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1 Introduction

In this note “ring” means a not necessarily commutative ring. If A is a commutative ring then
an A-algebra is a ring morphism A −→ B whose image is contained in the center of B. We allow
noncommutative sheaves of rings, but if we say (X,OX) is a ringed space then we mean OX is a
sheaf of commutative rings. Throughout this note (X,OX) is a ringed space. Associated to this
ringed space are the following categories:

Mod(X),GrMod(X),Alg(X), nAlg(X),GrAlg(X),GrnAlg(X)

We show that the forgetful functors Alg(X) −→ Mod(X) and nAlg(X) −→ Mod(X) have left
adjoints. If A is a nonzero commutative ring, the forgetful functors AAlg −→ AMod and
AnAlg −→ AMod have left adjoints given by the symmetric algebra and tensor algebra con-
structions respectively.

2 Sheaves of Tensor Algebras

Let F be a sheaf of OX -modules, and for an open set U let P (U) be the OX(U)-algebra given by
the tensor algebra T (F (U)). That is,

P (U) = OX(U)⊕F (U)⊕F (U)⊗2 ⊕ · · ·

For an inclusion V ⊆ U let ρ : OX(U) −→ OX(V ) and η : F (U) −→ F (V ) be the morphisms of
abelian groups given by restriction. For n ≥ 2 we define a multilinear map

F (U)× · · · ×F (U) −→ F (V )⊗ · · · ⊗F (V )
(m1, . . . ,mn) 7→ m1|V ⊗ · · · ⊗mn|V

Let η⊗n denote the induced morphism of abelian groups F (U)⊗n −→ F (V )⊗n. Then ρ⊕η⊕η⊗2⊕
· · · gives a morphism of abelian groups P (U) −→ P (V ) compatible with the module structures
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and the ring morphism OX(U) −→ OX(V ). It is then readily seen that P is a presheaf of OX -
algebras, and we let T(F ) be the sheaf of OX -algebras given by the sheafification. The morphism
of presheaves of modules F −→ P given pointwise by the canonical injection F (U) −→ T (F (U))
composes with P −→ T(F ) to give a monomorphism of sheaves of OX -modules F −→ T(F ).

If φ : F −→ G is a morphism of sheaves of modules, whose associated presheaves of tensor
algebras are P,Q respectively, then we define a morphism of presheaves of OX -algebras φ′ : P −→
Q by φ′U = T (φU ). That is,

φ′U = 1⊕ φU ⊕ φ⊗2
U ⊕ φ⊗3

U ⊕ · · ·
Let T(φ) : T(F ) −→ T(G ) denote the morphism of sheaves of OX -algebras given by the sheafifi-
cation of φ′. This defines a functor

T(−) : Mod(X) −→ nAlg(X)

Note that the following diagram of sheaves of modules commutes

T(F )
T(φ) // T(G )

F

OO

φ
// G

OO

For d ≥ 0 let Pd denote the sub-presheaf of OX -modules of P given by Pd(U) = T d(F (U)),
which is the submodule of T (F (U)) given by the isomorphic copy of F (U)⊗d. In particular
there are isomorphisms of presheaves of modules P0

∼= OX and P1
∼= F . By construction the

induced morphism
⊕

d≥0 Pd −→ P is an isomorphism (coproduct of presheaves of modules) and
PdPe ⊆ Pd+e, 1 ∈ P0(X). Let Td(F ) denote the submodule of T(F ) given by the image of
aPd −→ aP = T(F ). Then T(F ) together with the submodules Td(F ) is a sheaf of graded
OX -algebras. Note that T1(F ) is the image of the monomorphism F −→ T(F ) and T0(F ) is
the image of the canonical morphism of sheaves of algebras OX −→ T(F ) (this latter morphism
is also a monomorphism of sheaves of modules, so T0(F ) ∼= OX and T1(F ) ∼= F as sheaves of
modules). More generally for d ≥ 0 there is a canonical monomorphism of sheaves of modules
F⊗d −→ T(F ) whose image is Td(F ) so we have (in the category Mod(X))

T(F ) ∼=
⊕
d≥0

Td(F ) ∼=
⊕
d≥0

F⊗d

and the product in T(F ) is described by commutativity of the following diagram for d, e ≥ 0

F⊗d ⊗F⊗e

��

// T(F )⊗ T(F )

��
F⊗(d+e) // T(F )

It is clear that if φ : F −→ G is a morphism of sheaves of modules, then T(φ) is a morphism of
sheaves of graded OX -algebras, so we also have a functor

T(−) : Mod(X) −→ GrnAlg(X)

As usual, given r ∈ OX(U) we also write r for the corresponding element of T0(F )(U). Similarly
if a ∈ F (U) we write a for the corresponding element of T1(F )(U). For n > 1 and a1, . . . , an ∈
F (U) we write a1 ⊗̇ · · · ⊗̇ an for the element of Tn(F )(U). In this notation, for a morphism of
sheaves of modules φ : F −→ G we have

T(φ)U (r + a11 + a21 ⊗̇ a22 + · · ·+ ah1 ⊗̇ · · · ⊗̇ ahh) = r + φU (a11) + φU (a21) ⊗̇ φU (a22)
+ · · ·+ φU (ah1) ⊗̇ · · · ⊗̇ φU (ahh)
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Proposition 1. If q ∈ T(F )(U) then for every x ∈ U there is an open neighborhood x ∈ V ⊆ U
such that q|V = q1 + · · ·+ qs where each qk has the form

qk = r + a11 + a21 ⊗̇ a22 + · · ·+ ah1 ⊗̇ · · · ⊗̇ ahh

where r ∈ OX(V ) and aij ∈ F (V ).

Proof. This follows immediately from the fact that T(F ) is the sheafification of the presheaf P
defined above.

Proposition 2. The functor T(−) : Mod(X) −→ nAlg(X) is left adjoint to the forgetful functor
nAlg(X) −→ Mod(X). The unit of the adjunction is given for a sheaf of modules F by the
canonical morphism F −→ T(F ).

Proof. Let S be a sheaf of OX -algebras and φ : F −→ S a morphism of sheaves of modules. We
have to show there exists a unique morphism of sheaves of algebras Φ : T(F ) −→ S making the
following diagram commute

F

��

φ // S

T(F )
Φ

<<yyyyyyyy

We use the results of our notes on Tensor, Exterior and Symmetric algebras (TES) in what follows.
For every open set U there is a unique morphism of OX(U)-algebras Φ′U : T (F (U)) −→ S (U)
making the following diagram commute

F (U)

��

φU // S (U)

T (F (U))
Φ′

U

99ssssssssss

This defines a morphism of presheaves of OX -algebras Φ′ : P −→ S , which induces a morphism
of sheaves of OX -algebras Φ : T(F ) −→ S with the required property.

Proposition 3. The functor T(−) : Mod(X) −→ GrnAlg(X) is left adjoint to the functor (−)1 :
GrnAlg(X) −→ Mod(X) which maps a sheaf of graded algebras to its degree 1 component. The unit
of the adjunction is given for a sheaf of modules F by the canonical isomorphism F −→ T1(F ).

Proof. The definition of a sheaf of graded OX -algebras S includes the provision of a sheaf of
modules S1, and any morphism of sheaves of graded algebras must induce a morphism of sheaves
of modules between these degree 1 components, so the functor (−)1 is well defined. It is not
difficult to check F −→ T1(F ) is natural in F , and therefore defines a natural transformation
1 −→ (−)1T(−).

We have to show that if S is a sheaf of graded OX -algebras and φ : F −→ S1 a morphism
of sheaves of modules, then there exists a unique morphism of sheaves of graded algebras Φ :
T(F ) −→ S such that Φ1 makes the following diagram commute

F

��

φ // S1

T1(F )
Φ1

;;xxxxxxxx

(1)

By Proposition 2 the composite F −→ S1 −→ S induces a morphism of sheaves of algebras
Φ : T(F ) −→ S unique with the property that F −→ T(F ) −→ S is F −→ S . It is
straightforward to check that Φ is a morphism of sheaves of graded algebras, and Φ1 makes (1)
commute. Uniqueness is easily checked, which proves that T(−) is left adjoint to (−)1.
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Proposition 4. If U ⊆ X is open then the following diagram commutes up to a canonical natural
equivalence

Mod(X)

��

T(−) // nAlg(X)

��
Mod(U)

T(−)
// nAlg(U)

For a sheaf of modules F on X the natural isomorphism T(F |U ) −→ T(F )|U has the action
a1 ⊗̇ · · · ⊗̇ an 7→ a1 ⊗̇ · · · ⊗̇ an.

