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In this note we give a minimal presentation of spectral sequences following EGA. We cover
essentially only that part of the theory needed in algebraic geometry. In Section 2 we start with
a filtration of a complex, and show how the various pieces of a spectral sequence arise. Applying
these observations in Section 3 to two natural filtrations of the total complex of a bicomplex, we
deduce two spectral sequences and discover that their first three pages are not mysterious at all:
they consist of very natural invariants of the bicomplex, arranged in the obvious way. With this
background we can study the Grothendieck spectral sequence in Section 4.
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1 Definitions

As usual we assume that our abelian categories all come with canonical structures, allowing us to
define cokernels, kernels, images and direct sums in a canonical way. If we have two subobjects
X,Y of an object A then X ⊆ Y means that X precedes Y as a subobject (i.e. the morphism
X −→ A factors through Y −→ A). We use the notation and conventions of our notes on Derived
Functors (DF) and Abelian Categories (AC). In particular we tend to denote the differential of
any complex X by ∂n : Xn −→ Xn+1. The definitions in this section follow EGA III Ch.0 §11.1.

Definition 1. Let A be an abelian category and X an object of A. A filtration (or decreasing
filtration) or X is a sequence of subobjects of X

· · · ⊇ F 0(X) ⊇ F 1(X) ⊇ · · · ⊇ F p(X) ⊇ · · ·

If they exist, we write inf(F p(X)) for the intersection ∩pF p(X) and sup(F p(X)) for the union
∪pF p(X). We say that the filtration is separated if inf(F p(X)) = 0 and coseparated or exhaustive
if sup(F p(X)) = X. We say that the filtration is discrete if there exists p ∈ Z with F p(X) = 0,
and codiscrete if there exists p ∈ Z with F p(X) = X.

Definition 2. Let A be an abelian category and a ≥ 0 an integer. A spectral sequence in A
starting on page a consists of the following elements:
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(a) An object Epqr of A for every p, q ∈ Z and r ≥ a.

(b) A morphism dpqr : Epqr −→ Ep+r,q−r+1
r for p, q ∈ Z and r ≥ a such that dp+r,q−r+1

r dpqr = 0.
If we set Zr+1(Epqr ) = Ker(dpqr ), Br+1(Epqr ) = Im(dp−r,q+r−1

r ) then

Br+1(Epqr ) ⊆ Zr+1(Epqr ) ⊆ Epqr

(c) An isomorphism αpqr : Zr+1(Epqr )/Br+1(Epqr ) −→ Epqr+1 for p, q ∈ Z and r ≥ a.

Before continuing, let us introduce some notation. For k ≥ r + 1 one defines by recursion on
k subobjects Bk(Epqr ) and Zk(Epqr ) of Epqr as the inverse image, by the canonical morphism
Epqr −→ Epqr /Br+1(Epqr ), of the subobject of the quotient identified by αpqr with the subobjects
Bk(E

pq
r+1) and Zk(E

pq
r+1) respectively. Clearly Bk(Epqr ) ⊆ Zk(Epqr ) and for k ≥ r + 1 we deduce a

pullback
Bk(Epqr )

��

// Bk(E
pq
r+1)

��
Zk(Epqr ) // Zk(E

pq
r+1)

with horizontal epimorphisms and vertical monomorphisms. From (AC,Lemma 35) we infer that
the induced morphism on the cokernels Zk(Epqr )/Bk(Epqr ) −→ Zk(E

pq
r+1)/Bk(E

pq
r+1) is an isomor-

phism. We can therefore recursively define a canonical isomorphism

Zk(Epqr )/Bk(Epqr ) −→ Epqk k ≥ r + 1, r ≥ a (1)

If we set Br(Epqr ) = 0 and Zr(Epqr ) = Epqr then we have inclusions

0 = Br(Epqr ) ⊆ Br+1(Epqr ) ⊆ Br+2(Epqr ) ⊆ · · ·
· · · ⊆ Zr+2(Epqr ) ⊆ Zr+1(Epqr ) ⊆ Zr(Epqr ) = Epqr

(2)

We now return to enumerating the defining data of a spectral sequence:

(d) Two subobjects B∞(Epqa ) and Z∞(Epqa ) of Epqa such that B∞(Epqa ) ⊆ Z∞(Epqa ) and for k ≥ a
we haveBk(Epqa ) ⊆ B∞(Epqa ) and Z∞(Epqa ) ⊆ Zk(Epqa ). We define Epq∞ = Z∞(Epqa )/B∞(Epqa ).

(e) A family {En}n∈Z of objects of A, each with a filtration {F p(En)}p∈Z. We define grp(En) =
F p(En)/F p+1(En) for p, n ∈ Z.

(f) For each pair (p, q) ∈ Z× Z an isomorphism βpq : Epq∞ −→ grp(Ep+q).

The family of objects {En}n∈Z, without the associated filtrations, is called the limit of the spectral
sequence. We usually just write E or (Epqr , E

n) for the spectral sequence, with all other data
implicit, and write Epqr ⇒ Ep+q to represent the fact that the spectral sequence converges to the
family {En}n∈Z.

Definition 3. Let A be an abelian category. A spectral sequence E = (Epqr , E
n) is weakly

convergent if B∞(Epqa ) = supk(Bk(Epqa )) and Z∞(Epqa ) = infk(Zk(Epqa )). We say that the spectral
sequence is regular if it is weakly convergent and also

(1) For each pair (p, q) the decreasing sequence {Zk(Epqa )}k≥a stabilises: that is, we have
Zk(Epqa ) = Zk+1(Epqa ) for all sufficiently large k. In this case it follows that Z∞(Epqa ) =
Zk(Epqa ) for all sufficiently large k (the bound depending on p, q).

(2) For each n ∈ Z the filtration {F p(En)}p∈Z is discrete and exhaustive.

We say that the spectral sequence E is coregular if it is weakly convergent and also

(3) For each pair (p, q) the increasing sequence {Bk(Epqa )}k≥a stablises. In this case it follows
that B∞(Epqa ) = Bk(Epqa ) for all sufficiently large k (the bound depending on p, q).

2

file:"AbelianCategories.pdf"


(4) For each n ∈ Z the filtration {F p(En)}p∈Z is codiscrete.

We say that E is biregular if it is both regular and coregular, or equivalently if the following
conditions are satisfied

(a) For each pair (p, q) the sequences {Zk(Epqa )}k≥a and {Bk(Epqa )}k≥a both stabilise and there-
fore Z∞(Epqa ) = Zk(Epqa ) and B∞(Epqa ) = Bk(Epqa ) for all sufficiently large k (therefore
Epq∞

∼= Epqk ).

(b) For each n ∈ Z the filtration {F p(En)}p∈Z is discrete and codiscrete, and therefore finite.

