to its image in $S_f \otimes_{\mathbb{Z}} B$, which is mapped by α onto $(S_f \otimes_A B)_0$. So there is an isomorphism of abelian groups $(S_{(f)} \otimes_{\mathbb{Z}} B)/P^\prime \cong (S_f \otimes_A B)_0$ where $P^\prime = P^\prime \cap (S_{(f)} \otimes_{\mathbb{Z}} B)$. But since $S_{(f)} \otimes_{\mathbb{Z}} B$ can be identified with the degree zero subring of $S_f \otimes_{\mathbb{Z}} B$, P^\prime is generated as an abelian group by elements $(a \cdot x) \otimes b - x \otimes (a \cdot b)$ where x is homogenous of degree zero, that is, $x \in S_{(f)}$. Hence there is an isomorphism of abelian groups

$$(S_f) \otimes_A B \cong (S_{(f)} \otimes_{\mathbb{Z}} B)/P^\prime \cong (S_f \otimes_A B)_0$$

$s/f^n \otimes b \mapsto s/f^n \otimes b$

So finally we have an isomorphism of rings $T_{(\varphi(f))} \cong S_{(f)} \otimes_A B$ defined by $(s \otimes b)/\varphi(f)^n \mapsto s/f^n \otimes b$. Using this isomorphism one checks easily that (4) is a pushout, completing the proof. \qed
Let $\psi : A \rightarrow B$ be a morphism of rings ($n \geq 0$) and $\varphi : A[x_0, \ldots, x_n] \rightarrow B[x_0, \ldots, x_n]$ the morphism of graded rings induced by ψ. Then it is not difficult to check that the following diagram is a pushout of rings:

$$
\begin{array}{c}
A \xrightarrow{\psi} B \\
A[x_0, \ldots, x_n] \xrightarrow{\varphi} B[x_0, \ldots, x_n]
\end{array}
$$

By uniqueness of the pushout, there is an isomorphism of rings $B[x_0, \ldots, x_n] \cong B \otimes_A A[x_0, \ldots, x_n]$. Similarly $x_i \mapsto 1 \otimes x_i$ induces an isomorphism of rings $\theta : B[x_0, \ldots, x_n] \rightarrow A[x_0, \ldots, x_n] \otimes_A B$. If we give the tensor product the canonical graded structure, these are isomorphisms of graded rings. Note that $\theta \varphi$ is just the canonical map of $A[x_0, \ldots, x_n]$ into the tensor product. Now let $n \geq 1$ and $T = A[x_0, \ldots, x_n] \otimes_A B$. Then $G(\varphi) = \mathbb{P}_B^n$ and $G(\theta) = G(\theta \varphi) = \text{Proj} T$. Let $\Omega : \text{Proj} T \rightarrow \mathbb{P}^n_A$ be induced by $\theta \varphi$. Consider the following diagram:

![Diagram](image)

All unmarked morphisms are the canonical ones, and by the previous Proposition the square is a pullback. The top triangle commutes by the results of the previous section. To check commutativity of the left triangle, we need only check the two legs give the same morphism on global sections (morphisms into $\text{Spec} B$ are in bijection with ring morphisms out of B). An element $b \in B$ determines the global section $q \mapsto b/1$ of \mathbb{P}_B^n and $p \mapsto (1 \otimes b)/1$ of $\text{Proj} T$. These clearly correspond under the localisations of θ, so (6) commutes. Hence the outside square is a pullback, and we have proved the following result.

Proposition 16. Let $\psi : A \rightarrow B$ be a morphism of rings and for $n \geq 1$ let $\varphi : A[x_0, \ldots, x_n] \rightarrow B[x_0, \ldots, x_n]$ be the corresponding morphism of graded rings. Then the following diagram is a pullback:

$$
\begin{array}{c}
\mathbb{P}_B^n \xrightarrow{\Phi} \mathbb{P}^n_B \\
\text{Spec} B \xrightarrow{\theta} \text{Spec} A
\end{array}
$$

In other words, $\mathbb{P}_B^n = \text{Spec} B \times_{\text{Spec} A} \mathbb{P}^n_A$. In particular, for any ring A we have $\mathbb{P}^n_A = \text{Spec} A \times \mathbb{P}^n_Z$.