Proof. Let nAlg(X) denote the category of presheaves of OX -algebras. Then associating a sheaf
of modules F with the presheaf P (U) = T (F (U)) defines a functor Mod(X) −→ nAlg(X).
Clearly T(−) is the composite of this functor with sheafification nAlg(X) −→ nAlg(X). So by
(SOA,Lemma 3) it suffices to show that the following diagram of functors commutes up to a
canonical natural equivalence

Mod(X)

��

// nAlg(X)

��
Mod(U) // nAlg(U)

In fact it is easy to see that this diagram commutes in the strictest sense, that is, the two legs of
the diagram are the same functor.

Proposition 5. Let f : (X,OX) −→ (Y,OY ) be an isomorphism of ringed spaces. Then the
following diagram commutes up to canonical natural equivalence

nAlg(X)
f∗ +3 nAlg(Y )

Mod(X)

T(−)

OO

f∗

+3 Mod(Y )

T(−)

OO

For a sheaf of modules F on X the natural isomorphism f∗T(F ) −→ T(f∗F ) has the action
a1 ⊗̇ · · · ⊗̇ an 7→ a1 ⊗̇ · · · ⊗̇ an.

Proof. Using (SOA,Lemma 12) we reduce immediately to showing the following diagram commutes
up to a canonical natural equivalence

nAlg(X)
f∗ +3 nAlg(Y )

Mod(X)

OO

f∗

+3 Mod(Y )

OO

where the vertical functors are the “presheaf” tensor algebra functors given in Proposition 4.
Let V ⊆ X be open. In our construction of the OY (V )-module F (f−1V )⊗n for n ≥ 2 we
see that we actually produce the same underlying group as when we define F (f−1V )⊗n over
OX(f−1V ). Together with the ring isomorphism f#

V this gives an isomorphism of abelian groups
ρV : TOY (V )(F (f−1V )) −→ TOX(f−1V )(F (f−1V ))

TOY (V )(F (f−1V )) = OY (V )⊕F (f−1V )⊕F (f−1V )⊗2 ⊕ · · ·
⇓

TOX(f−1V )(F (f−1V )) = OX(f−1V )⊕F (f−1V )⊕F (f−1V )⊗2 ⊕ · · ·

It is not hard to see this is an isomorphism of OY (V )-algebras natural in V and also in F , which
completes the proof.
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Proposition 6. Let X = SpecA be an affine scheme and M an A-module. Then there is a
canonical isomorphism θ : T (M)˜ −→ T(M˜) of sheaves of OX-algebras which is natural in M .
We have

θU (a1 ⊗ · · · ⊗ an/̇s1 · · · sn) = ˙a1/s1 ⊗̇ · · · ⊗̇ ˙an/sn

where U ⊆ X is open, ai ∈M and si ∈ A with U ⊆ D(s1 · · · sn).
Proof. Consider the following diagram consisting of adjoint pairs of functors (see Ex 5.3, Propo-
sition 2, (SOA,Proposition 5) and (TES,Proposition 7))

AnAlg
e --

��

nAlg(X)
Γ

mm

��
AMod

e --

T

KK

Mod(X)
Γ

mm

T

KK

The two composites nAlg(X) −→ AMod are equal, so −̃T and T−̃ are both left adjoints for the
same functor. Therefore they must be canonically naturally equivalent, which is what we wanted
to show. The isomorphism θ : T (M)˜−→ T(M̃) is unique with the property that θX( ˙m/1) = ˙m/1
for every m ∈M (one should think carefully about what the notation ˙m/1 means in both cases).
This is an isomorphism of sheaves of algebras, so it is now easy to see θ has the desired effect on
the special sections in the statement of the Proposition.

Corollary 7. Let X be a scheme and F a sheaf of modules on X. If F is quasi-coherent then
so is T(F ).

Proof. For x ∈ X let U be an open affine neighborhood of x and f : U −→ SpecOX(U) the
canonical isomorphism. Then f∗F |U ∼= F (U)˜and combining Proposition 6, Proposition 5 and
Proposition 4 we see that

f∗(T(F )|U ) ∼= f∗(T(F |U ))
∼= T(f∗F |U )

∼= T(F̃ (U))
∼= T (F (U))˜

This is an isomorphism of sheaves of algebras, which is more than enough to show that T(F ) is
quasi-coherent.

Proposition 8. Let X be a scheme and F a sheaf of modules on X. If F is quasi-coherent and
U ⊆ X is affine then there is a canonical isomorphism of graded OX(U)-algebras natural in F
and the affine open set U

τ : T (F (U)) −→ T(F )(U)
f1 ⊗ · · · ⊗ fn 7→ f1 ⊗̇ · · · ⊗̇ fn

Proof. We make T(F )(U) into a graded OX(U)-algebra as in (SOA,Proposition 40). Using
(SOA,Proposition 4) (c) and Corollary 7 we get an isomorphism of OX(U)-algebras τ , and it
is not hard to check it has the desired action on f1 ⊗ · · · ⊗ fn, and is therefore a morphism of
graded algebras. Note that τ is actually the sheafification morphism P −→ T(F ) evaluated at U ,
from which naturality in F and inclusions of affine open sets V ⊆ U is obvious.

Lemma 9. Let (X,OX) be a ringed space. Then T(OX) is a sheaf of commutative graded OX-
algebras.

Proof. It suffices to show that the presheaf P (U) = T (OX(U)) is commutative, which follows
immediately from (TES,Lemma 8)
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3 Sheaves of Symmetric Algebras

Throughout this section (X,OX) is a ringed space. Let F be a sheaf of OX -modules, and for an
open set U letH(U) be the commutativeOX(U)-algebra given by the symmetric algebra S(F (U)).
That is, S(F (U)) is the commutative graded OX(U)-algebra obtained as a quotient of T (F (U))
by the two-sided ideal I generated by the elements of the form x ⊗ y − y ⊗ x. For an inclusion
V ⊆ U the morphism of rings T (F (U)) −→ T (F (V )) defined earlier induces a morphism of rings
S(F (U)) −→ S(F (V )) fitting into a commutative diagram

T (F (U))

��

// S(F (U))

��
T (F (V )) // S(F (V ))

This makes H into a presheaf of commutative OX -algebras, and if P is the presheaf of alge-
bras P (U) = T (F (U)) then the canonical projections give a morphism of presheaves of algebras
P −→ H. Let S(F ) denote the sheaf of commutative OX -algebras obtained by sheafifying H.
Sheafifying P −→ H gives a canonical morphism of sheaves of algebras T(F ) −→ S(F ), which is
an epimorphism of sheaves of modules. The morphism of presheaves of modules F −→ H given
pointwise by the canonical injection F (U) −→ S(F (U)) composes with H −→ S(F ) to give a
monomorphism of sheaves of OX -modules F −→ S(F ). The morphisms we have just defined fit
into a commutative diagram

F

""DDDDDDDD
// T(F )

��
S(F )

If φ : F −→ G is a morphism of sheaves of modules, whose associated presheaves of symmetric
algebras are H,G respectively, then we define a morphism of presheaves of OX -algebras φ′ : H −→
G by φ′U = S(φU ). This sheafifies to give a morphism of sheaves of OX -algebras S(φ) : S(F ) −→
S(G ). This defines a functor

S(−) : Mod(X) −→ Alg(X)

Note that the following diagrams commute

S(F )
S(φ) // S(G )

F

OO

φ
// G

OO
T(F )

��

T(φ) // T(G )

��
S(F )

S(φ)
// S(G )

For d ≥ 0 let Hd denote the sub-presheaf of OX -modules of H given by Hd(U) = Sd(F (U)),
which is the submodule of S(F (U)) given by the image of F (U)⊗d −→ T (F (U)) −→ S(F (U)).
In particular there are isomorphisms of presheaves of modules H0

∼= OX and H1
∼= F . By

construction the induced morphism
⊕

d≥0Hd −→ H is an isomorphism (coproduct of presheaves
of modules) and HdHe ⊆ Hd+e, 1 ∈ H0(X). Let Sd(F ) denote the submodule of S(F ) given by
the image of aHd −→ aH = S(F ). Then S(F ) together with the submodules Sd(F ) is a sheaf
of graded OX -algebras. Note that S1(F ) is the image of the monomorphism F −→ S(F ) and
S0(F ) is the image of the canonical morphism of sheaves of algebras OX −→ S(F ) (this latter
morphism is also a monomorphism of sheaves of modules, so S0(F ) ∼= OX and S1(F ) ∼= F as
sheaves of modules).