Most spectral sequences we will encounter will be biregular.

Remark 1. Let E be a spectral sequence, and suppose that for some r ≥ a and p, q ∈ Z we
have Epqr = 0. It follows from (1) and (2) that the entry of every subsequent page of the spectral
sequence is also zero: that is, Epqk = 0 for k ≥ r. Further, if we fix some s ≥ a then for all
sufficiently large k we have Zk(Epqs ) = Bk(Epqs ) = 0. In particular we must have Epq∞ = 0.

Definition 4. Let A be an abelian category and E a biregular spectral sequence in A starting on
page a. We say that E degenerates on page r ≥ a if for every p, q ∈ Z the morphism dpqr is zero.
That is, all the morphisms on the rth page are zero. It follows that we have a chain of canonical
isomorphisms

Epqr
∼= Epqr+1

∼= Epqr+2
∼= · · ·

and since E is biregular this eventually stabilises to Epq∞ . That is, for every k ≥ r we have an
isomorphism Epqk

∼= Epq∞ . Finding a degenerate page of the spectral sequence is one of the most
common ways to extract useful information.

2 The Spectral Sequence of a Filtration

Throughout this section let A be an abelian category. Let C be a complex in A and suppose we
have a decreasing filtration {F p(C)}p∈Z of C. That is, a sequence of subobjects

· · · ⊇ F p−1(C) ⊇ F p(C) ⊇ F p+1(C) ⊇ · · ·

For p, q ∈ Z we place the object F pCp+q = F p(C)p+q at position (p, q) to form the following
commutative diagram in A

F 0C0

F 0C1

F 1C1

F 1C2

F 2C2

F 0C2

in which all diagonal morphisms are monomorphisms. In other words, we “spread out” the object
Cn along the diagonal p + q = n. To make the construction of the spectral sequence more
transparent, we will allow ourselves to informally talk about “elements” of Cn and its filtrations
F pCn. The reader may be comforted, however, by our assurance that any occurrences of such
informal notation will be accompanied by the equivalent formal statement.

For each n ∈ Z we have a filtration · · · ⊇ F p−1Cn ⊇ F pCn ⊇ F p+1Cn ⊇ · · · of the object
Cn, and we think of elements of Cn further down the filtration as being “closer to zero”. The
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filtration of the complex C then allows us to talk about elements x ∈ Cn which are “close to being
cocycles”. We know that if x ∈ F pCn then ∂(x) ∈ F pCn+1, and the higher the value of r ≥ 0 for
which ∂(x) ∈ F p+rCn+1 then the closer x is to being a cocycle. Formally, we define for p, q ∈ Z
and r ∈ Z

Ap,qr = F pCp+q ∩ ∂−1(F p+rCp+q+1)

It is clear that Ap,qr = F pCp+q for r ≤ 0 and we have therefore the following sequence of inclusions

F pCp+q = Ap,q0 ⊇ Ap,q1 ⊇ · · · ⊇ Ap,qr ⊇ Ap,qr+1 ⊇ · · · ⊇ Ker(∂) ∩ F pCp+q

For p, q, r ∈ Z the elements of Ap−r+1,q+r−2
r−1 map under ∂ into F pCp+q and we denote the image

by Äp,qr (the index of r instead of r − 1 is to make life easier later on). That is,

Äp,qr = ∂(Ap−r+1,q+r−2
r−1 )

For r ≤ 1 we have Äp,qr = ∂(F p−r+1Cp+q−1) and we have therefore a sequence

Ker(∂) ∩ F pCp+q ⊇ Äp,q1 ⊇ Äp,q2 ⊇ · · · ⊇ Äp,qr ⊇ Äp,qr+1 ⊇ · · ·

This defines for r ∈ Z two subobjects Ap,qr , Äp,qr of F pCp+q. We can now introduce “approximate”
cocycles and coboundaries for p, q ∈ Z and r ≥ 0

Zp,qr =
Ap,qr + F p+1Cp+q

F p+1Cp+q
“approximate cocycles”

Bp,qr =
Äp,qr + F p+1Cp+q

F p+1Cp+q
“approximate coboundaries”

Note that if the filtration is trivial (i.e. F 1(C) = C and F p(C) = 0 for p 6= 1) then for r = 1 the
objects Z0,q

1 and B0,q
1 are the just the kernel of ∂ : Cq −→ Cq+1 and image of ∂ : Cq−1 −→ Cq

respectively; that is, the usual cocycles and coboundaries. Both Zp,qr and Bp,qr are canonically
subobjects of F pCp+q/F p+1Cp+q and Bp,qr ⊆ Zp,qr . We can therefore define

Ep,qr = Zp,qr /Bp,qr
∼=
Ap,qr + F p+1Cp+q

Äp,qr + F p+1Cp+q
“approximate cohomology”

The idea is that as r is made large, the approximate cocycles and coboundaries of degree r
approach the real cocycles and coboundaries, and therefore Ep,qr approaches something related
to the cohomology Hp+q(C) (in fact, it will approach the quotients of a certain filtration of this
cohomology object).

Lemma 1. Suppose we have two subobjects Y, F of an object X. Then the canonical morphism
F −→ F + Y −→ (F + Y )/Y is an epimorphism.

Proof. We can realise F +Y as the image of F ⊕Y −→ X, and the projection F ⊕Y −→ F is the
cokernel of Y −→ F ⊕ Y , so we deduce a morphism F −→ (F + Y )/Y fitting into a commutative
diagram

F // (F + Y )/Y

F ⊕ Y

OO

// F + Y

OO

It is therefore clear that F −→ (F +Y )/Y is an epimorphism, and one checks that this is actually
the composite F −→ F + Y −→ (F + Y )/Y .

We have already defined the objects Ep,qr of the spectral sequence, and next we define the
morphisms dpqr : Epqr −→ Ep+r,q−r+1

r . Observe that by Lemma 1 we have a canonical epimorphism

Ap,qr −→ Ap,qr + F p+1Cp+q −→ Ap,qr + F p+1Cp+q

Äp,qr + F p+1Cp+q
∼= Ep,qr
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and the differential induces a canonical morphism ∂ : Apqr −→ Ap+r,q−r+1
r making the following

diagram commute

Cp+q
∂ // Cp+q+1

Apqr

OO

∂
// Ap+r,q−r+1
r

OO

We make the following claim:

Lemma 2. There is a unique morphism dpqr : Epqr −→ Ep+r,q−r+1
r making the following diagram

commute
Apqr

��

∂ // Ap+r,q−r+1
r

��
Epqr

dpq
r

// Ep+r,q−r+1
r

Proof. Uniqueness is trivial since the vertical morphisms are epimorphisms, so it suffices to show
existence. Even on the level of modules over a ring this is a fairly delicate technical question, so
we proceed by reducing to this case by the full embedding theorem (see Mitchell VI Theorem 7.2).
That is, we assume A = RMod for some (noncommutative) ring R, in which case the claim is
reasonably straightforward to check.