One could probably run all the proofs with $n = 0$, but since in that case $\mathbb{P}_A^n \rightarrow \text{Spec} A$ and $\mathbb{P}_B^n \rightarrow \text{Spec} B$ are isomorphisms, the diagram in the proposition is trivially a pullback.
4 Linear Morphisms

Let A be a ring $n, m \geq 0$ and $f_0(x_0, \ldots, x_n), \ldots, f_m(x_0, \ldots, x_n) \in A[x_0, \ldots, x_n]$ homogenous polynomials of degree 1. Then we define

$$\phi : A[y_0, \ldots, y_m] \longrightarrow A[x_0, \ldots, x_n]$$

$$\phi(y_i) = f_i(x_0, \ldots, x_n)$$

This is a morphism of graded A-algebras, hence induces a morphism of schemes $\Phi : G(\phi) \longrightarrow \mathbb{P}_A^n$. Here

$$G(\phi) = \{ p \in \mathbb{P}_A^m | p \not\subseteq \phi(S_i) \}$$

$$= \{ p \in \mathbb{P}_A^m | p \not\subseteq \{ f_0, \ldots, f_m \} \}$$

$$= \bigcup_{i=0}^m D_+(f_i)$$

For example, suppose $m \geq 1$ and $0 \leq i \leq m$ and let $\phi_i : A[x_0, \ldots, x_m] \longrightarrow A[x_0, \ldots, x_m-1]$ be the morphism of graded A-algebras determined by the following assignments: $x_0 \mapsto x_0, \ldots, x_i \mapsto x_i, \ldots, x_m \mapsto x_m-1$ and $x_i \mapsto 0$. Then clearly $G(\phi_i) = \mathbb{P}_A^{m-1}$ and so we have a morphism of schemes

$$\Phi_i : \mathbb{P}_A^{m-1} \longrightarrow \mathbb{P}_A^n$$

The morphism ϕ_i is surjective, so by Ex 3.12 the morphism Φ_i is a closed immersion whose image is the closed set $V(Ker\phi) = V((x_i)) = \mathbb{P}_A^m - D_+(x_i)$. So for $m \geq 1$ there are $m + 1$ closed immersions of \mathbb{P}_A^{m-1} in \mathbb{P}_A^n. Notice that the following diagram also commutes for any $0 \leq i \leq m$:

$$\begin{array}{ccc}
\mathbb{P}_A^{m-1} & \xrightarrow{\Phi_i} & \mathbb{P}_A^n \\
\downarrow & & \downarrow \\
SpecA & & SpecA
\end{array}$$

In particular there are two closed immersions $SpecA \cong \mathbb{P}_A^0 \longrightarrow \mathbb{P}_A^1$. Also note that for $n \geq 1$ and $0 \leq i \leq n$ the open set $D_+(x_i)$ of \mathbb{P}_A^n is isomorphic to $SpecA[x_0, \ldots, x_n](x_i)$ and thus to $SpecA[x_0, \ldots, x_n]$. In fact these are isomorphisms of schemes over $SpecA$.

Another example are automorphisms arising from invertible matrices. Fix $n \geq 1$ and let $A = (a_{ij})$ be an invertible $(n+1) \times (n+1)$ matrix over a field k. For convenience we use the indices $0 \leq i, j \leq n$. Then the map $x_i \mapsto \sum a_{ij}x_j$ determines a k-algebra automorphism

$$\varphi_A : k[x_0, \ldots, x_n] \longrightarrow k[x_0, \ldots, x_n]$$

which gives rise to an automorphism of schemes over k, $\Phi_A = Proj\varphi_A : \mathbb{P}_k^n \longrightarrow \mathbb{P}_k^n$.

