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1 Basic Properties

Definition 1. Let A be a ring. A graded A-algebra is an A-algebra R which is also a graded ring
in such a way that if r ∈ Rd then ar ∈ Rd for all a ∈ A. That is, Rd is an A-submodule of R
for all d ≥ 0. Equivalently a graded A-algebra is a morphism of graded rings A −→ R where we
grade A by setting A0 = A,An = 0 for n > 0. A morphism of graded A-algebras is a morphism of
A-algebras which preserves grade. Equivalently, this is a morphism of graded rings which is also
a morphism of A-modules, or a morphism of graded rings R −→ S making the following diagram
commute

R // S

A

__@@@@@@@

??�������

Let S be a graded A-algebra, and let X = ProjS. Then there is a canonical morphism of rings
θ : A −→ Γ(X,ProjS) defined by

θ(a)(p) = a/1 ∈ S(p)

Where as usual, a denotes the element a · 1 of S. By Ex 2.4 this induces a morphism of schemes
f : ProjS −→ SpecA. If γ : A −→ S gives the A-algebra structure on S, then an element
a ∈ A is mapped to the maximal ideal of OProjS,p via A −→ Γ(X,ProjS) −→ OProjS,p if and
only if a ∈ γ−1p. We denote this prime ideal by A ∩ p. Let κp : Af(p) −→ S(p) be defined by
κp(a/s) = a/s. Then

f : ProjS −→ SpecA

f(p) = p ∩A

f#
U (t)(p) = κp(t(f(p)))
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So the projective space over any graded A-algebra is a scheme over A. In particular there is a
canonical morphism of schemes PnA −→ SpecA. Notice that if e ∈ S+ is homogenous then the
composite of the open immersion Spec(S(e)) ∼= D+(e) −→ ProjS with f is the morphism of
schemes corresponding to the canonical map A −→ S(e) defined by a 7→ a/1.

Proposition 1. If S is a graded A-algebra then the morphism f : ProjS −→ SpecA is separated.
In particular ProjS is separated for any graded ring S.

Proof. The open sets D+(a) for homogenous a ∈ S+ are an open cover of ProjS. Therefore the
open sets D+(a)×A D+(b) are an open cover of ProjS ×A ProjS, and the inverse image of this
open set under the diagonal ProjS −→ ProjS ×A ProjS is clearly D+(a) ∩ D+(b) = D+(ab).
Since the property of being a closed immersion is local on the base, we reduce to showing that the
morphism D+(ab) −→ D+(a)×A D+(b) is a closed immersion. Since we know that this gives the
canonical morphisms D+(ab) −→ D+(a), D+(ab) −→ D+(b) when composed with the projections,
the corresponding morphism of A-algebras is the morphism α : S(a) ⊗A S(b) −→ S(ab) induced by
the canonical morphisms S(a) −→ S(ab), S(b) −→ S(ab). Since α is clearly surjective, the proof is
complete.

Proposition 2. If S is a noetherian graded ring then ProjS is a noetherian scheme.

Proof. For any homogenous f ∈ S+ the ring S(f) is noetherian (GRM,Corollary 15). Since S is
noetherian the ideal S+ admits a finite set of homogenous generators f1, . . . , fp and the schemes
D+(fi) ∼= SpecS(fi) cover ProjS. Therefore ProjS is noetherian.

Proposition 3. If S is a finitely generated graded A-algebra, then the scheme ProjS is of finite
type over SpecA.

Proof. The hypothesis imply that S0 is a finitely generated A-algebra, and that S is a finitely
generated S0-algebra. Therefore S+ is a finitely generated ideal (GRM,Corollary 8). So using the
argument of Proposition 2 we reduce to showing that for homogenous f ∈ S+, S(f) is a finitely
generated A-algebra. By (GRM,Proposition 14) it suffices to show that S(d) is a finitely generated
A-algebra, which follows from (GRM,Lemma 11).

Proposition 4. If S is a graded domain with S+ 6= 0 then ProjS is an integral scheme.

Proof. By (3.1) it is enough to show that ProjS is reduced and irreducible. By assumption
the zero ideal 0 is a homogenous prime ideal, so ProjS has a generic point and is therefore
irreducible. The scheme ProjS is covered by open subsets isomorphic to schemes Spec(S(f)) for
nonzero homogenous f ∈ S+, and it is clear that S(f) is an integral domain. This shows that
ProjS is reduced and therefore integral.

Corollary 5. Let A be a ring and consider the scheme PnA for n ≥ 1. Then

(i) The morphism PnA −→ SpecA is separated and of finite type.

(ii) If A is noetherian then so is PnA.

(iii) If A is an integral domain, then PnA is an integral scheme.