It is clear by construction that dp+r,q−r+1
r dpqr = 0, so we have defined the elements (a), (b) of

a spectral sequence. Thus we obtain objects Zr+1(Epqr ) and Br+1(Epqr ) and we desire a canonical
isomorphism αpqr : Zr+1(Epqr )/Br+1(Epqr ) −→ Epqr+1. We have by definition a commutative diagram

Ep−r,q+r−1
r

��

dp−r,q+r−1
r // Epqr

��

dpq
r // Ep+r,q−r+1

r

��
Ap−r,q+r−1

r +Fp−r+1Cp+q−1

Äp−r,q+r−1
r +Fp−r+1Cp+q−1

// Apq
r +Fp+1Cp+q

Äpq
r +Fp+1Cp+q

// Ap+r,q−r+1
r +Fp+r+1Cp+q+1

Äp+r,q−r+1
r +Fp+r+1Cp+q+1

By applying the full embedding theorem to reduce to the case of modules over a ring (or otherwise)
one checks that

Zr+1(Epqr ) = Ker(dp,qr ) =
Apqr+1 + F p+1Cp+q

Äpqr + F p+1Cp+q

Br+1(Epqr ) = Im(dp−r,q+r−1
r ) =

Äpqr+1 + F p+1Cp+q

Äpqr + F p+1Cp+q

From which we deduce the required canonical isomorphism

αpqr : Zr+1(Epqr )/Br+1(Epqr ) −→
Apqr+1 + F p+1Cp+q

Äpqr+1 + F p+1Cp+q
∼= Epqr+1

Once again using the full embedding theorem one checks that for k ≥ r + 1 we have

Zk(Epqr ) =
Apqk + F p+1Cp+q

Äpqr + F p+1Cp+q

Bk(Epqr ) =
Äpqk + F p+1Cp+q

Äpqr + F p+1Cp+q
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And we define part (d) of the data of a spectral sequence as follows

Z∞(Epq0 ) =
Ker(∂) ∩ F pCp+q + F p+1Cp+q

F p+1Cp+q

B∞(Epq0 ) =
Im(∂) ∩ F pCp+q + F p+1Cp+q

F p+1Cp+q

It is clear that Bk(E
pq
0 ) ⊆ B∞(Epq0 ) and Z∞(Epq0 ) ⊆ Zk(E

pq
0 ) for k ≥ 0. By definition we have

Epq∞ = Z∞(Epq0 )/B∞(Epq0 ) ∼=
Ker(∂) ∩ F pCp+q

Ker(∂) ∩ F pCp+q ∩ (Im(∂) ∩ F pCp+q + F p+1Cp+q)
(3)

To define part (e) of a spectral sequence, we set En = Hn(C). For each p ∈ Z the inclusion
F p(C) −→ C induces a morphism Hn(F p(C)) −→ Hn(C) and we denote the image of this
morphism by F p(En). This defines a filtration on each En. One checks that for p, q ∈ Z we have

F p(Ep+q) =
Ker(∂) ∩ F pCp+q + Im(∂)

Im(∂)

and therefore

grp(Ep+q) = F p(Ep+q)/F p+1(Ep+q) ∼=
Ker(∂) ∩ F pCp+q + Im(∂)
Ker(∂) ∩ F p+1Cp+q + Im(∂)

∼=
Ker(∂) ∩ F pCp+q

Ker(∂) ∩ F pCp+q ∩ (Ker(∂) ∩ F p+1Cp+q + Im(∂))

(4)

Using an embedding theorem (or otherwise) one checks that the denominators in (3) and (4) are
the same, so we have a canonical isomorphism

βpq : Epq∞ −→ grp(Ep+q)

which completes the definition of our spectral sequence. We make one observation about the zero
page of this spectral sequence.

Lemma 3. There is a canonical isomorphism Epq0
∼= F pCp+q/F p+1Cp+q which is natural, in the

sense that the following diagram commutes

Epq0

dpq
0

��

// FpCp+q

Fp+1Cp+q

��
Ep,q+1

0
// FpCp+q+1

Fp+1Cp+q+1

Proof. We already know that Epq0
∼= (Apq0 + F p+1Cp+q)/(Äpq0 + F p+1Cp+q) so the existence of a

canonical isomorphism follows from the fact that Apq0 = F pCp+q and Äp,q0 ⊆ F p+1Cp+q. Naturality
follows from the definition of dpq0 given in Lemma 2.

In summary

Proposition 4. Let A be an abelian category and C a complex in A with a decreasing filtration
{F p(C)}p∈Z. Then there is a canonical spectral sequence (Epqr , E

n) starting on page zero, with

Epq0 = F pCp+q/F p+1Cp+q

En = Hn(C)

In other words, Epqr =⇒ Hp+q(C).
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2.1 First Quadrant Filtration

In this section we describe the convergence properties of the above spectral sequence in an impor-
tant special case. Throughout this section let A be an abelian category and C a complex in A.
Suppose that Ci = 0 for i < 0 and that the filtration on Cn for n ≥ 0 has the following form

Cn = · · · = F−1Cn = F 0Cn ⊇ · · · ⊇ FnCn ⊇ Fn+1Cn = · · · = 0

That is, F jCn = 0 for j > n and F jCn = Cn for j ≤ 0. Graphically, this means that when we
place the filtered pieces of C in a diagram, everything essentially lives in the first quadrant

F 0C0

F 0C1

F 1C1

F 1C2

F 2C2

F 0C2

Let p, q ∈ Z be given with p + q ≥ 0. For r > q + 1 we have F p+rCp+q+1 = 0 and therefore
Apqr = F pCp+q ∩Ker(∂). For r ≥ p+ 1 we have Ap−r+1,q+r−2

r−1 = ∂−1(F pCp+q) and therefore

Äpqr = Im(∂) ∩ F pCp+q

If we define

Apq∞ = Ker(∂) ∩ F pCp+q

Äpq∞ = Im(∂) ∩ F pCp+q

Then we have inclusions

F pCp+q = Apq0 ⊇ Apq1 ⊇ · · · ⊇ Apqq+1 ⊇ Apqq+2 = Apq∞

∂(F pCp+q−1) = Äpq1 ⊇ Äpq2 ⊇ · · · ⊇ Äpqp+1 = Äpq∞

In particular the objects

Zk(E
pq
0 ) =

Apqk + F p+1Cp+q

F p+1Cp+q

Bk(E
pq
0 ) =

Äpqk + F p+1Cp+q

F p+1Cp+q

stabilise to Z∞(Epq0 ) and B∞(Epq0 ) for sufficiently large k. In particular the spectral sequence
Epqr corresponding to C and its filtration is weakly convergent. It is also a first quadrant spectral
sequence, in the sense that Epqr = 0 unless p ≥ 0, q ≥ 0. One checks that the spectral sequence is
biregular in the sense of Definition 3.