It is clear that if φ : F −→ G is a morphism of sheaves of modules, then S(φ) is a morphism
of sheaves of graded OX -algebras, so we also have a functor

S(−) : Mod(X) −→ GrAlg(X)
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As usual, given r ∈ OX(U) we write r for the corresponding element of S0(F )(U). Similarly
if a ∈ F (U) we write a for the corresponding element of S1(F )(U). For n > 1 and sections
a1, . . . , an ∈ F (U) the product a1 · · · an in the ring S(F (U)) is the coset of the tensor a1⊗· · ·⊗an.
The image of this product in Sn(F )(U) via H −→ S(F ) is just the product of the ai considered as
sections of S1(F )(U), so we can write this section as a1 · · · an with no ambiguity. In this notation,
for a morphism of sheaves of modules φ : F −→ G we have

S(φ)U (r + a11 + a21a22 + · · ·+ ah1 · · · ahh) = r + φU (a11) + φU (a21)φU (a22)
+ · · ·+ φU (ah1) · · ·φU (ahh)

Proposition 10. If q ∈ S(F )(U) then for every x ∈ U there is an open neighborhood x ∈ V ⊆ U
such that q|V = q1 + · · ·+ qs where each qk has the form

qk = r + a11 + a21a22 + · · ·+ ah1 · · · ahh

where r ∈ OX(V ) and aij ∈ F (V ).

Proof. This follows immediately from the fact that S(F ) is the sheafification of the presheaf H
defined above.

Proposition 11. The functor S(−) : Mod(X) −→ Alg(X) is left adjoint to the forgetful functor
Alg(X) −→ Mod(X). The unit of the adjunction is given for a sheaf of modules F by the canonical
morphism F −→ S(F ).

Proof. Let S be a sheaf of commutative OX -algebras and φ : F −→ S a morphism of sheaves of
modules. We have to show there exists a unique morphism of sheaves of algebras Φ : S(F ) −→ S
making the following diagram commute

F

��

φ // S

S(F )
Φ

<<yyyyyyyy

One argues as for T(−), using the properties of the symmetric algebra given in our TES notes.

Proposition 12. The functor S(−) : Mod(X) −→ GrAlg(X) is left adjoint to the functor
(−)1 : GrAlg(X) −→ Mod(X) which maps a sheaf of commutative graded algebras to its de-
gree 1 component. The unit of the adjunction is given for a sheaf of modules F by the canonical
isomorphism F −→ S1(F ).

Proof. The canonical morphism F −→ S1(F ) is natural in F , and we have to show that if S is
a sheaf of commutative graded OX -algebras and φ : F −→ S1 a morphism of sheaves of modules,
then there exists a unique morphism of sheaves of graded algebras Φ : S(F ) −→ S such that Φ1

makes the following diagram commute

F

��

φ // S1

S1(F )
Φ1

<<xxxxxxxx

(2)

By Proposition 11 the composite F −→ S1 −→ S induces a morphism of sheaves of algebras
Φ : S(F ) −→ S unique with the property that F −→ S(F ) −→ S is F −→ S . It is easy to
check that Φ is a morphism of sheaves of graded algebras, and Φ1 makes (2) commute. Uniqueness
is clear, which proves that S(−) is left adjoint to (−)1.
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Proposition 13. If U ⊆ X is open then the following diagram commutes up to canonical natural
equivalence

Mod(X)

��

S(−) // Alg(X)

��
Mod(U)

S(−)
// Alg(U)

For a sheaf of modules F on X the natural isomorphism S(F |U ) −→ S(F )|U has the action
a1 · · · an 7→ a1 · · · an.

Proof. Let Alg(X) denote the category of presheaves of commutative OX -algebras. Associating a
sheaf of modules F with the presheaf H(U) = S(F (U)) defines a functor Mod(X) −→ Alg(X).
Clearly S(−) is the composite of this functor with sheafification Alg(X) −→ Alg(X). So by
(MRS,Lemma 24) it suffices to show that the following diagram of functors commutes up to a
canonical natural equivalence

Mod(X)

��

// Alg(X)

��
Mod(U) // Alg(U)

But it is not hard to check that this diagram actually commutes.

Proposition 14. Let f : (X,OX) −→ (Y,OY ) be an isomorphism of ringed spaces. Then the
following diagram commutes up to canonical natural equivalence

Alg(X)
f∗ +3 Alg(Y )

Mod(X)

S(−)

OO

f∗

+3 Mod(Y )

S(−)

OO

For a sheaf of modules F on X the natural isomorphism f∗S(F ) −→ S(f∗F ) has the action
a1 · · · an 7→ a1 · · · an.

Proof. Using (SOA,Lemma 12) we reduce immediately to showing the following diagram commutes
up to a canonical natural equivalence

Alg(X)
f∗ +3 Alg(Y )

Mod(X)

OO

f∗

+3 Mod(Y )

OO

where the vertical functors are the “presheaf” symmetric algebra functors given in Proposition
13. In Proposition 5 we defined an isomorphism of OY (V )-algebras TOY (V )(F (f−1V )) −→
TOX(f−1V )(F (f−1V )) natural in V and F which induces the necessary isomorphism of symmetric
algebras.

Proposition 15. Let X = SpecA be an affine scheme and M an A-module. Then there is a
canonical isomorphism θ : S(M)˜−→ S(M̃) of sheaves of OX-algebras which is natural in M . We
have

θU (a1 · · · an/̇s1 · · · sn) = ˙a1/s1 · · · ˙an/sn

where U ⊆ X is open, ai ∈M and si ∈ A with U ⊆ D(s1 · · · sn).

8

file:"RingedSpaceModules.pdf"
file:"SheavesOfAlgebras.pdf"


Proof. Consider the following diagram consisting of adjoint pairs of functors (see (Ex 5.3), (SOA,Proposition
5), Proposition 11 and (TES,Proposition 33))

AAlg
e --

��

Alg(X)
Γ

ll

��
AMod

e --

S

KK

Mod(X)
Γ

mm

S(−)

KK

The two composites Alg(X) −→ AMod are equal, so −̃S and S(−)−̃ are both left adjoints for the
same functor. Therefore they must be canonically naturally equivalent, which is what we wanted
to show. The isomorphism θ : S(M)˜−→ S(M̃) is unique with the property that θX( ˙m/1) = ˙m/1
for every m ∈ M . This is an isomorphism of sheaves of algebras, so it is easy to check θ has the
desired effect on the sections in the statement of the Proposition.

Corollary 16. Let X be a scheme and F a sheaf of modules on X. If F is quasi-coherent then
so is S(F ).

Proof. For x ∈ X let U be an open affine neighborhood of x and f : U −→ SpecOX(U) the
canonical isomorphism. Then f∗F |U ∼= F (U)˜and combining Proposition 15, Proposition 14 and
Proposition 13 we see that

f∗(S(F )|U ) ∼= f∗(S(F |U ))
∼= S((f∗F |U ))

∼= S(F̃ (U))
∼= S(F (U))˜

This is an isomorphism of sheaves of algebras, which shows that S(F ) is quasi-coherent.

Proposition 17. Let X be a scheme and F a sheaf of modules on X. If F is quasi-coherent
and U ⊆ X is affine then there is a canonical isomorphism of graded OX(U)-algebras natural in
F and the affine open set U

τ : S(F (U)) −→ S(F )(U)
f1 · · · fn 7→ f1 · · · fn

Proof. We make S(F )(U) into a graded OX(U)-algebra as in (SOA,Proposition 40). Using
(SOA,Proposition 4) (c) and Corollary 16 we get an isomorphism OX(U)-algebras τ with the
required properties. Note that τ is actually the sheafification morphism H −→ S(F ) evaluated
at U , which makes it clear that τ is natural in F and the inclusion of affine open sets V ⊆ U .

Corollary 18. Let X be a scheme and F a quasi-coherent sheaf of modules on X. Then S(F )
is locally generated by S1(F ) as an S0(F )-algebra.

Proof. Using Proposition 17 we reduce immediately to showing that for a commutative ring A
and A-module M the graded A-algebra S(M) is generated by S1(M) as an A-algebra, which is
obvious.

4 Sheaves of Exterior Algebras

Througout this section (X,OX) is a ringed space. Let F be a sheaf of OX -modules, and for
any open set U let H(U) be the (noncommutative) OX(U)-algebra given by the exterior algebra

9
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∧
F (U). That is,

∧
F (U) is the graded OX(U)-algebra obtained as a quotient of T (F (U)) by the

two-sided ideal I generated by the elements of the form x⊗x. For an inclusion V ⊆ U the morphism
of rings T (F (U)) −→ T (F (V )) defined earlier induces a morphism of rings

∧
F (U) −→

∧
F (V )

fitting into a commutative diagram

T (F (U)) //

��

∧
F (U)

��
T (F (V )) // ∧ F (V )

This makesH into a presheaf ofOX -algebras, and if P is the presheaf of algebras P (U) = T (F (U))
then the canonical projections give a morphism of presheaves of algebras P −→ H. Let

∧
F

denote the sheaf of OX -algebras obtained by sheafifying H. Sheafifying P −→ H gives a canonical
morphism of sheaves of algebras T(F ) −→

∧
F , which is an epimorphism of sheaves of modules.