2 Functorial Properties

Let ϕ : S −→ T be a morphism of graded rings, G(ϕ) the open subset {p ∈ ProjT | p + ϕ(S+)}
and induce the following morphism of schemes using Ex 2.14:

Φ : G(ϕ) −→ ProjS

Φ(p) = ϕ−1p

Φ#
V (s)(p) = ϕ(p)(s(ϕ−1p))
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Here ϕ(p) : S(ϕ−1p) −→ T(p) is defined by a/s 7→ ϕ(a)/ϕ(s). If ϕ is an isomorphism of graded rings
with inverse ψ then clearly G(ϕ) = ProjT , G(ψ) = ProjS and one checks that if Ψ : ProjS −→
ProjT is induced by ψ then ΦΨ = 1 and ΨΦ = 1 so that ProjS ∼= ProjT . More generally,
let ϕ : S −→ T and ψ : T −→ Z be morphisms of graded rings. Then G(ψϕ) ⊆ G(ψ). Let
Φ : G(ϕ) −→ ProjS and Ψ : G(ψ) −→ ProjT be induced as above, and let Ω be induced by
the composite ψϕ. Then ΨG(ψϕ) ⊆ G(ϕ) and it is readily checked that the following diagram of
schemes commutes:

ProjS G(ψϕ)

Ψ|G(ψϕ){{vvv
vv

vv
vv

Ωoo

G(ϕ)
Φ

ccHHHHHHHHH

If ϕ : S −→ T is a morphism of graded A-algebras for some ring A, then Φ : G(ϕ) −→ ProjS is
a morphism of schemes over A, where G(ϕ), P rojS are A-schemes in the canonical way. Also if
ϕ : S −→ S is the identity, clearly G(ϕ) = ProjS and Φ is the identity.

For any graded ring S and homogenous f ∈ S+ there is an isomorphism of schemes Spec(S(f)) ∼=
D+(f). We claim that this isomorphism is natural with respect to morphisms of graded rings, in
the following sense.

Lemma 6. Let ϕ : S −→ T be a morphism of graded rings and Φ : G(ϕ) −→ ProjS the induced
morphism of schemes. If f ∈ S+ is homogenous then Φ−1D+(f) = D+(ϕ(f)) and the following
diagram commutes:

Spec(T(ϕ(f))) // Spec(S(f))

D+(ϕ(f))

KS

// D+(f)

KS
(1)

where the top morphism corresponds to ϕ(f) : S(f) −→ T(ϕ(f)) defined by s/fn 7→ ϕ(s)/ϕ(f)n, and
the bottom morphism is the restriction of Φ.

Proof. By (H, Ex.2.4) it suffices to check that the diagram commutes on global sections of
Spec(S(f)), which follows immediately from the definition of Φ and the explicit form of the vertical
isomorphisms given in our Section 2.2 notes.

Lemma 7. Let S be a graded ring and f, g ∈ S+ homogenous elements. Then the following
diagram commutes

Spec(S(f)) +3 D+(f)

Spec(S(fg))

OO

+3 D+(fg)

OO

where the vertical morphism on the left corresponds to the ring morphism S(f) −→ S(fg) defined
by s/fn 7→ sgn/(fg)n.

Proof. By (H, Ex.2.4) it suffices to check that the diagram commutes on global sections of
Spec(S(f)). But this is easy to check, using the explicit form of the isomorphisms given in our
Section 2.2 notes.

Let H be a graded ring and suppose f ∈ H0. Then ϕf (h) =
∑
d≥0 f

dhd defines a morphism
of graded rings ϕf : H −→ H. If f is a unit with inverse g, then ϕf is an isomorphism with
inverse ϕg. If f is a unit, then it is easy to see that for a homogenous prime ideal p, ϕ−1

f p = p and
the induced morphism (ϕf )(p) : H(p) −→ H(p) is the identity. Therefore ϕf induces the identity
morphism ProjH −→ ProjH. This simple observation has the following important consequence
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Lemma 8. Let ϕ : S −→ T be a morphism of graded rings and suppose f ∈ T0 is a unit. Let
ϕf : S −→ T be the following morphism of graded rings

ϕf (s) =
∑
d≥0

fdϕ(sd)

Then G(ϕ) = G(ϕf ) and the induced morphisms G(ϕ) −→ ProjS are the same.

Proposition 9. Let S be a graded ring and e > 0. The morphism of graded rings ϕ : S[e] −→ S
induces an isomorphism of schemes Φ : ProjS −→ ProjS[e] natural in S.

Proof. We defined the graded ring S[e] in (GRM,Definition 6). The inclusion ϕ : S[e] −→ S is
a morphism of graded rings. It is clear that G(ϕ) = ProjS, so we get a morphism of schemes
Φ : ProjS −→ ProjS[e]. If a is a homogenous ideal of S then a ∩ S[e] is homogenous ideal of
S[e], and it is not hard to see that for a homogenous prime ideal p we have p ⊇ a if and only if
p ∩ S[e] ⊇ a ∩ S[e]. In particular this shows that Φ is injective.