Remark 2. There is nothing special about the requirement Ci = 0 for i < 0 throughout the
above. That is to say, if N ≤ 0 is any integer such that Ci = 0 for i < N with the filtration on C
defined in the appropriate way (so as to fit into the region p ≥ N, q ≥ 0 of the plane), then the
corresponding spectral sequence is also biregular, and satisfies Epqr = 0 unless p ≥ N, q ≥ 0.
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3 The Spectral Sequences of a Double Complex

Throughout this section let A be a cocomplete abelian category. See (DTC,Definition 32) for the
definition of a bicomplex in A and (DTC,Definition 33) for the definition of the totalisation of a
bicomplex.

Let C be a bicomplex in A with totalisation Tot(C). We define two decreasing filtrations on the
complex Tot(C), which corresponds to filtering the bicomplex by rows and columns respectively.
Graphically, our bicomplex has the form

// C(i−1)(j+1)

OO

// Ci(j+1)

OO

∂
i(j+1)
1 // C(i+1)(j+1) //

OO

// C(i−1)j

OO

// Cij

∂ij
2

OO

∂ij
1

// C(i+1)j

∂
(i+1)j
2

OO

//

// C(i−1)(j−1)

OO

// Ci(j−1)

OO

// C(i+1)(j−1) //

OO

OO OO OO

(5)

At each position we can define the “vertical” and “horizontal” cohomology by

Hij
I (C) =

Ker(∂ij2 )

Im(∂i(j−1)
2 )

Hij
II (C) =

Ker(∂ij1 )

Im(∂(i−1)j
1 )

and these become complexes H•,j
I (C) and Hi,•

II (C) in the obvious way. This yields at each position
two cohomology objects Hp(H•,q

I (C)) and Hq(Hp,•
II (C)). While these are not necessarily equal,

they “converge” to the same limit in a sense we will now make precise.
Now we define two filtrations {F pI (Tot(C))}p∈Z and {F pII(Tot(C))}p∈Z on the complex Tot(C).

By definition Tot(C)n = ⊕i+j=nCij and we set

F pI (Tot(C))n =
⊕
r≥p

Cr,n−r ∂nur = ur+1∂
r,n−r
1 + (−1)rur∂

r,n−r
2

F pII(Tot(C))n =
⊕
r≥p

Cn−r,r ∂nur = ur∂
n−r,r
1 + (−1)n−rur+1∂

n−r,r
2

where the ur denote injections into the respective coproducts. These are complexes in A that
admit canonical monomorphisms into Tot(C).

p n n + 1

F p
I

p

n n + 1

F p
II

8
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We obtain by Proposition 4 spectral sequences ′E and ′′E corresponding to the filtrations
{F pI (Tot(C))}p∈Z and {F pII(Tot(C))}p∈Z respectively. Both converge to the cohomologyH(Tot(C)).
In fact the zero page of both these spectral sequences is just the original bicomplex.

Lemma 5. The zero pages ′E0 and ′′E0 are canonically isomorphic to the following diagrams
respectively (up to some sign factors)

C0,0

C0,1

C0,2

C1,0

C1,1

C2,0 C0,0

C1,0

C2,0

C0,1

C1,1

C0,2

To be precise, we claim that for p, q ∈ Z there are canonical isomorphisms

′Ep,q0 −→ Cp,q, ′′Ep,q0 −→ Cq,p

making the following diagrams commute

′Ep,q0

′dp,q
0

��

// Cp,q

(−1)p∂p,q
2

��
′Ep,q+1

0
// Cp,q+1

′′Ep,q0

′′dp,q
0

��

// Cq,p

∂q,p
1

��
′′Ep,q+1

0
// Cq+1,p

Proof. We have a canonical isomorphism

′Ep,q0
∼=

F pI Tot(C)p+q

F p+1
I Tot(C)p+q

=
⊕r≥pCr,p+q−r

⊕r≥p+1Cr,p+q−r

∼= Cp,q

and similarly ′′Ep,q0
∼= Cq,p. One checks using Lemma 3 that these isomorphisms are natural in

the way described.

Lemma 6. The first pages ′E1 and ′′E1 are canonically isomorphic to the following diagrams
respectively

H00
I (C)

H01
I (C)

H02
I (C)

H10
I (C)

H11
I (C)

H20
I (C) H00

II (C)

H10
II (C)

H20
II (C)

H01
II (C)

H11
II (C)

H02
II (C)

To be precise, we claim that for p, q ∈ Z there are canonical isomorphisms

′Epq1 −→ Hpq
I (C), ′′Epq1 −→ Hqp

II (C)
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making the following diagrams commute

′Epq1

��

′dpq
1 // ′Ep+1,q

1

��
Hpq
I (C) // Hp+1,q

I (C)

′′Epq1

��

(−1)q ′′dpq
1 // ′′Ep+1,q

1

��
Hqp
II (C) // Hq,p+1

II (C)

(6)

Proof. From Lemma 5 we deduce a commutative diagram

′Ep,q−1
0

��

′dp,q−1
0 // ′Epq0

��

′dpq
0 // ′Ep,q+1

0

��
Cp,q−1

(−1)p∂p,q−1
2

// Cpq
(−1)p∂pq

2

// Cp,q+1

and therefore by definition of a spectral sequence a canonical isomorphism ′Epq1
∼= Hpq

I (C). Simi-
larly we obtain a canonical isomorphism ′′Epq1

∼= Hqp
II (C). For the naturality statements we would

like to use an embedding theorem, but this would be dishonest because the definiton of Tot(C)
involves infinite coproducts which are not necessarily preserved by our embedding.