5 Projective Morphisms

Definition 4. Let Y be a scheme and $n \geq 0$. A projective n-space over Y is a pullback $Y \times_{SpecZ} \mathbb{P}_Z^n$. This consists of two morphisms $Z \longrightarrow Y, Z \longrightarrow \mathbb{P}_Z^n$ making the following diagram a pullback:

$$\begin{array}{ccc}
Z & \longrightarrow & Y \\
\downarrow & & \downarrow \\
\mathbb{P}_Z^n & \longrightarrow & SpecZ
\end{array}$$

Two projective n-spaces over Y are canonically isomorphic as schemes over Y and \mathbb{P}_Z^n, and we denote any projective n-space over Y by \mathbb{P}_Y^n. A morphism $X \longrightarrow Y$ is projective if it factors as a
closed immersion $X \hookrightarrow \mathbb{P}^n_Y$ followed by the projection $\mathbb{P}^n_Y \longrightarrow Y$ for some $n \geq 1$ and projective n-space \mathbb{P}^n_Y. This definition is independent of the projective n-space chosen, in the sense that if it factors through one projection via a closed immersion, then it factors through all of them by a closed immersion. We refer to this situation by saying that $X \hookrightarrow Y$ factors via a closed immersion through projective n-space.

For a ring A and $n \geq 0$ the scheme $\text{Proj} A[x_0, \ldots, x_n]$ is a projective n-space over $\text{Spec} A$ with the canonical morphisms, so the notation \mathbb{P}^n_A is unambiguous. Since the morphism $\mathbb{P}^n_Z \longrightarrow \text{Spec} \mathbb{Z}$ is an isomorphism, projective 0-spaces over Y correspond to isomorphisms $Z \longrightarrow Y$, in the sense that if $Z \longrightarrow Y, Z \longrightarrow \mathbb{P}^n_Z$ is a projective 0-space then $Z \longrightarrow Y$ is an isomorphism, and any isomorphism $Z \longrightarrow Y$ can be paired with $Z \longrightarrow Y \longrightarrow \text{Spec} \mathbb{Z} \longrightarrow \mathbb{P}^n_Z$ to make a projective 0-space. For any ring A and $n \geq 1$ there are $n + 1$ closed immersions $\mathbb{P}^{n-1}_A \longrightarrow \mathbb{P}^n_A$ of schemes over $\text{Spec} A$. We can extend this to projective space over any scheme:

Lemma 17. For any scheme Y there are $n + 1$ canonical closed immersions $\mathbb{P}^{n-1}_Y \longrightarrow \mathbb{P}^n_Y$ of schemes over Y for any $n \geq 1$.

Proof. Let \mathbb{P}^{n-1}_Y and \mathbb{P}^n_Y be any projective $n - 1$ (resp. n)-spaces over Y. We induce a morphism $\mathbb{P}^{n-1}_Y \longrightarrow \mathbb{P}^n_Y$ into the pullback so that the following diagram commutes:

\[
\begin{array}{ccc}
\mathbb{P}^{n-1}_Z & \longrightarrow & \mathbb{P}^{n-1}_Y \\
\downarrow & & \downarrow \\
\mathbb{P}^n_Z & \longrightarrow & \mathbb{P}^n_Y \\
\end{array}
\]

Where for $0 \leq i \leq n$ we let $\mathbb{P}^{n-1}_Z \longrightarrow \mathbb{P}^n_Z$ be the ith closed immersion. Using the usual pullback argument, we see that $\mathbb{P}^{n-1}_Y \longrightarrow \mathbb{P}^n_Y$ is the pullback of $\mathbb{P}^{n-1}_Z \longrightarrow \mathbb{P}^n_Z$, and since closed immersions are stable under pullback the proof is complete. \qed

Lemma 18. If for some $n \geq 0$ a morphism $X \longrightarrow Y$ factors via a closed immersion through projective n-space, then it factors via a closed immersion through projective m-space for any $m \geq n$.