To see that it is surjective, let q′ be a homogenous prime ideal of S[e]. Then the ideal q
generated by q′ in S is homogenous and it is not difficult to check that q ∩ S[e] = q′. We claim
that the homogenous ideal p =

√
q is prime. If a ∈ Sm and b ∈ Sn are such that ab ∈ p then

(ab)ke ∈ q′ for some k > 0 and therefore either ake ∈ q′ or bke ∈ q′, which shows that a ∈ p or
b ∈ p. Clearly p ∩ S[e] = q′ and if q′ + S

[e]
+ then p + S+, which shows that Φ is surjective. Our

arguments in the previous paragraph also imply that Φ(V (a)) = V (a ∩ S[e]) for any homogenous
ideal a, so Φ is in fact a homeomorphism.

For homogenous f ∈ S+ we have D+(f) = D+(fe) and it is clear that for f ∈ S
[e]
+ we have

Φ(D+(f)) = D+(f). The induced morphism of rings S[e]
(f) −→ S(f) is the morphism ϕ(f) which is

clearly an isomorphism. This proves that Φ : ProjS −→ ProjS[e] is an isomorphism.
This isomorphism is natural in S in the following sense. Suppose ψ : S −→ T is a morphism

of graded rings, ψ[e] : S[e] −→ T [e] the induced morphism of graded rings. It is not hard to check
that the isomorphism ProjT ∼= ProjT [e] identifies the open subsets G(ψ) and G(ψ[e]) and that
the following diagram commutes

G(ψ)

��

Ψ // ProjS

��
G(ψ[e])

Ψ[e]
// ProjS[e]

which completes the proof.

Definition 2. Let S be a graded ring and e > 0. Let S|e denote the graded ring with the same
ring structure as S, but with the inflated grading

S|e = S0 ⊕ 0⊕ · · · ⊕ 0⊕ S1 ⊕ 0⊕ · · ·

so (S|e)0 = S0, (S|e)e = S1, (S|e)2e = S2 and so on. It is not hard to see that an ideal a ⊆ S is
homogenous in S iff. it is homogenous in S|e, so as topological spaces we have ProjS = Proj(S|e).
Moreover for a homogenous prime ideal p we have an equality of rings S(p) = (S|e)(p), and therefore
the sheaves of rings are also the same. Hence we have an equality of schemes ProjS = Proj(S|e).

Example 1. For a graded ring S and e > 0 it is clear that S(e)|e = S[e]. Therefore as schemes
there is an equality ProjS(e) = ProjS[e].

Corollary 10. Let S be a graded ring and e > 0. There is a canonical isomorphism of schemes
Ψ : ProjS −→ ProjS(e) natural in S.
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Proof. The isomorphism is the equality ProjS(e) = ProjS[e] followed by the isomorphism of
Proposition 9. Naturality in S means that for a morphism of graded rings θ : S −→ T with induced
morphism of graded rings θ(e) : S(e) −→ T (e) the isomorphism ProjS ∼= ProjS(e) identifies G(θ)
and G(θ(e)) and the following diagram commutes

G(θ)

��

Θ // ProjS

��
G(θ(e))

Θ(e)
// ProjS(e)

This follows easily from the naturality of Proposition 9.

Proposition 11. Let S be a graded A-algebra generated by S1 as an A-algebra. Let S′ be the
graded A-algebra defined by S′0 = A, S′d = Sd for d > 0. Then the canonical morphism of graded
A-algebras S′ −→ S induces an isomorphism of A-schemes ProjS′ −→ ProjS natural in S.

Proof. We make the direct sum S′ = A⊕
⊕

d≥1 Sd into a graded A-algebra in the canonical way
(see our note on Constructing Graded Algebras). Let ϕ : S′ −→ S be induced by A −→ S
and all the inclusions Sd −→ A. This is a morphism of graded A-algebras. It is clear that
G(ϕ) = ProjS, so let Φ : ProjS −→ ProjS′ be the induced morphism of schemes. It follows
from (GRM,Lemma 17) that Φ is injective and from (GRM,Proposition 18), (GRM,Lemma 17)
that Φ is surjective. For a homogenous ideal a of S we have Φ(V (a)) = V (ϕ−1a) (GRM,Lemma
16) so Φ is a homeomorphism. To show that Φ is an isomorphism of schemes it suffices by Lemma
1 to show that for d > 0 and f ∈ Sd the following ring morphism is bijective

ϕ(f) : S′(f) −→ S(f)

a/fn 7→ a/fn

This map is clearly surjective. To see that it is injective, suppose a/fn maps to zero in S(f). If
n > 0 then a ∈ Snd and fka = 0 for some k ≥ 0 implies that a/fn = 0 in S′(f). If n = 0 and a ∈ A
then we can write a/1 = af/f and reduce to the case where n > 0. This shows that ϕ(f) is an
isomorphism and completes the proof that Φ is an isomorphism of schemes.

To prove naturality, let ψ : S −→ T be a morphism of graded A-algebras, where T is also
generated by T1 as an A-algebra. There is an induced morphism of graded A-algebras ψ′ =
1⊕

⊕
d≥1 ψd : S′ −→ T ′ making the following diagram commute

S
ψ // T

S′

OO

ψ′
// T ′

OO

We claim that the isomorphisms ΦS : ProjS −→ ProjS′ and ΦT : ProjT −→ ProjT ′ are natural
in the sense that ΦT identifies the open subsets G(ψ) and G(ψ′) and the following diagram
commutes

G(ψ)

��

Ψ // ProjS

ΦS

��
G(ψ′)

Ψ′
// ProjS′

The details are easily checked.