First we define a canonical morphism α : ′Apq1 −→ Hpq
I (C). By definition

′Apq1 = ⊕r≥pCr,p+q−r ∩ ∂−1
(
⊕r≥p+1C

r,p+q+1−r)
Informally, a sequence (ar)r≥p in ′Apq1 must have ∂pq2 (ap) = 0, because ∂((ar)r≥p) belongs to
⊕r≥p+1C

r,p+q+1−r. That is, aq ∈ Ker(∂pq2 ), so we obtain a canonical morphism ′Apq1 −→
Ker(∂pq2 ). Formally, we have a commutative diagram

′Apq1

��

// ⊕r≥pCr,p+q−r

∂p+q

��

// Cpq

(−1)p∂pq
2

��
⊕r≥p+1C

r,p+q+1−r // ⊕r≥pCr,p+q+1−r // Cp,q+1

From which we deduce that the image of ′Apq1 −→ Cpq is contained in Ker(∂pq2 ), so we obtain the
desired morphism α : ′Apq1 −→ Ker(∂pq2 ) −→ Hpq

I (C). We claim this is equal to the composite
′Apq1 −→ ′Epq1 −→ Hpq

I (C). The verification is not difficult, but it is tedious since it involves
unfolding the definitions of all these morphisms. We omit the details. In fact one can check that

′Apq1 = Ker(∂pq2 )⊕
⊕
r≥p+1

Cr,p+q−r (7)

so α is just the projection onto the first factor followed by the canonical quotient. We are now
prepared to check commutativity of the diagrams in (6). To show that the first diagram commutes,
we compose with ′Apq1 −→ ′Epq1 and reduce to showing that the following diagram commutes

′Apq1

α

��

// ′Ap+1,q
1

α

��
Hpq
I (C) // Hp+1,q

I (C)

(8)

The reader may find the diagram below helpful in the following discussion. Note that we are not

10



claiming all faces of this diagram commute.

Tot(C)p+q

��

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Ker(∂pq2 )

��

//

##FFFFFFFFF
Hpq
I (C)

��

′Apq1

;;vvvvvvvvv

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

��

// ⊕r≥pCr,p+q−r

ggOOOOOOOOOOO
// Cpq

��

Tot(C)p+q+1

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Ker(∂p+1,q
2 ) //

""FF
FF

FF
FF

F
Hp+1,q
I (C)

′Ap+1,q
1

;;wwwwwwwww

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee // ⊕r≥p+1C
r,p+q+1−r

ggNNNNNNNNNNN
// Cp+1,q

We check that (8) commutes by writing ′Apq1 as the coproduct (7) and checking on components. It
is straightforward to check that both ways around the square agree on Ker(∂pq2 ). Given r ≥ p+1
the composite ′Apq1 −→ Hpq

I (C) −→ Hp+1,q
I (C) always vanishes on Cr,p+q−r, and we have to

show the other way around also vanishes. If r > p + 1 this is easy to check. For r = p + 1
the morphism Cp+1,q−1 −→ ′Apq1 −→ ′Ap+1,q

1 −→ Ker(∂p+1,q
2 ) factors through Im(∂p+1,q−1

2 ),
so when we compose with the quotient Ker(∂p+1,q

2 ) −→ Hp+1,q
I (C) we get zero. Therefore (8)

commutes, and consequently so does the first diagram of (6). One checks commutativity of the
second diagram of (6) in much the same way.

Lemma 7. For p, q ∈ Z there are canonical isomorphisms

′Epq2
∼= Hp(H•,q

I (C)) and ′′Epq2
∼= Hp(Hq,•

II (C))

Proof. By definition of a spectral sequence the entries on the second page are canonically isomor-
phic to the cohomology of the first page, so the claims are an immediate consequence of Lemma
6.

In summary

Proposition 8. Let A be a cocomplete abelian category and C a bicomplex in A. There are
canonical spectral sequences ′E and ′′E with

′Epq0 = Cpq, ′Epq1 = Hpq
I (C), ′Epq2 = Hp(H•,q

I (C))
′′Epq0 = Cqp, ′′Epq1 = Hqp

II (C), ′′Epq2 = Hp(Hq,•
II (C))

Both spectral sequences ′Epqr and ′′Epqr converge to Hp+q(Tot(C)).

Example 1. Let A be a cocomplete abelian category and C a bicomplex in A. Assume that C is
a first quadrant bicomplex: that is, Cij = 0 unless i ≥ 0, j ≥ 0. Then Tot(C)n = 0 for n < 0 and
the filtrations F pI (Tot(C)), F pII(Tot(C)) have the form of the filtration in Section 2.1. That is,

Tot(C)n = · · · = F 0
I (Tot(C))n ⊇ · · · ⊇ FnI (Tot(C))n ⊇ Fn+1

I (Tot(C))n = · · · = 0

Tot(C)n = · · · = F 0
II(Tot(C))n ⊇ · · · ⊇ FnII(Tot(C))n ⊇ Fn+1

II (Tot(C))n = · · · = 0

It follows that the spectral sequences ′E and ′′E are biregular first quadrant spectral sequences.
More generally, if there exists an integer N ≤ 0 such that Cij = 0 unless i ≥ N, j ≥ 0 then the
corresponding spectral sequences ′E and ′′E are biregular and zero outside of p ≥ N, q ≥ 0.

Example 2. Let A be a cocomplete abelian category and C a bicomplex in A. Assume that the
nonzero terms of C are all concentrated in a horizontal strip: that is, assume that there exists an
integer N ≥ 0 such that Cij = 0 unless 0 ≤ j ≤ N . The complex Tot(C) is no longer necessarily
bounded, but the filtration F pII(Tot(C)) is of the form

Tot(C)n = F 0
II(Tot(C))n ⊇ · · · ⊇ FNII (Tot(C)) ⊇ FN+1

II (Tot(C)) = 0

11



Let ′′E be the spectral sequence derived from this filtration. This is not necessarily a first quadrant
spectral sequence, but it is straightforward to check that it is biregular.

For a trivial example of how this spectral sequence might be useful, suppose that the rows
of C are exact. Using Proposition 8 it is clear that the second page of the spectral sequence ′′E
vanishes. Therefore by Remark 4 every subsequent page vanishes, and in particular Epq∞ = 0 for
p, q ∈ Z. It follows that Hn(Tot(C)) = 0, so the complex Tot(C) is exact.

4 The Grothendieck Spectral Sequence

Throughout this section let A be an abelian category.

Definition 5. Given a complex C in A an injective resolution of C is a commutative diagram

...
...

...

· · · // Ip,1 //

OO

Ip+1,1 //

OO

Ip+2,1 //

OO

· · ·

· · · // Ip,0 //

OO

Ip+1,0 //

OO

Ip+2,0 //

OO

· · ·

· · · // Cp

OO

// Cp+1

OO

// Cp+2 //

OO

· · ·

(9)

in which the rows are complexes and each column is an injective resolution. That is, Cp −→ Ip,• is
an injective resolution in A. To be precise, the injective resolution is the upper halfplane bicomplex
I together with the morphism of complexes C −→ I•,0. For each p ∈ Z we have complexes

0 −→ Zp(C) −→ Zp(I•,0) −→ Zp(I•,1) −→ · · ·
0 −→ Bp(C) −→ Bp(I•,0) −→ Bp(I•,1) −→ · · ·
0 −→ Hp(C) −→ Hp(I•,0) −→ Hp(I•,1) −→ · · ·

and we say that the injective resolution (9) is fully injective if for each p ∈ Z these complexes are
all injective resolutions.