The morphism of presheaves of modules F −→ H given pointwise by the canonical injection
F (U) −→

∧
F (U) composes with H −→

∧
F to give a monomorphism of sheaves of OX -modules

F −→
∧

F . The morphisms we have just defined fit into a commutative diagram

F //

""DDDDDDDD T(F )

��∧
F

If φ : F −→ G is a morphism of sheaves of modules, whose associated presheaves of exterior
algebras are H,G respectively, then we define a morphism of presheaves of OX -algebras φ′ : H −→
G by φ′U = ∧φU . This sheafifies to give a morphism of sheaves of OX -algebras

∧
F −→

∧
G .

This defines a functor ∧
(−) : Mod(X) −→ nAlg(X)

Note that the following diagrams commute

∧
F

V
φ // ∧ G

F

OO

φ
// G

OO
T(F )

��

T(φ) // T(G )

��∧
F V

φ
// ∧ G

For d ≥ 0 let Hd denote the sub-presheaf of OX -modules of H given by Hd(U) =
∧d(F (U)),

which is the submodule of
∧

(F (U)) given by the image of F (U)⊗d −→ T (F (U)) −→
∧

(F (U)).
In particular there are isomorphism of presheaves of modules H0

∼= OX and H1
∼= F . By

construction the induced morphism
⊕

d≥0Hd −→ H is an isomorphism (coproduct of presheaves
of modules) and HdHe ⊆ Hd+e, 1 ∈ H0(X). Let

∧d F denote the submodule of
∧

F given by the
image of aHd −→ aH =

∧
F . Then

∧
F together with the submodules

∧d F is a sheaf of super
OX -algebras. Note that

∧1 F is the image of the monomorphism F −→
∧

F and
∧0 F is the

image of the canonical morphism of sheaves of algebras OX −→
∧

F (this latter morphism is also
a monomorphism of sheaves of modules, so

∧0 F ∼= OX and
∧1 F ∼= F as sheaves of modules).

It is clear that if φ : F −→ G is a morphism of sheaves of modules, then
∧
φ is a morphism

of sheaves of super OX -algebras, so we also have a functor∧
(−) : Mod(X) −→ sAlg(X)

As usual, given r ∈ OX(U) we write r for the corresponding element of Γ(U,
∧0 F ). Similarly if a ∈

F (U) we write a for the corresponding element of Γ(U,
∧1 F ). For n > 1 and a1, . . . , an ∈ F (U)

we write a1 ∧̇ · · · ∧̇an for the element of Γ(U,
∧n F ) which is the image of a1∧· · ·∧an ∈

∧n(F (U))

10



under H −→
∧

F . This is just the product of the individual ai considered as elements of
Γ(U,

∧1 F ). In this notation, for a morphism of sheaves of modules φ : F −→ G we have

(∧φ)U (r + a11 + a21 ∧̇ a22 + · · ·+ ah1 ∧̇ · · · ∧̇ ahh) = r + φU (a11) + φU (a21) ∧̇ φU (a22)
+ · · ·+ φU (ah1) ∧̇ · · · ∧̇ φU (ahh)

For d ≥ 0 let ∧dφ :
∧d F −→

∧d G be the morphism of sheaves of modules induced on the graded
submodules by ∧φ, which is unique making the following diagram of sheaves of modules commute

∧
F

V
φ // ∧ G

∧d F

OO

Vd φ

// ∧d G

OO

This defines a functor
∧d(−) : Mod(X) −→ Mod(X).

Proposition 19. If q ∈ Γ(U,
∧

F ) then for every x ∈ U there is an open neighborhood x ∈ V ⊆ U
such that q|V = q1 + · · ·+ qs where each qk has the form

qk = r + a11 + a21 ∧̇ a22 + · · ·+ ah1 ∧̇ · · · ∧̇ ahh

where r ∈ OX(V ) and aij ∈ F (V ).

Definition 1. Let (X,OX) be a ringed space and F a sheaf of OX -modules. For n ≥ 1 we say
a multilinear morphism (MRS,Definition 9) f : F × · · · ×F −→ G from the n-fold product into
a sheaf of abelian groups G is alternating if for every open U ⊆ X the map fU is alternating.
That is, for every open U ⊆ X we have fU (m1, . . . ,mn) = 0 whenever mi = mj for i 6= j. The
canonical morphism of sheaves of sets

γ : F × · · · ×F −→
n∧

F

(a1, . . . , an) 7→ a1 ∧̇ · · · ∧̇ an

is clearly an alternating multilinear form. In fact this is the universal alternating multilinear form,
as we will see in a moment. If n = 1 then an alternating multilinear map is just a morphism of
sheaves of abelian groups F −→ G and an alternating multilinear form is a morphism of sheaves
of modules.

Proposition 20. Let (X,OX) be a ringed space, F ,G sheaves of modules on X and suppose
f : F × · · · × F −→ G is an alternating multilinear form out of the n-fold product for n ≥ 1.
Then there is a unique morphism of sheaves of modules θ :

∧n F −→ G making the following
diagram commute

F × · · · ×F

f

��

γ // ∧n F

θ
xxpppppppppppp

G

Proof. For each open U ⊆ X we have an alternating multilinear form fU : F (U)n −→ G (U), which
by (TES,Lemma 18) corresponds to a morphism of OX(U)-modules φU : ∧nF (U) −→ G (U).
Together these define a morphism of presheaves of OX(U)-modules φ : Hd −→ G . The induced
morphism θ :

∧n F −→ G is the one we require.

Proposition 21. The functor
∧

(−) : Mod(X) −→ sAlg(X) is left adjoint to the functor (−)1 :
sAlg(X) −→ Mod(X) which maps a sheaf of super algebras to its degree 1 component. The unit
of the adjunction is given for a sheaf of modules F by the canonical isomorphism F −→

∧1 F .

11
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Proof. The canonical morphism η : F −→
∧1 F is natural in F , and we have to show that if S

is a sheaf of super OX -algebras and φ : F −→ S1 a morphism of sheaves of modules, then there
exists a unique morphism of sheaves of super algebras Φ :

∧
F −→ S such that Φ1 makes the

following diagram commute

F

η

��

φ // S1

∧1 F

Φ1

<<yyyyyyyy

(3)

Let Φ0 be the canonical morphism
∧0 F −→ S0 and let Φ1 be the composite φη−1. For n > 1

we define a multilinear form

f : F × · · · ×F −→ Sn

fU (a1, . . . , an) = φU (a1) · · ·φU (an)

which is alternating since S is a super OX -algebra. By Proposition 20 there is an induced
morphism Φn :

∧n F −→ Sn. The morphisms Φn for n ≥ 0 induce a morphism of sheaves of
graded OX -modules Φ :

∧
F −→ S out of the coproduct. In fact with a little work one checks

that Φ is a morphism of super OX -algebras, while Φ1 trivially makes (3) commute. Uniqueness is
clear, which proves that

∧
(−) is left adjoint to (−)1.

Proposition 22. If U ⊆ X is open then the following diagram commutes up to canonical natural
equivalence

Mod(X)

��

V
(−) // sAlg(X)

��
Mod(U) V

(−)
// sAlg(U)

For a sheaf of modules F on X the natural isomorphism
∧

(F |U ) ∼= (
∧

F ) |U has the action
a1 ∧̇ · · · ∧̇ an 7→ a1 ∧̇ · · · ∧̇ an. In particular there is an isomorphism of sheaves of modules∧d(F |U ) ∼= (

∧d F )|U natural in F .

Proof. Let GrnAlg(X) denote the category of presheaves of graded OX -algebras. Associating a
sheaf of modules F with the presheaf of graded OX -algebras H(U) =

∧
(F (U)) defines a functor

Mod(X) −→ GrnAlg(X). Clearly
∧

(−) is the composite of this functor with sheafification
GrnAlg(X) −→ GrnAlg(X). So by (SOA,Lemma 38) it suffices to show that the following diagram
of functors commutes up to a canonical natural equivalence

Mod(X)

��

// GrnAlg(X)

��
Mod(U) // GrnAlg(U)

But it is not hard to see that this diagram actually commutes.

Corollary 23. If U ⊆ X is open and F is a sheaf of modules on X then for any d ≥ 0 there is
a canonical isomorphism

∧d(F |U ) ∼=
(∧d F

)
|U of sheaves of modules on U natural in F .

Proposition 24. Let f : (X,OX) −→ (Y,OY ) be an isomorphism of ringed spaces. Then the
following diagram commutes up to canonical natural equivalence

sAlg(X)
f∗ +3 sAlg(Y )

Mod(X)

V
(−)

OO

f∗

+3 Mod(Y )

V
(−)

OO

12
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For a sheaf of modules F on X the natural isomorphism f∗(
∧

F ) −→
∧

(f∗F ) has the action
a1 ∧̇ · · · ∧̇ an 7→ a1 ∧̇ · · · ∧̇ an.