Definition 3. Let ϕ : S −→ T be a morphism of graded rings. We say that ϕ is a quasi-
monomorphism, quasi-epimorphism or quasi-isomorphism if it has this property as a morphism
of graded S-modules (GRM,Definition 10).

5

file:"GradedModules.pdf"
file:"GradedModules.pdf"
file:"GradedModules.pdf"
file:"GradedModules.pdf"
file:"GradedModules.pdf"


Corollary 12. Let ϕ : S −→ T be a morphism of graded A-algebras where S is generated by S1

as an A-algebra and T is generated by T1 as an A-algebra. If Φ : G(ϕ) −→ ProjS is the induced
morphism of schemes then

(i) If ϕ is a quasi-epimorphism then G(ϕ) = ProjT and Φ is a closed immersion.

(ii) If further ϕ is a quasi-isomorphism then Φ is an isomorphism.

Proof. Using Proposition 11 we can assume that S0 = A and T0 = A. If ϕ is a quasi-epimorphism
(resp. quasi-isomorphism) then for some e > 0 the morphism ϕ(e) : S(e) −→ T (e) is surjective
(resp. bijective) so by Corollary 10 we can reduce to proving that if ϕ is surjective then Φ is a
closed immersion, and further that if ϕ is an isomorphism then so is Φ. But we proved the former
claim in our solution to (H,Ex.3.12) and the latter claim is trivial.

Remark 1. Note that if S is a graded A-algebra and S′ denotes the graded A-algebra S′0 =
A,S′d = Sd for d > 0 defined in Proposition 11 then the canonical morphism of graded A-algebras
ϕ : S′ −→ S is trivially a quasi-isomorphism.

Proposition 13. Let ϕ : S −→ T be a quasi-isomorphism of graded A-algebras with S0 = A
and T0 = A. Then there is an integer E > 0 such that for all e ≥ E, ϕ(e) : S(e) −→ T (e) is an
isomorphism of graded A-algebras.

Proof. Let E > 0 be large enough that ϕn : Sn −→ Tn is bijective for all n ≥ E. Then it is not
hard to see that ϕ(e) : S(e) −→ T (e) is an isomorphism for e ≥ E.

3 Products

Lemma 14. Let A,B be rings, S a graded A-algebra, and T a graded B-algebra. Let ψ : A −→ B
be a morphism of rings and ϕ : S −→ T a morphism of graded rings making the following diagram
commute:

A
ψ //

��

B

��
S ϕ

// T

(2)

Then the following diagram commutes, where Ψ = Spec(ψ) and the vertical morphisms are canon-
ical:

G(ϕ) Φ //

��

ProjS

��
SpecB

Ψ
// SpecA

(3)

Proof. The open sets D+(f) ⊆ ProjS for homogenous f ∈ S+ are an open cover, so the open sets
D+(ϕ(f)) = Φ−1D+(f) for homogenous f ∈ S+ must be an open cover of G(ϕ). So it suffices to
show that the two legs of the diagram agree when composed with Spec(T(ϕ(f))) −→ G(ϕ) for every
homogenous f ∈ S+. Using the commutativity of (1), this reduces to checking commutativity of
the following diagram of rings, where the vertical morphisms are canonical:

T(ϕ(f)) S(f)

ϕ(f)oo

B

OO

Aϕ
oo

OO
(4)

But this square is trivially commutative, completing the proof. Alternatively, use the fact that
morphisms into SpecA are in bijection with ring morphisms out of A and just check the diagram
on global sections.
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Proposition 15. Let A,B be rings, S a graded A-algebra, ψ : A −→ B a morphism of rings.
Then T = S ⊗A B is a graded B-algebra and ProjT = ProjS ×A SpecB.

Proof. Consider A,B as graded rings in the canonical way. Then S and B become graded A-
modules, so the tensor product S⊗AB becomes a graded B-algebra (GRM,Section 6) with grading

(S ⊗A B)n =

{∑
i

si ⊗ bi | si ∈ Sn, bi ∈ B

}

The map ϕ : S −→ T defined by ϕ(s) = s ⊗ 1 is a morphism of graded rings, which makes the
diagram (2) commute. Since T+ is generated as a B-module by ϕ(S+) it follows that G(ϕ) =
ProjT and we get a morphism of schemes Φ : ProjT −→ ProjS fitting into a commutative
diagram

ProjT
Φ //

��

ProjS

��
SpecB

Ψ
// SpecA

(5)

We have to show that this diagram is a product of schemes over SpecA. The open sets D+(f)
for homogenous f ∈ S+ cover ProjS and by our earlier notes on the local nature of products, it
suffices to show that D+(ϕ(f)) = Φ−1D+(f) is a product for D+(f) and SpecB over SpecA for
all homogenous f ∈ S+. Using commutativity of (1) we reduce this to showing that the following
diagram is a pullback:

Spec(T(ϕ(f))) //

��

Spec(S(f))

��
Spec(B) // Spec(A)

Which is equivalent to showing that (4) is a pushout of rings. The map Sf ×B −→ Tϕ(f) defined
by (s/fn, b) 7→ (s⊗ b)/ϕ(f)n is well-defined and A-bilinear, so induces Sf ⊗A B −→ Tϕ(f), which
is easily checked to be a morphism of rings. The canonical map S −→ Sf is a morphism of A-
modules, so there is a well-defined morphism T = S⊗AB −→ Sf ⊗AB defined by s⊗b 7→ s/1⊗b.
This is a morphism of rings mapping multiples of ϕ(f) = f ⊗ 1 to units, so it induces a morphism
of rings Tϕ(f) −→ Sf⊗AB defined by (s⊗b)/ϕ(f)n 7→ s/fn⊗b. Since we have already constructed
the inverse, this is an isomorphism of rings Tϕ(f)

∼= Sf ⊗A B.
The ring Sf is a Z-graded ring, and thus can be considered as a graded A-module. The

ring Sf ⊗A B is therefore also Z-graded. Putting the canonical Z-grading on Tϕ(f) it is easily
checked that Tϕ(f)

∼= Sf ⊗A B is an isomorphism of Z-graded rings, which restricts to give an
isomorphism of the degree zero subrings T(ϕ(f))

∼= (Sf ⊗A B)0. We have to show that this latter
ring is isomorphic as a ring to S(f) ⊗A B.

Let α : Sf⊗ZB −→ Sf⊗AB be canonical (GRM,Section 6). The kernel of α is the abelian group
P ′ generated by elements (a · x)⊗ b− x⊗ (a · b) where x is homogenous. The morphism of groups
S(f)⊗ZB −→ Sf⊗ZB is injective since S(f) is a direct summand of Sf and tensor products preserve
colimits. Therefore the group S(f) ⊗Z B is isomorphic to its image in Sf ⊗Z B, which is mapped
by α onto (Sf ⊗AB)0. So there is an isomorphism of abelian groups (S(f)⊗ZB)/P ′′ ∼= (Sf ⊗AB)0
where P ′′ = P ′ ∩ (S(f) ⊗Z B). But since S(f) ⊗Z B can be identified with the degree zero subring
of Sf ⊗Z B, P ′′ is generated as an abelian group by elements (a · x) ⊗ b − x ⊗ (a · b) where x is
homogenous of degree zero, that is, x ∈ S(f). Hence there is an isomorphism of abelian groups

S(f) ⊗A B ∼= (S(f) ⊗Z B)/P ′′ ∼= (Sf ⊗A B)0
s/fn ⊗ b 7→ s/fn ⊗ b

So finally we have an isomorphism of rings T(ϕ(f))
∼= S(f)⊗AB defined by (s⊗b)/ϕ(f)n 7→ s/fn⊗b.

Using this isomorphism one checks easily that (4) is a pushout, completing the proof.
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Let ψ : A −→ B be a morphism of rings (n ≥ 0) and ϕ : A[x0, . . . , xn] −→ B[x0, . . . , xn]
the morphism of graded rings induced by ψ. Then it is not difficult to check that the following
diagram is a pushout of rings:

A
ψ //

��

B

��
A[x0, . . . , xn] ϕ

// B[x0, . . . , xn]

By uniqueness of the pushout, there is an isomorphism of rings

B[x0, . . . , xn] −→ B ⊗A A[x0, . . . , xn]
f(x0, . . . , xn) 7→ f(1⊗ x0, . . . , 1⊗ xn)∑

α

f(α)xα0
0 · · ·xαnn 7→

∑
α

f(α)⊗ xα0
0 · · ·xαnn

This is the morphism of B-algebras induced by xi 7→ 1 ⊗ xi. Similarly xi 7→ xi ⊗ 1 induces an
isomorphism of rings θ : B[x0, . . . , xn] −→ A[x0, . . . , xn] ⊗A B. If we give the tensor product
the canonical graded structure, these are isomorphisms of graded rings. Note that θϕ is just the
canonical map of A[x0, . . . , xn] into the tensor product. Now let n ≥ 1 and T = A[x0, . . . , xn]⊗AB.
Then G(ϕ) = PnB and G(θ) = G(θϕ) = ProjT . Let Ω : ProjT −→ PnA be induced by θϕ. Consider
the following diagram:

PnB
Φ

&&

��4
44

44
44

44
44

44
44

4

ProjT
Ω //

��

Θ

_g FFFFFFFF

FFFFFFFF

PnA

��
SpecB

Ψ
// SpecA

(6)

All unmarked morphisms are the canonical ones, and by the previous Proposition the square is
a pullback. The top triangle commutes by the results of the previous section. To check commu-
tativity of the left triangle, we need only check the two legs give the same morphism on global
sections (morphisms into SpecB are in bijection with ring morphisms out of B). An element
b ∈ B determines the global section q 7→ b/1 of PnB and p 7→ (1 ⊗ b)/1 of ProjT . These clearly
correspond under the localisations of θ, so (6) commutes. Hence the outside square is a pullback,
and we have proved the following result.