Lemma 9. Let A be an abelian category with enough injectives. Then every complex C in A has
a fully injective resolution.

Proof. For each n ∈ Z we have short exact sequences

0 −→ Zn(C) −→ Cn −→ Bn+1(C) −→ 0
0 −→ Bn(C) −→ Zn(C) −→ Hn(C) −→ 0

(10)

Choose for each n ∈ Z injective resolutions of Hn(C) and Bn(C). By (DF,Corollary 40) we
can find an injective resolution of Zn(C) fitting into a short exact sequence with the original
two resolutions. Applying this result again we construct an injective resolution of Cn. Placing
all these injective resolutions in the columns of a bicomplex, we have the desired fully injective
resolution.

Remark 3. In the context of Lemma 9 if there is a set of integers N with Ci = 0 for i ∈ N
then we can clearly arrange for the fully injective resolution I to have zero columns for any index
i ∈ N .

Definition 6. Let A be an abelian category with enough injectives, and C a complex in A. We
say that a fully injective resolution of C is normal if it is constructed as in Lemma 9 from an
initial choice of injective resolutions for Hn(C) and Bn(C). A normal, fully injective resolution is
called a Cartan-Eilenberg resolution.

12
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Theorem 10 (Grothendieck spectral sequence). Let F : A −→ B and G : B −→ C be additive
functors between abelian categories where A,B have enough injectives and C is cocomplete, and
suppose that F sends injectives to G-acyclics. Then for any object A ∈ A there is a biregular first
quadrant spectral sequence E starting on page zero, such that

Epq2 = RpG(RqF (A)) =⇒ Rp+q(GF )(A)

Proof. Let us be clear on several points in the statement. Given an injective object I ∈ A we
require that F (I) be right G-acyclic in the sense of (DF,Definition 14). Fix assignments of injective
resolutions to A,B and calculate all right derived functors with respect to these choices. We claim
that there exists a (noncanonical) spectral sequence (Epqr , E) starting on page zero, together with
isomorphisms Epq2

∼= RpG(RqF (A)) for p, q ≥ 0 and En ∼= Rn(GF )(A) for n ≥ 0.
Let the complex C be an injective resolution of A, and let the bicomplex I be a fully injective

resolution of the complex FC (with Ip,q = 0 unless p, q ≥ 0). That is, we have a commutative
diagram with exact columns

...
...

...

0 // I0,1

OO

// I1,1

OO

// I2,1

OO

// · · ·

0 // I0,0

OO

// I1,0

OO

// I2,0

OO

// · · ·

0 // F (C0)

OO

// F (C1)

OO

// F (C2)

OO

// · · ·

0

OO

0

OO

0

OO

We can apply the results of Section 3 to the bicomplex GI to obtain two canonical filtrations

F pI (Tot(GI))n =
⊕
r≥p

G(Ir,n−r)

F pII(Tot(GI))
n =

⊕
r≥p

G(In−r,r)

and spectral sequences ′Epqr ,
′′Epqr both converging to the cohomology of Tot(GI). By Example 1

these are both biregular first quadrant spectral sequences. We have a canonical isomorphism

′Epq2
∼= Hp(H•,q

I (GI)) ∼= Hp(RqG(FC•))

But C is a complex of injectives and F sends injectives to G-acyclics, so for q > 0 the complex
RqG(FC•) is zero, and for q = 0 it is canonically isomorphic to GFC. In other words, we have

′Epq2 =

{
0 q > 0
Rp(GF )(A) q = 0

Since all the morphisms on page two and beyond are zero, we deduce canonical isomorphisms

′Epq2
∼= ′Epq3

∼= · · ·

But ′E is biregular, so eventually this sequence stabilises to ′Epq∞ , so there is an isomorphism
′Epq2

∼=′ Epq∞ , and therefore ′Epq∞
∼= Rp(GF )(A) for p ≥ 0 and q = 0. All the filter quotients

13
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F p(En)/F p+1(En) except for the first one vanish, because ′Epq∞ vanishes off the line p ≥ 0, q = 0.
We have therefore an isomorphism for every n ≥ 0

HnTot(GI) ∼= ′En0
∞
∼= Rn(GF )(A)

Now we turn to the second spectral sequence ′′E. Since the resolution I of F (C) is fully injective,
we have injective resolutions

0 −→ Zp(FC) −→ Zp,0 −→ Zp,1 −→ · · ·
0 −→ Bp(FC) −→ Bp,0 −→ Bp,1 −→ · · ·
0 −→ Hp(FC) −→ Hp,0

II (I) −→ Hp,1
II (I) −→ · · ·

and exact sequences

0 −→ Zpq −→ Ipq −→ Bp+1,q −→ 0
0 −→ Bpq −→ Zpq −→ Hpq −→ 0

which must be split exact since everything in sight is injective. It follows that the image under
G of these sequences is exact, from which we deduce that Zpq(GI) = G(Zpq), Bpq(GI) = G(Bpq)
and most importantly Hpq

II (GI) ∼= G(Hpq
II (I)). In fact this is a canonical isomorphism of complexes

Hp,•
II (GI) ∼= G(Hp,•

II (I)). But then

′′Epq2
∼= Hp(Hq,•

II (GI)) ∼= HpG(Hq,•
II (I))

But Hq,•
II (I) is an injective resolution of Hq(FC) ∼= RqF (A), so there is a canonical isomorphism

HpG(Hq,•
II (I)) ∼= RpG(RqF (A)). So finally we have a canonical isomorphism for p, q ≥ 0

′′Epq2
∼= RpG(RqF (A))

Setting E = ′′E we have a spectral sequence starting on page zero, whose second page has all its
entries isomorphic to RpG(RqF (A)), and which converges to Hp+q(Tot(GI)) which we know is
isomorphic to Rp+q(GF )(A), so the proof is complete.

4.1 Examples

4.1.1 The Leray Spectral Sequence

Corollary 11 (Leray spectral sequence). Let f : X −→ Y be a continuous map of topological
spaces and F a sheaf of abelian groups on X. Then there is a biregular first quadrant spectral
sequence

Epq2 = Hp(Y,Rqf∗(F )) =⇒ Hp+q(X,F )

Proof. In Theorem 10 we take A = Ab(X),B = Ab(Y ) and C = Ab. The functor F is f∗ and the
functor G is Γ(X,−). Then F sends injectives to flasque sheaves, which are certainly acyclic for
G. We obtain a biregular first quadrant spectral sequence E starting on page zero of the desired
form.

4.1.2 The Local-to-Global Ext Spectral Sequence

Lemma 12. Let (X,OX) be a ringed space and F ,I sheaves of modules with F flat and I
injective. Then Hom(F ,I ) is injective.