Proof. Using (SOA,Lemma 44) we reduce immediately to showing that the following diagram
commutes up to a canonical natural equivalence

GrnAlg(X)
f∗ +3 GrnAlg(Y )

Mod(X)

OO

f∗

+3 Mod(Y )

OO

where the vertical functors are the “presheaf” exterior algebra functors given in Proposition
22. In Proposition 5 we defined an isomorphism of OY (V )-algebras TOY (V )(F (f−1V )) −→
TOX(f−1V )(F (f−1V )) natural in V and F which induces the necessary isomorphism of exterior
algebras.

Lemma 25. Let (X,OX) be a ringed space and F a sheaf of modules on X. For y ∈ X there is
a canonical isomorphism of graded OX,y-algebras natural in F

τ : (
∧

F )y −→
∧
OX,y

Fy

(U, a1 ∧̇ · · · ∧̇ an) 7→ (U, a1) ∧ · · · ∧ (U, an)

In particular for d ≥ 0 there is a canonical isomorphism of OX,y-modules (
∧d F )y ∼=

∧d
OX,y

Fy

natural in F .

Proof. Let H be the presheaf H(U) =
∧

(F (U)). Then Hy becomes a graded OX,y-algebra with
the canonical grading, and in fact Hy is a super OX,y-algebra (TES,Definition 4). Suppose T
is a super OX,y-algebra and that ϕ : Fy −→ T1 is a morphism of OX,y-modules. For each
open neighborhood U of y the morphism of OX(U)-modules F (U) −→ Fy −→ T1 induces a
morphism of super OX(U)-algebras

∧
(F (U)) −→ T (TES,Proposition 7). Taking the direct limit

we obtain a well-defined morphism of super OX,y-algebras τ : Hy −→ T defined for a ∈ F (U)
by (U, a) 7→ ϕ(U, a). If η : Fy

∼= (Hy)1 is the canonical isomorphism of OX,y-modules then τ is
trivially the unique morphism of super algebras making the following diagram commute

Fy

��

ϕ // T1

(Hy)1

τ1

<<zzzzzzzz

But this is the universal property that identifies the super algebra
∧
OX,y

Fy. Therefore we have
a canonical isomorphism of graded OX,y-algebras

τ : Hy −→
∧
OX,y

Fy

τ(U, a1 ∧ · · · ∧ an) = (U, a1) ∧ · · · ∧ (U, an)

composing with the canonical isomorphism Hy
∼= (

∧
F )y we have the desired isomorphism. Nat-

urality in F is easily checked.

Proposition 26. Let X = SpecA be an affine scheme and M an A-module. Then there is a
canonical isomorphism of sheaves of graded OX-algebras natural in M

θ : (
∧
M)˜ −→ ∧

(M˜)

(a1 ∧ · · · ∧ an)/̇(s1 · · · sn) 7→ a1/̇s1 ∧̇ · · · ∧̇ an/̇sn

13
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Proof. See (SOA,Definition 13) for the definition of the sheaf of graded OX -algebras (
∧
M)˜. If

A = 0 then this is trivial, so assume A is nonzero. For p ∈ SpecA we have an isomorphism of
OX,p-algebras, using (TES,Corollary 16) and Lemma 25

θp : (∧AM) ˜p
∼= (∧AM)p

∼= ∧ApMp
∼= ∧OX,p(M˜)p

∼= (∧M˜)p

It is not hard to check that germpθU (s) = θp(germps) defines the necessary isomorphism of
sheaves of graded algebras. Naturality in M is also easily checked.

Corollary 27. Let X be a scheme and F a sheaf of modules on X. If F is quasi-coherent then
so are

∧
F ,

∧d F for every d ≥ 0. If X is noetherian and F coherent then
∧d F is coherent for

d ≥ 0.

Proof. For x ∈ U let U be an affine open neighborhood of x and f : U −→ SpecOX(U) the
canonical isomorphism. Then f∗F |U ∼= F (U)˜ and combining Proposition 26, Proposition 24
and Proposition 22 we see that there is an isomorphism of sheaves of graded algebras

f∗((
∧

F )|U ) ∼= f∗(
∧

(F |U ))

∼=
∧

(f∗F |U )

∼=
∧

(F (U)˜)

∼= (
∧

F (U))˜
(4)

This shows that
∧

F is quasi-coherent. Since
∧

F =
⊕

d≥0

∧d F it follows from (MOS,Lemma
1) that

∧d F is a quasi-coherent sheaf of modules for d ≥ 0. Since (4) is an isomorphism of sheaves
of graded algebras, we deduce an isomorphism of sheaves of modules f∗((

∧d F )|U ) ∼= (
∧d F (U))˜

for d ≥ 0. If X is noetherian and F coherent then F (U) is a finitely generated OX(U)-module,
so

∧d F (U) is finitely generated (TES,Lemma 11) and consequently
∧d F is coherent.

Corollary 28. Let X be a nonempty scheme and F a locally free sheaf of finite rank n ≥ 1.
Then for 0 ≤ d ≤ n the sheaf

∧d F is locally free of rank
(
n
d

)
. If d > n then

∧d F = 0.

Proof. If x ∈ X then we can find an affine open neighborhood U of x with F |U free of rank n.
Then F (U) is a free OX(U)-module of rank n (MOS,Lemma 6) and therefore

∧d F (U) is a free
module of rank

(
n
d

)
if d ≤ n and is zero otherwise (TES,Proposition 21). The result now follows

from the isomorphism f∗((
∧d F )|U ) ∼= (

∧d F (U))˜ of Corollary 27.

Proposition 29. Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces and F a sheaf of
modules on Y . Then there is a canonical isomorphism of sheaves of graded OX-algebras natural
in F

ξ : f∗(
∧

F ) −→
∧

(f∗F )

[V, a1 ∧̇ · · · ∧̇ an] ⊗̇ (b1 · · · bn) 7→ ([V, a1] ⊗̇ b1) ∧̇ · · · ∧̇ ([V, an] ⊗̇ bn)

In particular for d ≥ 0 there is a canonical isomorphism of OX-modules f∗(
∧d F ) ∼=

∧d
f∗F

natural in F .

Proof. See (SOA,Section 3.1) for the definition of the inverse image of a sheaf of graded alge-
bras. For x ∈ X we use Lemma 25, (SOA,Lemma 45) and (TES,Proposition 15) to obtain an
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isomorphism of graded OX,x-algebras

ξx : f∗(
∧

F )x ∼= (
∧

F )f(x) ⊗OY,f(x) OX,x
∼= (

∧
OY,f(x)

Ff(x))⊗OY,f(x) OX,x

∼=
∧
OX,x

(Ff(x) ⊗OY,f(x) OX,x)

∼=
∧
OX,x

(f∗F )x ∼=
(∧

(f∗F )
)
x

One checks that germxξU (s) = ξx(germxs) gives a well-defined isomorphism of sheaves of graded
OX -algebras. Naturality in F is easily checked.

Lemma 30. Let (X,OX) be a ringed space and ψ : F −→ G an epimorphism of sheaves of
OX-modules. Then

∧d
ψ :

∧d F −→
∧d G is an epimorphism for d ≥ 1.

Proof. By Lemma 25 we reduce to showing that if R is a commutative ring, ψ : M −→ N an
epimorphism of R-modules then ∧dM −→ ∧dN is an epimorphism, which is trivial.

Remark 1. Let (X,OX) be a ringed space, F a sheaf of OX -modules. Then for a, b ≥ 1 the
product in the sheaf of graded OX -algebras

∧
F induces a morphism of sheaves of OX -modules

a∧
F ⊗

b∧
F −→

a+b∧
F

a ⊗̇ b 7→ ab

(5)

Proposition 31. Let (X,OX) be a nontrivial ringed space and suppose we have an exact sequence
of locally free sheaves

0 // G
ϕ // F

ψ // H // 0

where G ,H are locally free of finite ranks a, b respectively. Then there is a canonical isomorphism
of sheaves of OX-modules

∧a+b F ∼=
∧a G ⊗

∧b H .

Proof. See (MRS,Remark 13) for the definition of a nontrivial ringed space. In the cases where
one of a, b are zero there is a trivial isomorphism, so assume a, b ≥ 1. Tensoring

∧a G −→
∧a F

with
∧b F and then composing with (5) gives a morphism of sheaves of OX -modules

θ :
a∧

G ⊗
b∧

F −→
a+b∧

F

Using Lemma 25 to reduce to the case of rings and exterior powers of modules, one checks that θ
is an epimorphism of sheaves of modules (see (TES,Section 3.3.1) for the case of rings). Tensoring
the epimorphism

∧b F −→
∧b H with

∧a G gives an epimorphism of sheaves of OX -modules

ρ :
a∧

G ⊗
b∧

F −→
a∧

G ⊗
b∧

H

We claim that Ker(θ) = Ker(ρ). It suffices to show that Ker(θ)x = Ker(ρ)x for every x ∈ X,
which follows from Lemma 25 and (TES,Proposition 32). Since θ, ρ are epimorphisms with the
same kernel, it follows that there is a unique isomorphism of sheaves of OX -modules

∧a+b F ∼=

15
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∧a G ⊗
∧b H fitting into the following commutative diagram∧a G ⊗

∧b H

∧a G ⊗
∧b F

ρ
77nnnnnnnnnnnn

θ ((PPPPPPPPPPPP

∧a+b F

KS

which completes the proof.