The lemma implies that we could just as well define a projective morphism $X \longrightarrow Y$ to be a morphism factoring via a closed immersion through a projection $\mathbb{P}^n_Y \longrightarrow Y$ for some $n \geq 0$, since if $X \longrightarrow Y$ factors via a closed immersion through projective 0-space, then it factors through projective 1-space by a closed immersion, and is thus projective. So our final definition is:

Definition 5. A morphism $X \longrightarrow Y$ is projective if it factors via a closed immersion through projective n-space over Y for some $n \geq 1$ (equivalently, some $n \geq 0$). A morphism $X \longrightarrow Y$ is quasi-projective if it factors via an immersion through projective n-space for some $n \geq 1$ (equivalently, some $n \geq 0$).

Notice that a morphism $X \longrightarrow Y$ factors through projective 0-space over Y iff. it is a closed immersion. In particular any closed immersion is projective.

Lemma 19. Let A be a ring and S a graded A-algebra finitely generated as an A-algebra by S_1. Then the structural morphism $\text{Proj} S \longrightarrow \text{Spec} A$ is projective.

Proof. By hypothesis we can find a surjective morphism of graded A-algebras $A[x_0, \ldots, x_n] \longrightarrow S$ with $n \geq 1$, so the induced morphism $\text{Proj} S \longrightarrow \mathbb{P}^n_A$ is a closed immersion of schemes over A, as required. \qed
Let $f : X \rightarrow Y$ be a morphism of schemes, fix an integer $n \geq 1$ and pullbacks $\mathbb{P}^n_X, \mathbb{P}^n_Y$. Then the morphisms $\mathbb{P}^n_X \rightarrow \mathbb{P}^n_Y$ and $\mathbb{P}^n_X \rightarrow X \rightarrow Y$ induce a morphism $\mathbb{P}^n_Y : \mathbb{P}^n_X \rightarrow \mathbb{P}^n_Y$ which is the unique morphism of schemes over \mathbb{P}^n_Y fitting into the following commutative diagram

$$
\begin{array}{ccc}
\mathbb{P}^n_X & \xrightarrow{p_1} & \mathbb{P}^n_Y \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & Y
\end{array}
$$

In fact using standard properties of pullbacks it is not hard to see that this is a pullback diagram. Clearly $\mathbb{P}^n_1 = 1$ and if we have a morphism $g : Y \rightarrow Z$ and fix a pullback \mathbb{P}^n_2 then $\mathbb{P}^n_Y \circ \mathbb{P}^n_1 = \mathbb{P}^n_Y$.

If $X = \text{Spec}A, Y = \text{Spec}B$ and f is induced by a ring morphism $\psi : A \rightarrow B$, and if we choose $\mathbb{P}^n_A, \mathbb{P}^n_B$ as our pullbacks, then \mathbb{P}^n_Y is the morphism induced by the canonical ring morphism $A[x_0, \ldots, x_n] \rightarrow B[x_0, \ldots, x_n]$ as in Proposition 16.

6 Dimensions of Schemes

We want to translate some results about varieties into results about schemes. To be specific, recall the following (proved in I, 3.4):

Proposition 20. Let $Y \subseteq \mathbb{P}^n$ be a projective variety and $0 \leq i \leq n$ such that $Y_i = Y \cap U_i \neq \emptyset$, where $U_i \cong \mathbb{A}^n$ is the open set $x_i \neq 0$. Then Y_i corresponds to an affine variety in \mathbb{A}^n and $S(Y_{(x_i)}) \cong A(Y_i)$, where $S(Y) = k[x_0, \ldots, x_n]/I(Y)$ and $A(Y_i) = k[y_1, \ldots, y_n]/I(Y_i)$.