Proof. We have a canonical natural equivalence (MRS,Proposition 76)

Hom(−,Hom(F ,I )) ∼= Hom(−⊗F ,I )

The right hand side is the composite of two exact functors, therefore exact, so the left hand side
is exact as well.

14
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Lemma 13. Let (X,OX) be a ringed space and F ,I sheaves of modules with I injective. Then
Hom(F ,I ) is acyclic for Γ(X,−). That is, Hi(X,Hom(F ,I )) = 0 for i > 0.

Proof. We can find an exact sequence 0 −→ X −→ Y −→ F −→ 0 with Y flat (DCOS,Lemma
47). Applying the exact functor Hom(−,I ) we have a short exact sequence

0 −→ Hom(F ,I ) −→ Hom(Y ,I ) −→ Hom(X ,I ) −→ 0

in which the middle term is injective by Lemma 12. From the corresponding long exact cohomology
sequence we deduce H1(X,Hom(F ,I )) = 0 and an isomorphism for i > 1

Hi(X,Hom(F ,I )) ∼= Hi−1(X,Hom(X ,I ))

The claim is now easily checked.

We can now establish the local-to-global Ext spectral sequence.

Proposition 14. Let (X,OX) be a ringed space and F ,G sheaves of modules. There is a biregular
first quadrant spectral sequence E starting on page zero, such that

Epq2 = Hp(X,Extq(F ,G )) =⇒ Extp+q(F ,G )

Proof. In Theorem 10 we take A = B = Mod(X) and C = Ab. The functor F is Hom(F ,−)
and the functor G is Γ(X,−). Then F sends injectives to G-acyclics by Lemma 13. We obtain a
biregular first quadrant spectral sequence E starting on page zero of the desired form.

5 Hyperderived Functors

Throughout this section let A be an abelian category.

Definition 7. A homotopy Σ : ϕ −→ ψ between two morphisms of bicomplexes ϕ,ψ : C −→ D
is a collection of morphisms

Σij1 : Cij −→ Di−1,j , Σij2 : Cij −→ Di,j−1

such that ψ − ϕ = ∂1Σ1 + Σ1∂1 + ∂2Σ2 + Σ2∂2 and Σ1∂2 + ∂2Σ1 = 0, Σ2∂1 + ∂1Σ2 = 0. That is,
for every i, j ∈ Z we have

ψij − ϕij = ∂i−1,j
1 Σij1 + Σi+1,j

1 ∂ij1 + ∂i,j−1
2 Σij2 + Σi,j+1

2 ∂ij2

Σij1 ∂
i,j−1
2 = ∂i−1,j−1

2 Σi,j−1
1

Σi+1,j
2 ∂ij1 = ∂i,j−1

1 Σij2

as in the diagram

Di−1,j+1 // Di,j+1 // Di+1,j+1

Ci−1,j+1

((PPPPPP

44 <<

// Ci,j+1

&&MMM
MMM

ggOOOOOO

55 @@

// Ci+1,j+1

44 <<ggOOOOOO

((PPPPPP

Di−1,j

OO

// Dij //

OO

Di+1,j

OO

Ci−1,j

((PPPPPP

33 <<

OO

// Cij

&&MMM
MMM

ggOOOOOO

33 @@

OO

// Ci+1,j

33 <<

OO

ggOOOOOO

((PPPPPP

Di−1,j−1

OO

// Di,j−1 //

OO

Di+1,j−1

OO

Ci−1,j−1

44 <<

//

OO

Ci,j−1

ggOOOOOO

55 @@

//

OO

Ci+1,j−1

44 <<

OO

ggOOOOOO
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We say that ϕ,ψ are homotopic and write ϕ ' ψ if there is a homotopy Σ : ϕ −→ ψ. If Σ is such
a homotopy, thn the morphisms −Σ (meaning −Σij1 and −Σij2 ) define a homotopy −Σ : ψ −→ ϕ,
so there is a bijection between homotopies ϕ −→ ψ and homotopies ψ −→ ϕ. Homotopy defines
an equivalence relation on the set of morphisms of bicomplexes C −→ D, and this relation is
compatible with composition in the usual sense.

Remark 4. Let F : A −→ B be an additive functor between abelian categories. This induces an
additive functor F : C2(A) −→ C2(B) between the categories of bicomplexes. It is clear that if
Σ : ϕ −→ ψ is a homotopy of morphisms of bicomplexes ϕ,ψ : C −→ D then there is a homotopy
F (Σ) : F (ϕ) −→ F (ψ).

Lemma 15. Suppose that A is cocomplete, and let ϕ,ψ : C −→ D be morphisms of bicomplexes.
Given a homotopy Σ : ϕ −→ ψ there is a homotopy Tot(Σ) : Tot(ϕ) −→ Tot(ψ) of the induced
morphisms of the totalisations Tot(ϕ), T ot(ψ) : Tot(C) −→ Tot(D), defined by

Tot(Σ)nuij = ui−1,jΣ
ij
1 + (−1)iui,j−1Σ

ij
2

As one would expect, a morphism of complexes lifts to a morphism of the fully injective
resolutions which is unique up to homotopy. To prove this, we have to first recall some basic facts
about injective resolutions.

Lemma 16. Suppose that A has enough injectives and that we have a commutative diagram with
exact rows

0 // A′

f ′

��

ϕ // A

f

��

ψ // A′′

f ′′

��

// 0

0 // B′
α

// B
β

// B′′ // 0

together with injective resolutions ε′ : A′ −→ I ′, ε′′ : A′′ −→ I ′′ and η′ : B′ −→ J ′, η′′ : B′′ −→ J ′′.
Let ε : A −→ I, η : B −→ J be injective resolutions induced as in (DF,Corollary 40). Given
morphisms of complexes F : I ′ −→ J ′, F ′′ : I ′′ −→ J ′′ lifting f ′, f ′′ respectively, there is a
morphism F : I −→ J lifting f and giving a commutative diagram with exact rows

0 // I ′

F ′

��

// I

F

��

// I ′′

F ′′

��

// 0

0 // J ′ // J // J ′′ // 0

If G′, G,G′′ is another triple of morphisms lifting f ′, f, f ′′ with the same property and if Σ′ :
F ′ −→ G′,Σ′′ : F ′′ −→ G′′ are homotopies, then there exists a homotopy Σ : F −→ G such that
the following diagram commutes

0 // (I ′)n

(Σ′)n

��

// In

Σn

��

// (I ′′)n

(Σ′′)n

��

// 0

0 // (J ′)n−1 // Jn−1 // (J ′′)n−1 // 0

Proof. Everything apart from the last claim about homotopies was checked as part of the proof
of (DF,Theorem 41). For the proof of the dual, which is given in some detail, see (DF,Theorem
34). It remains to prove the statement about homotopies.