Proposition 32. Let (X,OX) be a ringed space and F a sheaf of modules on X. Then for n ≥ 1
there is a canonical morphism of sheaves of modules natural in F

β :
n∧

(F∨) −→
( n∧

F
)∨

βU (ν1 ∧̇ · · · ∧̇ νn)V (a1 ∧̇ · · · ∧̇ an) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

(νi)V (aσ(i))

Proof. For an open subset U ⊆ X and ν1, . . . , νn ∈ Γ(U,F∨) we define a morphism of sheaves of
sets

f : F |U × · · · ×F |U −→ OX |U

fV (a1, . . . , an) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

(νi)V (aσ(i)) = det((vi)V (aj))

Using the standard properties of the determinant, one checks that f is an alternating mul-
tilinear form. By Proposition 20 there is a corresponding morphism of sheaves of modules∧n(F |U ) −→ OX |U . Let θν1,...,νn

denote the composite of this morphism with the canonical
isomorphism

∧n(F |U ) ∼= (
∧n F )|U of Proposition 22. One checks that the following map is also

an alternating multilinear form

τ : F∨ × · · · ×F∨ −→
( n∧

F
)∨

τU (ν1, . . . , νn) = θν1,...,νn

which by Proposition 20 must correspond to a morphism of sheaves of modules β with the required
property.

Corollary 33. Let X be a nonempty scheme, L a locally free sheaf of finite rank. Then for n ≥ 1
the canonical morphism of sheaves of modules

β :
n∧

(L ∨) −→
( n∧

L
)∨

of Proposition 32 is an isomorphism.

Proof. Let L be a locally free sheaf of rank r ≥ 0. If r = 0 then L = 0 and β is trivially an
isomorphism. If r ≥ 1 but n > r then the domain and codomain of β are both zero, so once again
β is an isomorphism. So we may assume 1 ≤ r ≤ n. For x ∈ X the OX,x-module Lx is free of
rank r. Using Lemma 25, Corollary 28 and (MRS,Corollary 92) we have a commutative diagram{ ∧n(L ∨)

}
x

βx //

��

{( ∧n L
)∨}

x

��∧n
OX,x

(Lx)∨ +3
( ∧n

OX,x
Lx

)∨

16
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where the bottom morphism is the isomorphism of (TES,Corollary 31). Therefore βx is an iso-
morphism for every x ∈ X, which implies that β is an isomorphism and completes the proof.

Proposition 34. Let (X,OX) be a ringed space and F ,G sheaves of modules on X. Then there
is a canonical isomorphism of sheaves of super OX-algebras

δ :
∧

F ⊗
∧

G −→
∧

(F ⊕ G )

(f1 ∧̇ · · · ∧̇ fm) ⊗̇ (g1 ∧̇ · · · ∧̇ gn) 7→ (f1, 0) ∧̇ · · · ∧̇ (fm, 0) ∧̇ (0, g1) ∧̇ · · · ∧̇ (0, gn)

In particular for d ≥ 0 there is a canonical isomorphism of sheaves of modules

⊕
m+n=d

m∧
F ⊗

n∧
G −→

d∧
(F ⊕ G )

Proof. By the tensor product
∧

F ⊗
∧

G we mean the super OX -algebra of (SOA,Proposition
52). By Proposition 21 the functor

∧
(−) : Mod(X) −→ sAlg(X) has a right adjoint and therefore

preserves all colimits. It follows that the morphisms
∧

F −→
∧

(F ⊕G ) and
∧

G −→
∧

(F ⊕G )
are a coproduct in the category sAlg(X). But the super OX -algebra

∧
F⊗

∧
G is also a coproduct

by (SOA,Proposition 52), so there is a canonical isomorphism of superOX -algebras
∧

F⊗
∧

G −→∧
(F ⊕ G ), as claimed. The second statement follows immediately from (MRS,Lemma 101).

Corollary 35. Let X be a scheme and L an invertible sheaf of modules on X. Then for d ≥ 1
there is a canonical isomorphism of sheaves of modules

δ :
d∧

L d −→ L ⊗d

Proof. Here L d denotes the coproduct of d copies of L . We can assume X is nonempty, so we
have canonical isomorphisms

∧0 L ∼= OX ,
∧1 L ∼= L and

∧n L = 0 for n > 1 by Corollary 28.
For d ≥ 1 the sheaf L d is locally free of rank d, so again by Corollary 28 we have

∧n L d = 0 for
n > d. We construct the isomorphism δ recursively. For d = 1 we take the canonical isomorphism
δ1 :

∧1 L ∼= L . Suppose that the isomorphism δi has been constructed for 1 ≤ i < d. Using
Proposition 34 and δd−1 we have a canonical isomorphism

d∧
L d ∼=

d∧
(L ⊕L d−1) ∼=

( 1∧
L ⊗

d−1∧
L d−1

)
⊕

( 0∧
L ⊗

d∧
L d−1

)
∼= L ⊗L ⊗(d−1) = L ⊗d

as required.

5 Sheaves of Polynomial Algebras

Let F be a sheaf of modules on X, and let n ≥ 1 be an integer. We define a presheaf P on X as
follows: For an open subset U ⊆ X we define

P (U) = F (U)[x1, . . . , xn]

That is, P (U) is the graded OX(U)-module of all polynomials in n variables with coefficients from
F (U). The homogenous polynomials of degree m give the mth graded piece. For open subsets
V ⊆ U the morphism of modules F (U) −→ F (V ) induces P (U) −→ P (V ), and with these
morphisms it is clear that P is a presheaf of graded modules on X. Restriction acts by restriction
on the coefficients:

(f + f1x1 + · · ·+ fnxn + · · · )|V = f |V + (f1|V )x1 + · · ·+ (fn|V )xn + · · ·
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If φ : F −→ G is a morphism of sheaves of modules, and Q is the presheaf of polynomial modules
for G , then we get a morphism of presheaves of graded modules

ϕ : P −→ Q

ϕU : F (U)[x1, . . . , xn] −→ G (U)[x1, . . . , xn]
fxα1

1 · · ·xαn
n 7→ φU (f)xα1

1 · · ·xαn
n

There is a morphism of presheaves of modules F −→ P given pointwise by the canonical injection
F (U) −→ F (U)[x1, . . . , xn].

Definition 2. Let (X,OX) be a ringed space and F a sheaf of modules on X. For n ≥ 1 the
polynomial module with coefficients in F , denoted F [x1, . . . , xn] is the sheaf of graded modules
on X given by the sheafification of the presheaf P (U) = F (U)[x1, . . . , xn] above. If φ : F −→ G
is a morphism of sheaves of modules, there is an induced morphism of sheaves of graded modules
F [x1, . . . , xn] −→ G [x1, . . . , xn] given by the sheafification of ϕ above. This defines a functor

(−)[x1, . . . , xn] : Mod(X) −→ GrMod(X)

The composite F −→ P −→ F [x1, . . . , xn] gives a monomorphism of sheaves of modules η :
F −→ F [x1, . . . , xn] which is clearly natural in F . The image of this morphism is clearly
F [x1, . . . , xn]0.

If F is a sheaf of algebras on X then P (U) becomes a OX(U)-algebra via the ring morphism

OX(U) −→ F (U) −→ F (U)[x1, . . . , xn]

and in this way P is a presheaf of graded algebras on X. Therefore F [x1, . . . , xn] is a sheaf of
graded OX -algebras with the same grading as above. For every open set U ⊆ X we write xi for the
polynomial in P (U) whose only nonzero coefficient is the identity 1 ∈ F (U) on the monomial xi.
So we have a section ẋi ∈ F [x1, . . . , xn](U) homogenous of degree 1. We use a similar notation
for any monomial in x1, . . . , xn. If φ : F −→ G is a morphism of sheaves of algebras, then
F [x1, . . . , xn] −→ G [x1, . . . , xn] is clearly a morphism of sheaves of graded algebras, so we get
functors

(−)[x1, . . . , xn] : nAlg(X) −→ GrnAlg(X)
(−)[x1, . . . , xn] : Alg(X) −→ GrAlg(X)

In particular for n ≥ 1 we have a commutative sheaf of graded OX -algebras OX [x1, . . . , xn] with
OX [x1, . . . , xn]0 = OX .