Proof. In outline: let $S = k[x_0, \ldots, x_n]$. Then $k[y_1, \ldots, y_n] \cong S_{(x_i)}$ and this isomorphism identifies $I(Y_i)$ with the prime ideal $I(Y)S_{x_i} \cap S_{(x_i)}$ (which is denoted $I(Y_i)S_{(x_i)}$ in the proof of I, 3.4). It follows that

$$A(Y_i) = k[y_1, \ldots, y_n]/I(Y_i) \cong S_{(x_i)}/I(Y_i)S_{(x_i)} \cong (S/I(Y))_{(x_i)} = S(Y_{(x_i)})$$

Let k be a field, and for $n \geq 1$ set $S = k[x_0, \ldots, x_n]$ and consider the the projective space $\mathbb{P}^n = \text{Proj} S$. There are $n+1$ open affine subsets $D_+(x_i) \cong \text{Spec} S_{(x_i)} \cong \text{Spec}k[x_0/x_i, \ldots, x_n/x_i]$ which cover \mathbb{P}^n_k. We know from our divisor notes that the closed irreducible subsets of \mathbb{P}^n_k are in bijection with the homogenous primes of S other than S_+. Let $Y \subseteq \mathbb{P}^n_k$ be a closed irreducible subset, and suppose $D_+(x_i) \cap Y \neq \emptyset$. Then $I(Y) \in D_+(x_i)$ and $Y \cap D_+(x_i)$ is the closure of $I(Y)$. The prime $I(Y)$ corresponds to the prime $I(Y)S_{(x_i)} = I(Y)S_{x_i} \cap S_{(x_i)}$ of $\text{Spec}S_{(x_i)}$. Let $Y_i \subseteq \text{Spec}k[x_0/x_i, \ldots, x_n/x_i]$ be the closed irreducible subset corresponding to $Y \cap D_+(x_i)$. Then $I(Y_i)$ is the prime ideal of $k[x_0/x_i, \ldots, x_n/x_i]$ corresponding to $I(Y)S_{(x_i)}$.

![Diagram](image_url)
Let $A(Y_i)$ denote $k[x_0/x_i, \ldots, x_n/x_i]/I(Y_i)$ and $S(Y)$ denote $S/I(Y)$. Then immediately we have an isomorphism of k-algebras $A(Y_i) \cong S(x_i)/I(Y)S(x_i)$. It follows from the next Lemma that $S(x_i)/I(Y)S(x_i) \cong (S/I(Y))(x_i)$. So finally we have an isomorphism of k-algebras $A(Y_i) \cong S(Y)(x_i)$.

Lemma 21. Let A be a ring and S a graded A-algebra. If I is a homogenous ideal of S and $x \in S$ homogenous, then there is a canonical isomorphism of A-algebras

$$
\alpha : (S/I)(x+I) \longrightarrow S(x)/(IS_x \cap S(x))
$$

$$(f + I)/(x^n + I) \mapsto f/x^n + IS_x \cap S(x)
$$

Proof. It is easy to check the given map is an isomorphism of A-algebras. \qed

We proved in our Chapter 1, Section 3 notes that for a graded domain S and nonzero $x \in S_1$ there is an isomorphism of S_0-algebras $S_x \cong S(x)[z, z^{-1}]$ (the ring of Laurent polynomials). As in the proof of Ex I, 2.6, this implies that for the case $S = k[x_0, \ldots, x_n]$ we have an isomorphism of k-algebras $S(Y)_x \cong S(Y)(x)[z, z^{-1}] \cong A(Y)_x[z]$. It follows that the quotient field of $S(Y)$ is k-isomorphic to the quotient field of $A(Y)_x[z]$. Since both $S(Y)$ and $A(Y)_x[z]$ are finitely generated domains over the field k, this implies that $\dim S(Y) = \dim A(Y)_x[z] = \dim A(Y) + 1$.