By hypothesis the resolutions I, J are produced by (DF,Corollary 40), so there are morphisms
σI , λI,n and σJ , λJ,n satisfying some relations listed in the proof of (DF,Corollary 40). We need
to define for each n ≥ 1 a morphism

Σn =
(

Σ′
n tn

0 Σ′′
n

)
: In −→ Jn−1

satisfying various properties. First one writes down exactly what these properties mean for the
morphism tn, and then one constructs t0, t1, . . . recursively.

16
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Proposition 17. Suppose that A has enough injectives, and let ϕ : C −→ D be a morphism of
complexes. Let I, J be Cartan-Eilenberg resolutions of C,D respectively. Then there is an induced
morphism of bicomplexes Φ : I −→ J making the following diagram commute

C //

ϕ

��

I•,0

Φ•,0

��
D // J•,0

If ϕ,ψ : C −→ D are homotopic morphisms of complexes then any two lifts Φ,Ψ : I −→ J are
also homotopic.

Proof. By assumption the resolutions I, J are constructed by first choosing resolutions forBn(C),Hn(C)
and Bn(D),Hn(D), then inducing resolutions of Zn(C), Cn as in (DF,Corollary 40). By an ar-
gument we verified in the proof of (DF,Theorem 41) (for the dual result, which is explained in
detail, see the proof of (DF,Theorem 34)) the commutative diagram

0 // Bn(C)

��

// Zn(C) //

��

Hn(C) //

��

0

0 // Bn(D) // Zn(D) // Hn(D) // 0

can be lifted to a commutative diagram with exact rows on the chosen injective resolutions of each
object. Applying this again to the exact sequences 0 −→ Zn(−) −→ (−)n −→ Bn+1(−) −→ 0 we
deduce the existence of the desired morphism of bicomplexes.

It remains to prove the statement about lifting homotopies. Let Σ : ϕ −→ ψ be a homotopy.
The morphism Σn : Dn −→ Cn−1 lifts to a morphism of complexes In,• −→ Jn−1,•. Taking these
together for all n ∈ Z we have for i ∈ Z, j ≥ 0 a morphism Sij : Iij −→ Ii−1,j and we define

Θij = Φij + Si+1,j∂ij1 + ∂i−1,j
1 Sij

This is a morphism of bicomplexes Θ : I −→ J lifting ψ : C −→ D. The Sij clearly define a
homotopy Φ −→ Θ, so we can reduce to proving the following statement: given a morphism of
complexes ϕ : C −→ D any two lifts Φ,Ψ : I −→ J are homotopic.

For each n ∈ Z we have short exact sequences

0 −→ Zn(C) −→ Cn −→ Bn+1(C) −→ 0
0 −→ Bn(C) −→ Zn(C) −→ Hn(C) −→ 0

(11)

and similarly for D. The morphism of complexes ϕ induces a morphism of these short exact
sequences, and Φ,Ψ induce morphisms of the short exact sequences of resolutions lifting this
original morphism of short exact sequences. We can find homotopies connecting the two lifts of
Bn(C) −→ Bn(D) and Hn(C) −→ Hn(D), and therefore by the last statement of Lemma 16 a
homotopy of the lifts of Zn(C) −→ Zn(D) compatible with the first two. Repeating this process
with the first exact sequence of (11) we obtain a special homotopy Σn,•2 : Φn,• −→ Ψn,• of the
lifts of ϕn : Cn −→ Dn. The construction means that Σi+1,j

2 ∂ij1 = ∂i,j−1
1 Σij2 so if we set Σ1 = 0

then Σ is a homotopy Φ −→ Ψ as required.

Definition 8 (Hyperderived functor). Let F : A −→ B be an additive functor between
abelian categories where A has enough injectives and B is cocomplete, and let I be an assignment
of Cartan-Eilenberg resolutions to the complexes in A. Given a complex C in A we define for
n ∈ Z

hRnIF (C) = Hn(Tot(FI))

where I is the chosen Cartan-Eilenberg resolution of C. A morphism of complexes ϕ : C −→ D
induces a morphism of the resolutions Φ : I −→ J and therefore a morphism

hRnIF (ϕ) : hRnIF (C) −→ hRnIF (D)
hRnIF (ϕ) = Hn(Tot(FΦ))

17
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which by Lemma 17 does not depend on the choice of morphism I −→ J lifting ϕ. This defines
an additive functor

hRnIF (−) : C(A) −→ B

called the n-th hyperderived functor of F . If necessary, we denote the complex Tot(FI) itself
by hRIF (C). As usual, we drop the subscript I if there is no chance of confusion. The functor
hRnF (−) is independent of the choice of resolutions up to canonical natural equivalence.

Remark 5. We write hRnF (−) for the hyperderived functor in order to distinguish it from the
derived functor RF which we define in our notes on Derived Categories (DTC2).

Proposition 18. Let F : A −→ B be an additive functor between abelian categories where A
has enough injectives and B is cocomplete. Given a complex C in A there are spectral sequences
′E, ′′E starting on page zero, with

′Epq2 = Hp(RqF (C)) =⇒ hRp+qF (C)
′′Epq2 = RpF (Hq(C)) =⇒ hRp+qF (C)

If C is bounded below then we can arrange for both spectral sequences to be biregular.

Proof. Fix an assignment of Cartan-Eilenberg resolutions I which we use to calculate the hy-
perderived functor. If I is the assigned resolution of C then the bicomplex FI yields canonical
spectral sequences ′E,′′E in B by Proposition 8, which converge to Hp+q(Tot(FI)) = hRp+qF (C).
Observe that these are not necessarily first quadrant spectral sequences.

For p, q ∈ Z we have a canonical isomorphism ′Epq2
∼= Hp(H•,q

I (FI)). Since Ipq = 0 for q < 0
we deduce a canonical isomorphism

′Epq2
∼=

{
0 q < 0
Hp(RqF (C)) q ≥ 0

where RqF (C) denotes the image of the complex C under the additive functor RqF (−). As in
the proof of Theorem 10 we have a canonical isomorphism of complexes Hp,•

II (FI) ∼= F (Hp,•
II (I)),

and therefore
′′Epq2

∼= Hp(Hq,•
II (FI)) ∼= HpF (Hq,•

II (I))

But Hq,•(I) is an injective resolution of Hq(C), so there is a canonical isomorphism

′′Epq2
∼=

{
0 p < 0
RpF (Hq(C)) p ≥ 0

Observe in particular that ′E2 lives in the first and second quadrants, while ′′E2 lives in the first
and fourth. If C is bounded below then we can arrange for the Cartan-Eilenberg resolution to be
bounded in the same way, in which case it follows from Example 1 that both spectral sequences
are biregular.
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