Proposition 36. Let (X,OX) be a ringed space and F a sheaf of commutative algebras on X.
For n ≥ 1 there is a bijection natural in F

β : HomAlg(X)(OX [x1, . . . , xn],F ) ∼= F (X)n

φ 7→ (φX(ẋ1), . . . , φX(ẋn))

Proof. It is clear that β is a morphism of abelian groups. Using the fact that sheafification is a
left adjoint, we have a bijection

HomAlg(X)(OX [x1, . . . , xn],F ) ∼= HomAlg(X)(P,F ) (6)

where P sheafifies to give OX [x1, . . . , xn]. Since P (U) = OX(U)[x1, . . . , xn] it is not hard to
check that Hom(P,F ) ∼= F (X)n under the map ψ 7→ (ψX(x1), . . . , ψX(xn)). Together with (6)
this gives the desired isomorphism β. Naturality in F is easily checked. If we are given a tuple
(a1, . . . , an) with ai ∈ F (X) then the corresponding morphism OX [x1, . . . , xn] −→ F is induced
by P −→ F defined pointwise by the morphism of OX(U)-algebras OX(U)[x1, . . . , xn] −→ F (U)
corresponding to (a1|U , . . . , an|U ).

18



Proposition 37. Let (X,OX) be a ringed space and F a sheaf of graded commutative algebras
on X. Then for n ≥ 1 a morphism of sheaves of algebras φ : OX [x1, . . . , xn] −→ F is a morphism
of sheaves of graded algebras if and only if φX(ẋi) ∈ F1(X) for 1 ≤ i ≤ n.

Proof. The condition is clearly necessary. To see it is sufficient, we can reduce to showing that
the corresponding morphism φ′ : P −→ F of presheaves of algebras preserves grade, which is
obvious.

Corollary 38. Let (X,OX) be a ringed space and F a sheaf of graded commutative algebras on
X. For n ≥ 1 there is a bijection natural in F

β : HomGrAlg(X)(OX [x1, . . . , xn],F ) ∼= F1(X)n

φ 7→ (φX(ẋ1), . . . , φX(ẋn))

Proposition 39. If U ⊆ X is open and n ≥ 1 then the following diagram commutes up to a
canonical natural equivalence

Mod(X)

��

(−)[x1,...,xn] // Mod(X)

��
Mod(U)

(−)[x1,...,xn]
// Mod(U)

For a sheaf of modules F on X the natural isomorphism F |U [x1, . . . , xn] −→ F [x1, . . . , xn]|U
has the action ˙axα1

1 · · ·xαn
n 7→ ˙axα1

1 · · ·xαn
n .

Proof. This is straightforward, using the technique of Proposition 4.

Proposition 40. Let f : (X,OX) −→ (Y,OY ) be an isomorphism of ringed spaces. Then for
n ≥ 1 the following diagram commutes up to canonical natural equivalence

Mod(X)
f∗ +3 Mod(Y )

Mod(X)

(−)[x1,...,xn]

OO

f∗

+3 Mod(Y )

(−)[x1,...,xn]

OO

For a sheaf of modules F on X the natural isomorphism f∗(F [x1, . . . , xn]) ∼= (f∗F )[x1, . . . , xn]
has the action ˙axα1

1 · · ·xαn
n 7→ ˙axα1

1 · · ·xαn
n .

Proof. Once again, straightforward using the technique of Proposition 5.

Lemma 41. Let A be a commutative ring, p a prime ideal of A and M an A-module. For n ≥ 1
there is a canonical isomorphism of Ap-modules φp : M [x1, . . . , xn]p −→ Mp[x1, . . . , xn] defined
by φp(f/s)(α) = f(α)/s.

Lemma 42. Let (X,OX) be a ringed space and F a sheaf of modules on X. For n ≥ 1 and
y ∈ X there is a canonical isomorphism of OX,y-modules natural in F

γ : F [x1, . . . , xn]y −→ Fy[x1, . . . , xn]

(U, ˙axα1
1 · · ·xαn

n ) 7→ (U, a)xα1
1 · · ·xαn

n

Proof. Let P be the presheaf P (U) = F (U)[x1, . . . , xn]. It is not hard to check that the following
is a well-defined isomorphism of OX,y-modules

τ : Py −→ Fy[x1, . . . , xn]
τ(U, f)(α) = (U, f(α))

We define γ to be the composite of the canonical isomorphism F [x1, . . . , xn]y ∼= Py with τ .
Naturality in F is easily checked.
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Proposition 43. Let X = SpecA be an affine scheme and M an A-module. Then for n ≥ 1 there
is a canonical isomorphism of sheaves of modules natural in M

ψ : M̃ [x1, . . . , xn] −→M [x1, . . . , xn]˜
( ˙m/s) ˙xα1

1 · · ·xαn
n 7→ mxα1

1 · · ·xαn
n /̇s

Proof. For open U ⊆ X and p ∈ U and a polynomial f ∈ M̃(U)[x1, . . . , xn] let f(p) denote the
polynomial α 7→ f(α)(p) of Mp[x1, . . . , xn]. Let P be the presheaf P (U) = M̃(U)[x1, . . . , xn]
which sheafifies to give M̃ [x1, . . . , xn]. We have a morphism of presheaves of modules

ψ′ : P −→M [x1, . . . , xn]˜
ψ′U (f)(p) = φ−1

p (f(p))

where φp is the isomorphism defined in Lemma 41. To see that ψ′U (f) is a well-defined section,
take the nonzero coefficients of f and find an open neighborhood of p small enough so all these
coefficients are of the form ˙m/s. Then on that neighborhood ψ′U (f) will be of the form ˙g/t for a
polynomial g ∈M [x1, . . . , xn]. For any prime p there is a commutative diagram

Pp

��

ψ′p // M [x1, . . . , xn] p̃

��
M̃p[x1, . . . , xn] +3 Mp[x1, . . . , xn] +3 M [x1, . . . , xn]p

Therefore ψ′p is an isomorphism, and hence so is the morphism of sheaves of modules ψ :
M̃ [x1, . . . , xn] −→M [x1, . . . , xn]˜ induced by ψ′. Naturality in M is easily checked.

Corollary 44. Let X be a scheme and F a sheaf of modules on X. If F is quasi-coherent, then
the same is true of F [x1, . . . , xn] for any n ≥ 1.

Proof. For x ∈ X let U be an affine open neighborhood of x and f : U −→ SpecOX(U) the
canonical isomorphism. Then f∗F |U ∼= F (U)˜and combining Proposition 39, Proposition 40 and
Proposition 43 we see that

f∗(F [x1, . . . , xn]|U ) ∼= f∗(F |U [x1, . . . , xn])
∼= (f∗F |U )[x1, . . . , xn]

∼= F̃ (U)[x1, . . . , xn]
∼= F (U)[x1, . . . , xn]˜

This shows that F [x1, . . . , xn] is a quasi-coherent sheaf of modules, as required.

Proposition 45. Let X be a scheme and F quasi-coherent sheaf of modules on X. For n ≥ 1
and affine open U ⊆ X there is a canonical isomorphism of graded OX(U)-modules natural in F
and the affine open set U

τ : F (U)[x1, . . . , xn] ∼= F [x1, . . . , xn](U)

axα1
1 · · ·xαn

n 7→ ˙axα1
1 · · ·xαn

n

If F is a sheaf of algebras, this is an isomorphism of graded OX(U)-algebras.

Proof. We make F [x1, . . . , xn](U) into a gradedOX(U)-module as in (SOA,Proposition 40). Using
Proposition (H,5.1(d)) and Corollary 44 we get an isomorphism OX(U)-modules τ , which is easily
seen to preserve grade. If F is a sheaf of algebras, then τ is clearly a morphism of sheaves of
algebras. Note that τ is actually the sheafification morphism P −→ F [x1, . . . , xn] evaluated at
U , from which it follows that τ is natural in F and inclusions of open affines V ⊆ U .
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Corollary 46. Let X be a scheme and F a quasi-coherent sheaf of commutative algebras on X.
Then for n ≥ 1, F [x1, . . . , xn] is locally finitely generated by F [x1, . . . , xn]1 as an F [x1, . . . , xn]0-
algebra.

Proof. This follows immediately from Proposition 45.

Lemma 47. Let X be a nonempty scheme and F a free OX-module of rank n ≥ 1. For any basis
f1, . . . , fn ∈ F (X) there is a canonical isomorphism of sheaves of graded OX-algebras

β : OX [x1, . . . , xn] −→ S(F )
ẋi 7→ fi

Proof. By a “basis” we mean a coproduct {φi : OX −→ F}1≤i≤n, but since morphisms OX −→ F
correspond to global sections of F , there is no harm in calling the elements (φi)X(1) a basis. We
know such a morphism of sheaves of graded OX -algebras β exists by Corollary 38. Since F is
quasi-coherent, we reduce by (MOS,Lemma 2) to showing that βU is a bijection for every affine
open U ⊆ X, and this follows at once from (TES,Lemma 34), Proposition 45, and Proposition
17.