Proposition 22. Let $S = k[x_0, \ldots, x_n]$ for a field k and $n \geq 1$. If $Y \subseteq \mathbb{P}_k^n = \text{Proj}S$ is an irreducible closed subset then

$$
\dim S(Y) = 1 + \dim Y
$$

where $I(Y)$ is the homogenous prime associated with Y and $S(Y) = S/I(Y)$.

Proof. The previous discussion shows that Y is covered by open subsets homeomorphic to schemes of the form $\text{Spec}A(Y_i)$ where $\dim A(Y_i) = \dim S(Y) - 1$. The claim now follows from I, Ex.1.10 and the fact that for a ring A, $\dim A = \dim (\text{Spec} A)$. \qed

Since $\dim S(Y) = \text{coht}.I(Y)$, another way to state the result is $\dim Y = \text{coht}.I(Y) - 1$. This is in contrast to the affine case, where for an irreducible closed Y we would have $\dim Y = \text{coht}.I(Y)$.

7 Points of Projective Space

Let $S = k[x_0, \ldots, x_n]$ where k is a field and $n \geq 1$. If k is algebraically closed, then we know from our Varieties as Schemes notes that the closed points of $\mathbb{P}_k^n = \text{Proj}S$ are homeomorphic to the variety \mathbb{P}^n defined in Chapter 1. Corresponding to a point $P = (a_0, \ldots, a_n)$ with $a_i \neq 0$ is the homogenous prime ideal $I(P) = (a_0x_0 - a_0, \ldots, a_nx_n - a_n)$). In fact, we can still use this idea of “points” when k is not algebraically closed. Throughout this section k is an arbitrary field and $S = k[x_0, \ldots, x_n]$ for fixed $n \geq 1$.

Lemma 23. Given a nonzero tuple $P = (a_0, \ldots, a_n) \in k^{n+1}$ with say $a_i \neq 0$, $I(P) = (a_0x_0 - a_0, \ldots, a_nx_n - a_n)$ is a homogenous prime ideal of S of height $n - 1$.

Proof. First we show that the ideal $I(P)$ does not depend on i. That is, if also $a_j \neq 0$ then we claim $I(P) = (a_jx_0 - a_0x_j, \ldots, a_jx_n - a_nx_j)$. This follows easily from the following formula for any $0 \leq k \leq n$

$$
a_jx_k - a_kx_j = a_j/a_k(a_jx_k - a_kx_j) - a_k/a_j(a_ix_j - a_jx_i)
$$

Since $I(P)$ is generated by linear polynomials, it is a homogenous prime ideal of height $n - 1$ by our Linear Variety notes. \qed

It is clear that if $P = \lambda Q$ for some nonzero $\lambda \in k$ then $I(P) = I(Q)$, as one would expect for points of projective space. Since $ht.S_k = n$ it is clear that $I(P) \in \text{Proj}S$, so we have associated points of \mathbb{P}_k^n with tuples of k^{n+1}.

12
Lemma 24. Given a nonzero tuple $P = (a_0, \ldots, a_n) \in k^{n+1}$ there is an automorphism $\Phi : \mathbb{P}_k^n \rightarrow \mathbb{P}_k^n$ of schemes over k mapping P to $(1, 0, \ldots, 0)$.

Proof. Suppose that $a_i \neq 0$ and define an automorphism of k-algebras $\psi : k[x_0, \ldots, x_n] \rightarrow k[x_0, \ldots, x_n]$ by

\begin{align*}
x_0 &\mapsto x_i \\
x_1 &\mapsto a_i x_0 - a_0 x_i \\
&\vdots \\
x_n &\mapsto a_i x_n - a_n x_i
\end{align*}

It is not hard to see that this induces a k-automorphism of \mathbb{P}_k^n identifying P and $(1, 0, \ldots, 0)$ (that is, identifying the homogenous prime ideals $I(P)$ and (x_1, \ldots, x_n)). \hfill \Box