Proposition 16. Let ψ : A −→ B be a morphism of rings and for n ≥ 1 let ϕ : A[x0, . . . , xn] −→
B[x0, . . . , xn] be the corresponding morphism of graded rings. Then the following diagram is a
pullback:

PnB
Φ //

��

PnA

��
SpecB

Ψ
// SpecA

In other words, PnB = SpecB×SpecA PnA. In particular, for any ring A we have PnA = SpecA×PnZ.

One could probably run all the proofs with n = 0, but since in that case PnA −→ SpecA and
PnB −→ SpecB are isomorphisms, the diagram in the proposition is trivially a pullback.
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4 Linear Morphisms

Let A be a ring n,m ≥ 0 and f0(x0, . . . , xn), . . . , fm(x0, . . . , xn) ∈ A[x0, . . . , xn] homogenous
polynomials of degree 1. Then we define

φ : A[y0, . . . , ym] −→ A[x0, . . . , xn]
φ(yi) = fi(x0, . . . , xn)

This is a morphism of graded A-algebras, hence induces a morphism of schemes Φ : G(φ) −→ PmA .
Here

G(φ) = {p ∈ PnA | p + φ(S+)}
= {p ∈ PnA | p + {f0, . . . , fm}}

=
m⋃
i=0

D+(fi)

For example, suppose m ≥ 1 and 0 ≤ i ≤ m and let φi : A[x0, . . . , xm] −→ A[x0, . . . , xm−1] be the
morphism of graded A-algebras determined by the following assignments: x0 7→ x0, . . . , xi−1 7→
xi−1, xi+1 7→ xi, . . . , xm 7→ xm−1 and xi 7→ 0. Then clearly G(φi) = Pm−1

A and so we have a
morphism of schemes

Φi : Pm−1
A −→ PmA

The morphism φi is surjective, so by Ex 3.12 the morphism Φi is a closed immersion whose image
is the closed set V (Kerφ) = V ((xi)) = PmA − D+(xi). So for m ≥ 1 there are m + 1 closed
immersions of Pm−1

A in PmA . Notice that the following diagram also commutes for any 0 ≤ i ≤ m:

Pm−1
A

Φi //

$$HH
HH

HH
HH

H
PmA

||xx
xx

xx
xx

x

SpecA

In particular there are two closed immersions SpecA ∼= P0
A −→ P1

A. Also note that for n ≥ 1
and 0 ≤ i ≤ n the open set D+(xi) of PnA is isomorphic to SpecA[x0, . . . , xn](xi) and thus to
SpecA[x1, . . . , xn]. In fact these are isomorphisms of schemes over SpecA.

Another example are automorphisms arising from invertible matrices. Fix n ≥ 1 and let
A = (aij) be an invertible (n + 1) × (n + 1) matrix over a field k. For convenience we use the
indices 0 ≤ i, j ≤ n. Then the map xi 7→

∑
aijxj determines a k-algebra automorphism

ϕA : k[x0, . . . , xn] −→ k[x0, . . . , xn]

which gives rise to an automorphism of schemes over k, ΦA = ProjϕA : Pnk −→ Pnk .

5 Projective Morphisms

Definition 4. Let Y be a scheme and n ≥ 0. A projective n-space over Y is a pullback Y ×SpecZPnZ.
This consists of two morphisms Z −→ Y, Z −→ PnZ making the following diagram a pullback:

Z //

��

Y

��
PnZ // SpecZ

Two projective n-spaces over Y are canonically isomorphic as schemes over Y and PnZ, and we
denote any projective n-space over Y by PnY . A morphism X −→ Y is projective if it factors as a
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closed immersion X −→ PnY followed by the projection PnY −→ Y for some n ≥ 1 and projective
n-space PnY . This definition is independent of the projective n-space chosen, in the sense that
if it factors through one projection via a closed immersion, then it factors through all of them
by a closed immersion. We refer to this situation by saying that X −→ Y factors via a closed
immersion through projective n-space.

For a ring A and n ≥ 0 the scheme ProjA[x0, . . . , xn] is a projective n-space over SpecA with
the canonical morphisms, so the notation PnA is unambiguous. Since the morphism P0

Z −→ SpecZ
is an isomorphism, projective 0-spaces over Y correspond to isomorphisms Z −→ Y , in the sense
that if Z −→ Y, Z −→ P0

Z is a projective 0-space then Z −→ Y is an isomorphism, and any
isomorphism Z −→ Y can be paired with Z −→ Y −→ SpecZ −→ P0

Z to make a projective
0-space. For any ring A and n ≥ 1 there are n + 1 closed immersions Pn−1

A −→ PnA of schemes
over SpecA. We can extend this to projective space over any scheme:

Lemma 17. For any scheme Y there are n + 1 canonical closed immersions Pn−1
Y −→ PnY of

schemes over Y for any n ≥ 1.