Lemma 48. If X is a scheme then there is a canonical isomorphism of sheaves of graded OX-
algebras

β : OX [x] −→ T(OX)

ẋ 7→ 1 ∈ T1(OX)(X)

Proof. First of all, we know from Lemma 9 that T(OX) is a quasi-coherent sheaf of commutative
graded OX -algebras. So such a morphism of sheaves of graded OX -algebras β exists by Corollary
38. We reduce by (MOS,Lemma 2) to showing that βU is a bijection for every affine open U ⊆ X,
and this follows at once from (TES,Lemma 8), Proposition 45, and Proposition 8.

6 Sheaves of Ideal Products

Suppose for every n ≥ 0 we have a sheaf of ideals Jn on X satisfying the following conditions

J0 = OX (7)
Jn ⊆ Jm m ≤ n (8)

JnJm ⊆ Jm+n m,n ≥ 0 (9)

By JnJm ⊆ Jn+m we mean that the ideal product JnJm, which is a sheaf of ideals on X, is
contained in Jm+n. This is equivalent to having Jn(U)Jm(U) ⊆ Jm+n(U) as ideals in OX(U)
for every open subset U ⊆ X. Let P be the following presheaf of modules on OX (coproduct of
presheaves of modules)

P =
⊕
n≥0

Jn = OX ⊕J1 ⊕J2 ⊕ · · ·

For open U ⊆ X define a product on the OX(U)-module P (U) by

(xy)i =
∑
d+e=i

xdye

It is easy to check this is a commutative graded OX(U)-algebra with identity (1, 0, . . .) and graded
piece Jn(U) in degree n ≥ 0. As usual we identify elements of Jn(U) with sequences in P (U)
with only one nonzero entry. In that case multiplication in P (U) is just multiplication in OX(U)
where you have to keep track of the grade. With component-wise restriction it is clear that
P is a presheaf of OX(U)-algebras. Therefore the sheafification P is a sheaf of commutative
graded OX -algebras, where the submodule Pn for n ≥ 0 is the image of the canonical morphism
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Jn −→ P −→ P. In fact these morphisms Jn −→ P are the canonical coproduct of sheaves of
modules

P =
⊕
n≥0

Jn

As usual, given a ∈ Jn(U) for n ≥ 0 and some open set U ⊆ U we simply write a for the
corresponding element of P(U) which is the image under P −→ P of the sequence in P (U) with
a single nonzero entry given by a in the nth place. Equivalently this is the image of a under
Jn −→ P.

Definition 3. Let (X,OX) be a ringed space, {Jn}n≥0 a collection of sheaves of ideals satisfying
(7), (8), (9). Then the coproduct of sheaves of modules

⊕
n≥0 Jn becomes a sheaf of commutative

graded OX -algebras in a canonical way. In particular if J is a sheaf of ideals then we can set
Jn = J n for n ≥ 1 (the n-fold product), and in this case we write B(J ) for

⊕
n≥0 Jn and

Bn(J ) for the submodule of degree n for n ≥ 0. Note that B0(J ) = OX .
If J ⊆ K then there is a canonical morphism of graded OX -algebras B(J ) −→ B(K )

which is the sheafification of the morphism given component-wise by the inclusion J −→ K . If
K = J this is the identity, and if J ⊆ K ⊆ L then the composite B(J ) −→ B(K ) −→ B(L )
is just B(J ) −→ B(L ).

Proposition 49. If J is a sheaf of ideals and q ∈ B(J )(U) then for every x ∈ U there is an
open neighborhood x ∈ V ⊆ U such that q|V = q1 + · · ·+ qs where each qk has the form

qk = r + a11 + a21a22 + · · ·+ ah1 · · · ahh

where r ∈ OX(V ) and aij ∈ J (V ). In the sum above, an n-fold product is given grade n for
n ≥ 1.

Proposition 50. If U ⊆ X is open and J is a sheaf of ideals on X then there is a canonical
isomorphism of sheaves of graded OX-algebras natural in J

B(J |U ) −→ B(J )|U
a1 · · · an 7→ a1 · · · an

Proposition 51. Let f : (X,OX) −→ (Y,OY ) be an isomorphism of ringed spaces with inverse
h and let J be a sheaf of ideals on X. Then there is a canonical isomorphism of sheaves of
OY -algebras

ρ : f∗B(J ) −→ B(J · OY )

a1 · · · an 7→ h#
U (a1) · · ·h#

U (an)

where U ⊆ X is open and ai ∈ J (U).

Proof. Here J · OY denotes the sheaf of ideals on Y corresponding to J under (MRS,Lemma
49). Let P be the presheaf of algebras on X sheafifying to give B(J ) and let Q sheafify to give
B(J · OY ). Then we have isomorphisms of presheaves of OY -modules (using (MRS,Proposition
52))

f∗P = f∗OX ⊕ f∗J ⊕ f∗(J 2)⊕ · · ·
∼= OY ⊕ (J · OY )⊕ (J 2 · OY )⊕ · · ·
∼= OY ⊕ (J · OY )⊕ (J · OY )2 ⊕ · · ·
= Q

In fact this is an isomorphism of presheaves of algebras, and together with the canonical iso-
morphism of sheaves of algebras a(f∗P ) ∼= f∗(aP ) this gives our isomorphism ρ of sheaves of
algebras.
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If A is a ring with ideal a then we can define a commutative graded A-algebra

B(a) =
⊕
n≥0

an = A⊕ a⊕ a2 ⊕ · · ·

with the product (xy)i =
∑
d+e=i xdye. If b ⊆ a are ideals then the inclusions give a morphism of

graded A-algebras B(b) −→ B(a). If A is an integral domain then clearly so is B(a).

Proposition 52. Let X = SpecA be an affine scheme and a ⊆ A an ideal. Then there is a
canonical isomorphism of sheaves of OX-algebras

ψ : B(ã) −→ B(a)˜
˙a1/s1 · · · ˙an/sn 7→ a1 · · · an/̇s1 · · · sn

Proof. Since the functor −̃ : AMod −→ Mod(X) preserves all colimits, there is an isomorphism
of sheaves of modules

B(ã) = OX ⊕ ã⊕ ã2 ⊕ · · ·

= OX ⊕ ã⊕ ã2 ⊕ · · ·
∼= B(a)˜

To check it is a morphism of sheaves of algebras we can reduce to the case of sections of the special
form given in the statement, which is easy.

Proposition 53. Let X be a scheme and J a sheaf of ideals on X. If J is quasi-coherent then
so is B(J ).

Proof. This follows immediately from (MOS,Corollary 12) and (MOS,Proposition 25).

Proposition 54. Let X be a scheme and J a sheaf of ideals on X. If J is quasi-coherent and
U ⊆ X is affine then there is a canonical isomorphism of graded OX(U)-algebras natural in J
and the affine open subset U

τ : B(J (U)) −→ B(J )(U)
a1 · · · an 7→ a1 · · · an

Proof. We make B(J )(U) into a graded OX(U)-algebra as in (SOA,Proposition 40). Let P be the
presheaf P (U) = B(J (U)) of OX -algebras, which sheafifies to give B(J ) by (MOS,Proposition
13), and let τ be the canonical morphism P −→ B(J ) evaluated at U . This is a morphism of
graded OX(U)-algebras, and it follows from (MOS,Lemma 6) that τ is an isomorphism.

Corollary 55. Let X be a scheme and J a quasi-coherent sheaf of ideals on X. Then B(J ) is
locally generated by B(J )1 as a B(J )0-algebra (locally finitely generated if J is coherent).

Proof. Using Proposition 54 we reduce immediately to showing that for a commutative ring A
and ideal a the graded A-algebra B(a) is generated by B(a)1 as an A-algebra, with B(a) finitely
generated by B(a)1 if a is finitely generated. This is easy enough to check.

Proposition 56. If A is a ring then there is a canonical isomorphism of graded A-algebras

β : A[x] −→ B(A)
x 7→ (0, 1, 0, . . .)

Corollary 57. If X is a scheme then there is a canonical isomorphism of sheaves of graded
OX-algebras

β : OX [x] −→ B(OX)

ẋ 7→ 1 ∈ B1(OX)(X)
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Proof. We know from Proposition 53 that B(OX) is a quasi-coherent sheaf of commutative graded
OX -algebras. So such a morphism of sheaves of graded OX -algebras β exists by Corollary 38. We
reduce by (MOS,Lemma 2) to showing that βU is a bijection for every affine open U ⊆ X, and
this follows from Proposition 56, Proposition 45 and Proposition 54.
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In summary we have the following diagram of functors. Pairs of functors going in opposite
directions are adjoint pairs, with the left adjoint on the left.

←
−

←
−

←

−

←

−

←
−

←

−

Mod(X)

F

nAlg(X)

T(−)

Alg(X)

S(−)

S(F )

T(F )

GrAlg(X)

GrnAlg(X)

T(−) S(−)

S(F )

T(F )

←

−

←

−

←
− (−)1

←

−

(−)1

∧

sAlg(X)

∧
F

(−)1
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