Proof. Let Pn−1
Y and PnY be any projective n− 1 (resp. n)-spaces over Y . We induce a morphism

Pn−1
Y −→ PnY into the pullback so that the following diagram commutes:

Pn−1
Z

##GG
GG

GG
GG

G

����
��
��
��
��
��
��
�

Pn−1
Y

!!B
BB

BB
BB

B
oo

����
��
��
��
��
��
��
�

SpecZ Yoo

PnZ

55kkkkkkkkkkkkkkkkk PnYoo

66mmmmmmmmmmmmmmmmm

Where for 0 ≤ i ≤ n we let Pn−1
Z −→ PnZ be the ith closed immersion. Using the usual pullback

argument, we see that Pn−1
Y −→ PnY is the pullback of Pn−1

Z −→ PnZ, and since closed immersions
are stable under pullback the proof is complete.

Lemma 18. If for some n ≥ 0 a morphism X −→ Y factors via a closed immersion through
projective n-space, then it factors via a closed immersion through projective m-space for any m ≥
n.

The lemma implies that we could just as well define a projective morphism X −→ Y to be a
morphism factoring via a closed immersion through a projection PnY −→ Y for some n ≥ 0, since
if X −→ Y factors via a closed immersion through projective 0-space, then it factors through
projective 1-space by a closed immersion, and is thus projective. So our final definition is:

Definition 5. A morphsim X −→ Y is projective if it factors via a closed immersion through
projective n-space over Y for some n ≥ 1 (equivalently, some n ≥ 0). A morphism X −→ Y
is quasi-projective if it factors via an immersion through projective n-space for some n ≥ 1
(equivalently, some n ≥ 0).

Notice that a morphism X −→ Y factors through projective 0-space over Y iff. it is a closed
immersion. In particular any closed immersion is projective.

Lemma 19. Let A be a ring and S a graded A-algebra finitely generated as an A-algebra by S1.
Then the structural morphism ProjS −→ SpecA is projective.

Proof. By hypothesis we can find a surjective morphism of graded A-algebras A[x0, . . . , xn] −→ S
with n ≥ 1, so the induced morphism ProjS −→ PnA is a closed immersion of schemes over A, as
required.
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Let f : X −→ Y be a morphism of schemes, fix an integer n ≥ 1 and pullbacks PnX ,PnY . Then
the morphisms PnX −→ PnZ and PnX −→ X −→ Y induce a morphism Pnf : PnX −→ PnY which is the
unique morphism of schemes over PnZ fitting into the following commutative diagram

PnX

��

Pnf // PnY

��
X

f
// Y

In fact using standard properties of pullbacks it is not hard to see that this is a pullback diagram.
Clearly Pn1 = 1 and if we have a morphism g : Y −→ Z and fix a pullback PnZ then PngPnf = Pngf .
If X = SpecA, Y = SpecB and f is induced by a ring morphism ψ : A −→ B, and if we
choose PnA,PnB as our pullbacks, then Pnf is the morphism induced by the canonical ring morphism
A[x0, . . . , xn] −→ B[x0, . . . , xn] as in Proposition 16.

6 Dimensions of Schemes

We want to translate some results about varieties into results about schemes. To be specific, recall
the following (proved in I, 3.4):

Proposition 20. Let Y ⊆ Pn be a projective variety and 0 ≤ i ≤ n such that Yi = Y ∩ Ui 6= ∅,
where Ui ∼= An is the open set xi 6= 0. Then Yi corresponds to an affine variety in An and
S(Y )(xi) ∼= A(Yi), where S(Y ) = k[x0, . . . , xn]/I(Y ) and A(Yi) = k[y1, . . . , yn]/I(Yi).

Proof. In outline: let S = k[x0, . . . , xn]. Then k[y1, . . . , yn] ∼= S(xi) and this isomorphism identifies
I(Yi) with the prime ideal I(Y )Sxi ∩ S(xi) (which is denoted I(Y )S(xi) in the proof of I, 3.4). It
follows that

A(Yi) = k[y1, . . . , yn]/I(Yi) ∼= S(xi)/I(Y )S(xi)) ∼= (S/I(Y ))(xi) = S(Y )(xi)

Let k be a field, and for n ≥ 1 set S = k[x0, . . . , xn] and consider the the projective space
Pnk = ProjS. There are n+ 1 open affine subsets D+(xi) ∼= SpecS(xi)

∼= Speck[x0/xi, . . . , xn/xi]
which cover Pnk . We know from our divisor notes that the closed irreducible subsets of Pnk are in
bijection with the homogenous primes of S other than S+. Let Y ⊆ Pnk be a closed irreducible
subset, and suppose D+(xi) ∩ Y 6= ∅. Then I(Y ) ∈ D+(xi) and Y ∩ D+(xi) is the closure of
I(Y ). The prime I(Y ) corresponds to the prime I(Y )S(xi) = I(Y )Sxi ∩ S(xi) of SpecS(xi). Let
Yi ⊆ Speck[x0/xi, . . . , xn/xi] be the closed irreducible subset corresponding to Y ∩D+(xi). Then
I(Yi) is the prime ideal of k[x0/xi, . . . , xn/xi] corresponding to I(Y )S(xi).

Y
D+(xi)

SpecS(xi)

Speck[x0/xi, . . . , xn/xi]

=
⇒

=
⇒
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Let A(Yi) denote k[x0/xi, . . . , xn/xi]/I(Yi) and S(Y ) denote S/I(Y ). Then immediately we have
an isomorphism of k-algebras A(Yi) ∼= S(xi)/I(Y )S(xi). It follows from the next Lemma that
S(xi)/I(Y )S(xi)

∼= (S/I(Y ))(xi). So finally we have an isomorphism of k-algebrasA(Yi) ∼= S(Y )(xi).

Lemma 21. Let A be a ring and S a graded A-algebra. If I is a homogenous ideal of S and x ∈ S
homogenous, then there is a canonical isomorphism of A-algebras

α : (S/I)(x+I) −→ S(x)/(ISx ∩ S(x))
(f + I)/(xn + I) 7→ f/xn + ISx ∩ S(x)

Proof. It is easy to check the given map is an isomorphism of A-algebras.

We proved in our Chapter 1, Section 3 notes that for a graded domain S and nonzero x ∈ S1

there is an isomorphism of S0-algebras Sx ∼= S(x)[z, z−1] (the ring of Laurent polynomials). As in
the proof of Ex I, 2.6, this implies that for the case S = k[x0, . . . , xn] we have an isomorphism of
k-algebras

S(Y )xi ∼= S(Y )(xi)[z, z
−1] ∼= A(Yi)[z]z

It follows that the quotient field of S(Y ) is k-isomorphic to the quotient field of A(Yi)[z]. Since both
S(Y ) and A(Yi)[z] are finitely generated domains over the field k, this implies that dimS(Y ) =
dimA(Yi)[z] = dimA(Yi) + 1.

Proposition 22. Let S = k[x0, . . . , xn] for a field k and n ≥ 1. If Y ⊆ Pnk = ProjS is an
irreducible closed subset then

dimS(Y ) = 1 + dimY

where I(Y ) is the homogenous prime associated with Y and S(Y ) = S/I(Y ).

Proof. The previous discussion shows that Y is covered by open subsets homeomorphic to schemes
of the form SpecA(Yi) where dimA(Yi) = dimS(Y ) − 1. The claim now follows from I, Ex1.10
and the fact that for a ring A, dimA = dim(SpecA).

Since dimS(Y ) = coht.I(Y ), another way to state the result is dimY = coht.I(Y )− 1. This is
in contrast to the affine case, where for an irreducible closed Y we would have dimY = coht.I(Y ).

7 Points of Projective Space

Let S = k[x0, . . . , xn] where k is a field and n ≥ 1. If k is algebraically closed, then we know from
our Varieties as Schemes notes that the closed points of Pnk = ProjS are homeomorphic to the
variety Pn defined in Chapter 1. Corresponding to a point P = (a0, . . . , an) with ai 6= 0 is the
homogenous prime ideal I(P ) = (aix0 − a0xi, . . . , aixn − anxi). In fact, we can still use this idea
of “points” when k is not algebraically closed. Throughout this section k is an arbitrary field and
S = k[x0, . . . , xn] for fixed n ≥ 1.

Lemma 23. Given a nonzero tuple P = (a0, . . . , an) ∈ kn+1 with say ai 6= 0, I(P ) = (aix0 −
a0xi, . . . , aixn − anxi) is a homogenous prime ideal of S of height n− 1.

Proof. First we show that the ideal I(P ) does not depend on i. That is, if also aj 6= 0 then we
claim I(P ) = (ajx0 − a0xj , . . . , ajxn − anxj). This follows easily from the following formula for
any 0 ≤ k ≤ n

ajxk − akxj = aj/ai(aixk − akxi)− ak/ai(aixj − ajxi)

Since I(P ) is generated by linear polynomials, it is a homogenous prime ideal of height n− 1 by
our Linear Variety notes.

It is clear that if P = λQ for some nonzero λ ∈ k then I(P ) = I(Q), as one would expect for
points of projective space. Since ht.S+ = n it is clear that I(P ) ∈ ProjS, so we have associated
points of Pnk with tuples of kn+1.
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Lemma 24. Given a nonzero tuple P = (a0, . . . , an) ∈ kn+1 there is an automorphism Φ : Pnk −→
Pnk of schemes over k mapping P to (1, 0, . . . , 0).

Proof. Suppose that ai 6= 0 and define an automorphism of k-algebras ψ : k[x0, . . . , xn] −→
k[x0, . . . , xn] by

x0 7→ xi

x1 7→ aix0 − a0xi

...
xn 7→ aixn − anxi

It is not hard to see that this induces a k-automorphism of Pnk identifying P and (1, 0, . . . , 0) (that
is, identifying the homogenous prime ideals I(P ) and (x1, . . . , xn)).
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